--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whishper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ta split: test args: ta metrics: - name: Wer type: wer value: 72.24880382775119 --- # whishper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5474 - Wer: 72.2488 - Cer: 29.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 0.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.2442 | 0.0333 | 5 | 0.8071 | 140.3509 | 157.0811 | | 0.2386 | 0.0667 | 10 | 0.7964 | 146.2520 | 136.7877 | | 0.3848 | 0.1 | 15 | 0.7687 | 146.8900 | 111.5479 | | 0.3015 | 0.1333 | 20 | 0.7213 | 157.0973 | 126.8761 | | 0.2178 | 0.1667 | 25 | 0.6916 | 159.1707 | 144.8561 | | 0.2314 | 0.2 | 30 | 0.6551 | 149.6013 | 125.3526 | | 0.2112 | 0.2333 | 35 | 0.6239 | 99.3620 | 64.2844 | | 0.1571 | 0.2667 | 40 | 0.5794 | 76.5550 | 35.1514 | | 0.1934 | 0.3 | 45 | 0.5547 | 73.0463 | 33.7596 | | 0.3231 | 0.3333 | 50 | 0.5474 | 72.2488 | 29.9605 | | 0.1035 | 0.3667 | 55 | 0.5434 | 72.5678 | 32.3491 | | 0.1991 | 0.4 | 60 | 0.5454 | 74.0032 | 31.4275 | | 0.196 | 0.4333 | 65 | 0.5495 | 73.5247 | 36.0166 | | 0.4541 | 0.4667 | 70 | 0.5448 | 73.3652 | 38.5556 | | 0.2166 | 0.5 | 75 | 0.5418 | 73.3652 | 39.3455 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0