See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-3B-Instruct
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
chat_template: chatml
datasets:
- path: AlekseyKorshuk/ai-detection-booksum-complete-cleaned-human-ai-sft
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
val_set_size: 0.05
output_dir: ./outputs/out
eval_table_size: 0
eval_max_new_tokens: 1
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
wandb_project: ai-seo-rewriter
wandb_entity:
wandb_watch:
wandb_name: ai-detection-booksum-complete-cleaned-human-ai-sft-qwen-3b
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 16
eval_batch_size: 16
num_epochs: 1
optimizer: adamw_torch
# adam_beta1: 0.9
# adam_beta2: 0.95
max_grad_norm: 1.0
# adam_epsilon: 0.00001
lr_scheduler: cosine
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
hub_model_id: AlekseyKorshuk/ai-detection-booksum-complete-cleaned-human-ai-sft-qwen-3b
ai-detection-booksum-complete-cleaned-human-ai-sft-qwen-3b
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0386
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.3436 | 0.0025 | 1 | 2.4016 |
| 1.2487 | 0.1015 | 41 | 1.1937 |
| 1.1094 | 0.2030 | 82 | 1.1329 |
| 1.1286 | 0.3045 | 123 | 1.1040 |
| 1.0279 | 0.4059 | 164 | 1.0828 |
| 0.9941 | 0.5074 | 205 | 1.0676 |
| 0.9925 | 0.6089 | 246 | 1.0553 |
| 0.9619 | 0.7104 | 287 | 1.0458 |
| 0.9993 | 0.8119 | 328 | 1.0408 |
| 0.9544 | 0.9134 | 369 | 1.0386 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4