File size: 1,426 Bytes
22b0dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\# SNP-Universal-Embedding  

\_A public-ready embedding model derived from the Substrate-Prism Neuron (SNP) framework.\_



\## Description  

SNP-Universal-Embedding is a 6-dimensional embedding model built from emotional geometry principles

originating in the Substrate-Prism Neuron research.  

It maps semantic and emotional relationships into compact geometric space — designed for  

research in cognitive modeling, decision conflict analysis, and affective reasoning.



\## Key Info  

\- \*\*Base model:\*\* BERT-base-uncased  

\- \*\*Dimensions:\*\* 6  

\- \*\*Purpose:\*\* Compact universal embeddings reflecting emotional \& relational context  

\- \*\*Use cases:\*\*  

  - Compare semantic + affective similarity  

  - Feed into downstream emotional-reasoning models  

  - Multi-modal integration (text → cognitive vector space)



\## Example Usage (local)

```python



from transformers import AutoTokenizer, AutoModel



import torch







tokenizer = AutoTokenizer.from\_pretrained("./SNP-Universal-Embedding")



model = AutoModel.from\_pretrained("./SNP-Universal-Embedding")







inputs = tokenizer("A decision between love and duty.", return\_tensors="pt")



with torch.no\_grad():



    output = model(\*\*inputs)







embedding = output.last\_hidden\_state.mean(dim=1)



print(embedding.shape)  # torch.Size(\[1, 6])