File size: 4,812 Bytes
57c9ebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import glob
import re
import shutil
import sys

import accelerate
import torch
from configuration_afmoe_scm import AfmoeSCMConfig
from modeling_afmoe_scm import AfmoeSCMForCausalLM
from configuration_afmoe import AfmoeConfig
from safetensors import safe_open

input_model = sys.argv[1]
output_model_path = sys.argv[2]

auto_map = {
    "AutoConfig": "configuration_afmoe_scm.AfmoeSCMConfig",
    "AutoModel": "modeling_afmoe_scm.AfmoeSCMModel",
    "AutoModelForCausalLM": "modeling_afmoe_scm.AfmoeSCMForCausalLM"
}

cfg_standard_moe = AfmoeConfig.from_pretrained(input_model)
cfg_shared_moe = AfmoeSCMConfig(
    auto_map=auto_map,
    layer_types=cfg_standard_moe.layer_types,
    global_attn_every_n_layers=cfg_standard_moe.global_attn_every_n_layers,
    load_balance_coeff=cfg_standard_moe.load_balance_coeff,
    mup_enabled=cfg_standard_moe.mup_enabled,
    num_dense_layers=cfg_standard_moe.num_dense_layers,
    num_expert_groups=cfg_standard_moe.num_expert_groups,
    num_limited_groups=cfg_standard_moe.num_limited_groups,
    route_norm=cfg_standard_moe.route_norm,
    route_scale=cfg_standard_moe.route_scale,
    score_func=cfg_standard_moe.score_func,
    topk_group=cfg_standard_moe.topk_group,
    num_shared_experts=cfg_standard_moe.num_shared_experts,
    vocab_size=cfg_standard_moe.vocab_size,
    hidden_size=cfg_standard_moe.hidden_size,
    intermediate_size=cfg_standard_moe.intermediate_size,
    num_hidden_layers=cfg_standard_moe.num_hidden_layers,
    num_attention_heads=cfg_standard_moe.num_attention_heads,
    num_key_value_heads=cfg_standard_moe.num_key_value_heads,
    hidden_act=cfg_standard_moe.hidden_act,
    max_position_embeddings=cfg_standard_moe.max_position_embeddings,
    initializer_range=cfg_standard_moe.initializer_range,
    rms_norm_eps=cfg_standard_moe.rms_norm_eps,
    use_cache=cfg_standard_moe.use_cache,
    tie_word_embeddings=cfg_standard_moe.tie_word_embeddings,
    rope_theta=cfg_standard_moe.rope_theta,
    rope_scaling=cfg_standard_moe.rope_scaling,
    sliding_window=cfg_standard_moe.sliding_window,
    attention_dropout=cfg_standard_moe.attention_dropout,
    moe_intermediate_size=cfg_standard_moe.moe_intermediate_size,
    num_experts_per_tok=cfg_standard_moe.num_experts_per_tok,
    num_experts=cfg_standard_moe.num_experts,
    head_dim=cfg_standard_moe.head_dim,
    eos_token_id=cfg_standard_moe.eos_token_id,
    pad_token_id=cfg_standard_moe.pad_token_id,
    torch_dtype=cfg_standard_moe.torch_dtype,
)

num_experts = cfg_standard_moe.num_experts

with accelerate.init_empty_weights():
    model_shared_moe = AfmoeSCMForCausalLM(cfg_shared_moe)

model_shared_moe = model_shared_moe.to(torch.bfloat16)
new_state_dict = {}
pattern = f"{input_model}/model-*-of-*.safetensors"
files = sorted(glob.glob(pattern))

if len(files) == 0:
    raise FileNotFoundError
tensors = {}

for file_path in files:
    print(f"processing {file_path}")
    with safe_open(file_path, framework="pt", device="cpu") as f:
        for key in f.keys():
            tensor = f.get_tensor(key)
            tensors[key] = tensor

for key in tensors:
    if "experts" not in key or "shared_experts" in key:
        new_state_dict[key] = tensors[key]
    elif "experts.0" in key:
        layer_num = int(re.search(r"\d+", key).group())
        new_state_dict[
            f"model.layers.{layer_num}.mlp.moe_mlp.output_experts.weight"
        ] = torch.stack(
            [
                tensors[f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight"]
                for i in range(num_experts)
            ]
        )
        new_state_dict[f"model.layers.{layer_num}.mlp.moe_mlp.experts.weight"] = (
            torch.stack(
                [
                    torch.cat(
                        [
                            tensors[
                                f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight"
                            ],
                            tensors[
                                f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight"
                            ],
                        ],
                        dim=0,
                    )
                    for i in range(num_experts)
                ]
            )
        )
model_shared_moe.load_state_dict(new_state_dict, strict=True, assign=True)
model_shared_moe.save_pretrained(output_model_path)
cfg_shared_moe.save_pretrained(output_model_path)


shutil.copy(
    "modeling_afmoe_scm.py",
    output_model_path + "/" + "modeling_afmoe_scm.py",
)
shutil.copy(
    "configuration_afmoe_scm.py",
    output_model_path + "/" + "configuration_afmoe_scm.py",
)
for i in ["special_tokens_map.json", "tokenizer_config.json", "tokenizer.json", "chat_template.jinja"]:
    shutil.copy(input_model + "/" + i, output_model_path + "/" + i)