|
|
from typing import Tuple
|
|
|
|
|
|
import torch
|
|
|
import torch.utils.checkpoint
|
|
|
from torch import nn
|
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
|
from transformers.generation import GenerationMixin
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
|
|
from transformers.utils import logging
|
|
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward
|
|
|
from transformers.activations import ACT2FN
|
|
|
from .configuration_wilai import WilaiConfig
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
_TOKENIZER_FOR_DOC = "WilaiTokenizer"
|
|
|
_CHECKPOINT_FOR_DOC = "JonusNattapong/wilai-2.0"
|
|
|
_CONFIG_FOR_DOC = "WilaiConfig"
|
|
|
|
|
|
|
|
|
class WilaiAttention(nn.Module):
|
|
|
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
|
|
super().__init__()
|
|
|
|
|
|
max_positions = config.max_position_embeddings
|
|
|
self.register_buffer(
|
|
|
"bias",
|
|
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
|
|
1, 1, max_positions, max_positions
|
|
|
),
|
|
|
)
|
|
|
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
|
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
|
self.head_dim = self.embed_dim // self.num_attention_heads
|
|
|
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
|
|
raise ValueError(
|
|
|
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
|
|
f" `num_attention_heads`: {self.num_attention_heads})."
|
|
|
)
|
|
|
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
|
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.attn_pdrop == 0.0)
|
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.attn_pdrop == 0.0)
|
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.attn_pdrop == 0.0)
|
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.attn_pdrop == 0.0)
|
|
|
self.dropout = config.attn_pdrop
|
|
|
|
|
|
self.pruned_heads = set()
|
|
|
self.layer_idx = layer_idx
|
|
|
self.is_cross_attention = is_cross_attention
|
|
|
|
|
|
def prune_heads(self, heads):
|
|
|
if len(heads) == 0:
|
|
|
return
|
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
|
|
|
|
|
query_length, key_length = query.size(-2), key.size(-2)
|
|
|
causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length].bool()
|
|
|
|
|
|
|
|
|
query = query.to(torch.float32)
|
|
|
key = key.to(torch.float32)
|
|
|
|
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
|
|
|
|
|
attn_weights = attn_weights / self.scale_attn
|
|
|
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
attn_weights = attn_weights.to(value.dtype)
|
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
|
|
|
|
|
|
|
|
if head_mask is not None:
|
|
|
attn_weights = attn_weights * head_mask
|
|
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
|
|
return attn_output, attn_weights
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states,
|
|
|
layer_past=None,
|
|
|
attention_mask=None,
|
|
|
head_mask=None,
|
|
|
use_cache=False,
|
|
|
output_attentions=False,
|
|
|
):
|
|
|
query = self.q_proj(hidden_states)
|
|
|
key = self.k_proj(hidden_states)
|
|
|
value = self.v_proj(hidden_states)
|
|
|
|
|
|
query = self._split_heads(query, self.num_attention_heads, self.head_dim)
|
|
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim)
|
|
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim)
|
|
|
|
|
|
if layer_past is not None:
|
|
|
past_key, past_value = layer_past
|
|
|
key = torch.cat((past_key, key), dim=-2)
|
|
|
value = torch.cat((past_value, value), dim=-2)
|
|
|
|
|
|
if use_cache is True:
|
|
|
present = (key, value)
|
|
|
else:
|
|
|
present = None
|
|
|
|
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
|
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
|
|
|
|
|
|
outputs = (attn_output, present)
|
|
|
if output_attentions:
|
|
|
outputs += (attn_weights,)
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
def _split_heads(self, tensor, num_attention_heads, attn_head_size):
|
|
|
"""
|
|
|
Splits hidden_size dim into attn_head_size and num_attention_heads
|
|
|
"""
|
|
|
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
|
|
tensor = tensor.view(*new_shape)
|
|
|
return tensor.permute(0, 2, 1, 3)
|
|
|
|
|
|
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
|
|
"""
|
|
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
|
|
"""
|
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
|
|
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
|
|
return tensor.view(new_shape)
|
|
|
|
|
|
|
|
|
class WilaiMLP(nn.Module):
|
|
|
def __init__(self, intermediate_size, config):
|
|
|
super().__init__()
|
|
|
embed_dim = config.hidden_size
|
|
|
|
|
|
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
|
|
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
|
|
self.act = ACT2FN[config.activation_function]
|
|
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
hidden_states = self.c_fc(hidden_states)
|
|
|
hidden_states = self.act(hidden_states)
|
|
|
hidden_states = self.c_proj(hidden_states)
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class WilaiBlock(nn.Module):
|
|
|
def __init__(self, config, layer_idx=None):
|
|
|
super().__init__()
|
|
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
|
|
|
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
self.attn = WilaiAttention(config, layer_idx=layer_idx)
|
|
|
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
self.mlp = WilaiMLP(inner_dim, config)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states,
|
|
|
layer_past=None,
|
|
|
attention_mask=None,
|
|
|
head_mask=None,
|
|
|
use_cache=False,
|
|
|
output_attentions=False,
|
|
|
):
|
|
|
residual = hidden_states
|
|
|
hidden_states = self.ln_1(hidden_states)
|
|
|
attn_outputs = self.attn(
|
|
|
hidden_states,
|
|
|
layer_past=layer_past,
|
|
|
attention_mask=attention_mask,
|
|
|
head_mask=head_mask,
|
|
|
use_cache=use_cache,
|
|
|
output_attentions=output_attentions,
|
|
|
)
|
|
|
attn_output = attn_outputs[0]
|
|
|
outputs = attn_outputs[1:]
|
|
|
|
|
|
hidden_states = attn_output + residual
|
|
|
|
|
|
residual = hidden_states
|
|
|
hidden_states = self.ln_2(hidden_states)
|
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
|
|
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
|
|
|
|
if use_cache:
|
|
|
outputs = (hidden_states,) + outputs
|
|
|
else:
|
|
|
outputs = (hidden_states,) + outputs[1:]
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
class WilaiPreTrainedModel(PreTrainedModel):
|
|
|
"""
|
|
|
An abstract class to handle weights initialization and a simple interface for downloading and
|
|
|
loading pretrained models.
|
|
|
"""
|
|
|
|
|
|
config_class = WilaiConfig
|
|
|
base_model_prefix = "transformer"
|
|
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
|
|
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
|
|
def _init_weights(self, module):
|
|
|
"""Initialize the weights."""
|
|
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
|
|
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
|
module.bias.data.zero_()
|
|
|
elif isinstance(module, nn.LayerNorm):
|
|
|
module.bias.data.zero_()
|
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
|
|
|
WILAI_START_DOCSTRING = r"""
|
|
|
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
|
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
|
|
pruning heads etc.)
|
|
|
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
|
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
|
|
general usage and behavior.
|
|
|
|
|
|
Parameters:
|
|
|
config (:class:`~transformers.WilaiConfig`): Model configuration class with all the parameters of the model.
|
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
|
|
weights.
|
|
|
"""
|
|
|
|
|
|
WILAI_INPUTS_DOCSTRING = r"""
|
|
|
Args:
|
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
|
|
|
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
|
|
|
``past_key_values[0][0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input
|
|
|
sequence tokens in the vocabulary.
|
|
|
|
|
|
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
|
|
|
passed as ``input_ids``.
|
|
|
|
|
|
Indices can be obtained using :class:`~transformers.WilaiTokenizer`. See
|
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
|
|
details.
|
|
|
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__
|
|
|
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers`):
|
|
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
|
|
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which
|
|
|
have their past given to this model should not be passed as ``input_ids`` as they have already been
|
|
|
computed.
|
|
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
|
- 0 for tokens that are **masked**.
|
|
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
|
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`):
|
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
|
|
1]``:
|
|
|
|
|
|
- 0 corresponds to a `sentence A` token,
|
|
|
- 1 corresponds to a `sentence B` token.
|
|
|
|
|
|
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
|
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Indices of positions of each input sequence token in the position embeddings. Selected in the range ``[0,
|
|
|
config.max_position_embeddings - 1]``.
|
|
|
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_
|
|
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
|
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
|
- 0 indicates the head is **masked**.
|
|
|
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
|
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
|
|
vectors than the model's internal embedding lookup matrix.
|
|
|
use_cache (:obj:`bool`, `optional`):
|
|
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
|
decoding (see :obj:`past_key_values`).
|
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
|
|
tensors for more detail.
|
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
|
|
more detail.
|
|
|
return_dict (:obj:`bool`, `optional`):
|
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
|
"""
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
"The bare Wilai Model transformer outputting raw hidden-states without any specific head on top.",
|
|
|
WILAI_START_DOCSTRING,
|
|
|
)
|
|
|
class WilaiModel(WilaiPreTrainedModel):
|
|
|
def __init__(self, config):
|
|
|
super().__init__(config)
|
|
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
self.vocab_size = config.vocab_size
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
|
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
|
self.h = nn.ModuleList([WilaiBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
|
return self.wte
|
|
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
|
self.wte = new_embeddings
|
|
|
|
|
|
def get_head_mask(self, head_mask, num_hidden_layers):
|
|
|
"""Simple head mask implementation."""
|
|
|
if head_mask is not None:
|
|
|
return head_mask
|
|
|
return [None] * num_hidden_layers
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(WILAI_INPUTS_DOCSTRING)
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
past_key_values=None,
|
|
|
attention_mask=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
head_mask=None,
|
|
|
inputs_embeds=None,
|
|
|
use_cache=None,
|
|
|
output_attentions=None,
|
|
|
output_hidden_states=None,
|
|
|
return_dict=None,
|
|
|
):
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
output_hidden_states = (
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
)
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
elif input_ids is not None:
|
|
|
input_shape = input_ids.size()
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
batch_size = input_ids.shape[0]
|
|
|
elif inputs_embeds is not None:
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
else:
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
|
|
if token_type_ids is not None:
|
|
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
|
|
|
|
|
if past_key_values is None:
|
|
|
past_length = 0
|
|
|
past_key_values = tuple([None] * len(self.h))
|
|
|
else:
|
|
|
past_length = past_key_values[0][0].size(-2)
|
|
|
|
|
|
if position_ids is None:
|
|
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
assert batch_size > 0, "batch_size has to be defined and > 0"
|
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype)
|
|
|
attention_mask = (1.0 - attention_mask) * -10000.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
position_embeds = self.wpe(position_ids)
|
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
|
|
if token_type_ids is not None:
|
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
|
hidden_states = hidden_states + token_type_embeds
|
|
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
|
|
output_shape = input_shape + (hidden_states.size(-1),)
|
|
|
|
|
|
presents = () if use_cache else None
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
if output_hidden_states:
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
|
|
|
|
|
if use_cache:
|
|
|
logger.warning(
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
)
|
|
|
use_cache = False
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
def custom_forward(*inputs):
|
|
|
|
|
|
return module(*inputs, use_cache, output_attentions)
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
outputs = torch.utils.checkpoint.checkpoint(
|
|
|
create_custom_forward(block),
|
|
|
hidden_states,
|
|
|
None,
|
|
|
attention_mask,
|
|
|
head_mask[i],
|
|
|
)
|
|
|
else:
|
|
|
outputs = block(
|
|
|
hidden_states,
|
|
|
layer_past=layer_past,
|
|
|
attention_mask=attention_mask,
|
|
|
head_mask=head_mask[i],
|
|
|
use_cache=use_cache,
|
|
|
output_attentions=output_attentions,
|
|
|
)
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
if use_cache is True:
|
|
|
presents = presents + (outputs[1],)
|
|
|
|
|
|
if output_attentions:
|
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
hidden_states = hidden_states.view(*output_shape)
|
|
|
|
|
|
|
|
|
if output_hidden_states:
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
if not return_dict:
|
|
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
|
|
|
|
|
return BaseModelOutputWithPast(
|
|
|
last_hidden_state=hidden_states,
|
|
|
past_key_values=presents,
|
|
|
hidden_states=all_hidden_states,
|
|
|
attentions=all_self_attentions,
|
|
|
)
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
"""
|
|
|
The Wilai Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
|
|
embeddings).
|
|
|
""",
|
|
|
WILAI_START_DOCSTRING,
|
|
|
)
|
|
|
class WilaiForCausalLM(WilaiPreTrainedModel, GenerationMixin):
|
|
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head\.weight"]
|
|
|
|
|
|
def __init__(self, config):
|
|
|
super().__init__(config)
|
|
|
self.transformer = WilaiModel(config)
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
|
return self.lm_head
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
|
self.lm_head = new_embeddings
|
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
|
|
token_type_ids = kwargs.get("token_type_ids", None)
|
|
|
|
|
|
if past:
|
|
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
if token_type_ids is not None:
|
|
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
|
attention_mask = kwargs.get("attention_mask", None)
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
|
if past:
|
|
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
|
else:
|
|
|
position_ids = None
|
|
|
return {
|
|
|
"input_ids": input_ids,
|
|
|
"past_key_values": past,
|
|
|
"use_cache": kwargs.get("use_cache"),
|
|
|
"position_ids": position_ids,
|
|
|
"attention_mask": attention_mask,
|
|
|
"token_type_ids": token_type_ids,
|
|
|
}
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(WILAI_INPUTS_DOCSTRING)
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids=None,
|
|
|
past_key_values=None,
|
|
|
attention_mask=None,
|
|
|
token_type_ids=None,
|
|
|
position_ids=None,
|
|
|
head_mask=None,
|
|
|
inputs_embeds=None,
|
|
|
labels=None,
|
|
|
use_cache=None,
|
|
|
output_attentions=None,
|
|
|
output_hidden_states=None,
|
|
|
return_dict=None,
|
|
|
):
|
|
|
r"""
|
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
|
|
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
|
|
"""
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
input_ids,
|
|
|
past_key_values=past_key_values,
|
|
|
attention_mask=attention_mask,
|
|
|
token_type_ids=token_type_ids,
|
|
|
position_ids=position_ids,
|
|
|
head_mask=head_mask,
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
use_cache=use_cache,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
return_dict=return_dict,
|
|
|
)
|
|
|
hidden_states = transformer_outputs.last_hidden_state if return_dict else transformer_outputs[0]
|
|
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
|
|
loss = None
|
|
|
if labels is not None:
|
|
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
|
|
if not return_dict:
|
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
return CausalLMOutputWithPast(
|
|
|
loss=loss,
|
|
|
logits=lm_logits,
|
|
|
past_key_values=transformer_outputs.past_key_values if return_dict else transformer_outputs[1],
|
|
|
hidden_states=transformer_outputs.hidden_states if return_dict else transformer_outputs[2],
|
|
|
attentions=transformer_outputs.attentions if return_dict else transformer_outputs[3],
|
|
|
)
|
|
|
|
|
|
@staticmethod
|
|
|
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
|
|
"""
|
|
|
This function is used to re-order the :obj:`past_key_values` cache if
|
|
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
|
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
|
|
"""
|
|
|
return tuple(
|
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
|
|
for layer_past in past
|
|
|
)
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
|
return self.transformer.wte
|
|
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
|
self.transformer.wte = new_embeddings
|
|
|
|