from typing import Dict, Any import torch from transformers import AutoConfig, AutoModel, AutoTokenizer, PreTrainedModel, PretrainedConfig import torch.nn as nn # ============================================================ # Register Custom SNP Architecture # ============================================================ class CustomSNPConfig(PretrainedConfig): model_type = "custom_snp" class CustomSNPModel(PreTrainedModel): config_class = CustomSNPConfig def __init__(self, config): super().__init__(config) hidden_size = getattr(config, "hidden_size", 768) self.encoder = nn.Linear(hidden_size, hidden_size) self.mirror_head = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.Tanh()) self.prism_head = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.Tanh()) self.projection = nn.Linear(hidden_size, 6) def forward(self, input_ids=None, attention_mask=None, **kwargs): x = self.encoder(input_ids.float()) if input_ids is not None else None x = self.mirror_head(x) x = self.prism_head(x) return self.projection(x) # Register classes so Transformers recognizes "custom_snp" AutoConfig.register("custom_snp", CustomSNPConfig) AutoModel.register(CustomSNPConfig, CustomSNPModel) # ============================================================ # Endpoint Handler # ============================================================ class EndpointHandler: def __init__(self, model_dir: str): print(f"Loading model from {model_dir}") self.tokenizer = AutoTokenizer.from_pretrained(model_dir) config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True) self.model = AutoModel.from_pretrained(model_dir, config=config, trust_remote_code=True) self.model.eval() print("✅ Custom SNP model loaded successfully.") def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: inputs = data.get("inputs") or data if isinstance(inputs, dict) and "text" in inputs: text = inputs["text"] else: text = str(inputs) encoded = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = self.model(**encoded) if hasattr(outputs, "last_hidden_state"): emb = outputs.last_hidden_state.mean(dim=1).tolist() elif isinstance(outputs, tuple): emb = outputs[0].mean(dim=1).tolist() else: emb = outputs.tolist() return {"embeddings": emb}