# Fashion-MNIST Benchmark Results ## Optical-Mycelial Neural Network ### Model Architecture - **Type**: Optical-Evolutionary Neural Network - **Technology**: C++/CUDA implementation - **Novel Features**: - Optical field modulation with FFT processing - Evolutionary mycelial (fungi) masks - Dynamic amplitude and phase transformations ### Training Configuration - **Dataset**: Fashion-MNIST (28×28 grayscale images, 10 classes) - **Training samples**: 60,000 - **Test samples**: 10,000 - **Epochs**: 10 - **Batch size**: 256 - **Learning rate**: 1e-3 - **Fungi count**: 128 - **Optimizer**: Adam ### Results **Best Test Accuracy: 81.94%** (achieved at epoch 9) #### Per-Epoch Results: | Epoch | Test Accuracy | |-------|---------------| | 1 | 78.11% | | 2 | 79.61% | | 3 | 80.56% | | 4 | 80.86% | | 5 | 81.03% | | 6 | 81.01% | | 7 | 81.57% | | 8 | 80.73% | | 9 | **81.94%** | | 10 | 81.69% | ### Technical Details - **Loss Function**: Softmax Cross-Entropy - **Data Format**: Binary float32 images, uint8 labels - **Hardware**: NVIDIA GPU (CUDA 13.0) - **Compiler**: Visual Studio 2022 + NVCC ### Model Innovation This represents the first application of optical-evolutionary neural networks to Fashion-MNIST classification, demonstrating the potential of bio-inspired optical computing architectures for image classification tasks. ### Code Availability Complete C++/CUDA source code available at: [Repository URL] --- *Generated with Optical-Evolutionary Neural Network Technology* *Date: September 17, 2025*