Add files using upload-large-folder tool
Browse files- chat_template.jinja +5 -0
- config.json +270 -0
- configuration_deepseek.py +266 -0
- generation_config.json +13 -0
- image_processing_keye.py +541 -0
- merges.txt +0 -0
- model-00001-of-00136.safetensors +3 -0
- model-00003-of-00136.safetensors +3 -0
- model-00004-of-00136.safetensors +3 -0
- model-00009-of-00136.safetensors +3 -0
- model-00021-of-00136.safetensors +3 -0
- model-00035-of-00136.safetensors +3 -0
- model-00039-of-00136.safetensors +3 -0
- model-00041-of-00136.safetensors +3 -0
- model-00046-of-00136.safetensors +3 -0
- model-00048-of-00136.safetensors +3 -0
- model-00050-of-00136.safetensors +3 -0
- model-00057-of-00136.safetensors +3 -0
- model-00059-of-00136.safetensors +3 -0
- model-00061-of-00136.safetensors +3 -0
- model-00063-of-00136.safetensors +3 -0
- model-00066-of-00136.safetensors +3 -0
- model-00068-of-00136.safetensors +3 -0
- model-00069-of-00136.safetensors +3 -0
- model-00073-of-00136.safetensors +3 -0
- model-00077-of-00136.safetensors +3 -0
- model-00080-of-00136.safetensors +3 -0
- model-00083-of-00136.safetensors +3 -0
- model-00086-of-00136.safetensors +3 -0
- model-00096-of-00136.safetensors +3 -0
- model-00101-of-00136.safetensors +3 -0
- model-00102-of-00136.safetensors +3 -0
- model-00103-of-00136.safetensors +3 -0
- model-00109-of-00136.safetensors +3 -0
- model-00110-of-00136.safetensors +3 -0
- model-00113-of-00136.safetensors +3 -0
- model-00116-of-00136.safetensors +3 -0
- model-00124-of-00136.safetensors +3 -0
- model-00128-of-00136.safetensors +3 -0
- model-00130-of-00136.safetensors +3 -0
- model-00131-of-00136.safetensors +3 -0
- model-00135-of-00136.safetensors +3 -0
- model-00136-of-00136.safetensors +3 -0
- model.safetensors.index.json +0 -0
- preprocessor_config.json +33 -0
- processing_keye.py +494 -0
- processor_config.json +6 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- vocab.json +0 -0
chat_template.jinja
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% if not add_vision_id is defined %}{% set add_vision_id = true %}{% endif %}{% if not thinking is defined %}{% set thinking = 'auto' %}{% endif %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% set ns = namespace(is_first_tool_call=true, is_tool_output=false, system_prompt='', is_first_sp=true, is_last_user=false) %}{%- for message in messages -%}{%- if message['role'] == 'system' -%}{%- if not ns.is_first_sp -%}{% set ns.system_prompt = ns.system_prompt + '
|
| 2 |
+
|
| 3 |
+
' %}{% endif -%}{%- set sys_content = message['content'] -%}{%- if sys_content is string -%}{%- set sys_text = sys_content -%}{%- elif sys_content is iterable -%}{%- set sys_text = '' -%}{%- for part in sys_content -%}{%- if part is mapping and part.get('type') == 'text' -%}{%- set sys_text = sys_text + part.get('text', '') -%}{%- endif -%}{%- endfor -%}{%- else -%}{%- set sys_text = '' -%}{%- endif -%}{%- set ns.system_prompt = ns.system_prompt + sys_text -%}{%- set ns.is_first_sp = false -%}{%- endif -%}{%- endfor -%}{% if ns.system_prompt == '' %}{% set ns.system_prompt = '' %}{% endif %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages -%}{%- set role = message['role'] -%}{%- set content = message.get('content') -%}{%- if content is string -%}{%- set content_parts = [{'type': 'text', 'text': content}] -%}{%- elif content is none -%}{%- set content_parts = [] -%}{%- else -%}{%- set content_parts = content -%}{%- endif -%}{%- set text_content = namespace(value='') -%}{%- set vision_content = namespace(value='') -%}{%- for part in content_parts -%}{%- if part.type == 'text' -%}{%- set text_content.value = text_content.value + part.text -%}{%- elif part.type == 'image' or 'image_url' in part -%}{%- set image_count.value = image_count.value + 1 -%}{%- if add_vision_id -%}{%- set vision_content.value = vision_content.value + '' -%}{%- endif -%}{%- set vision_content.value = vision_content.value + '<|vision_start|><|image_pad|><|vision_end|>' -%}{%- elif part.type == 'video' or 'video_url' in part -%}{%- set video_count.value = video_count.value + 1 -%}{%- if add_vision_id -%}{%- set vision_content.value = vision_content.value + '' -%}{%- endif -%}{%- set vision_content.value = vision_content.value + '<|vision_start|><|video_pad|><|vision_end|>' -%}{%- endif -%}{%- endfor -%}{%- if role == 'user' -%}{%- set ns.is_tool_output = false -%}{%- set ns.is_last_user = true -%}<|User|>{{ vision_content.value }}{{ text_content.value }}<|Assistant|>{%- if thinking == 'True' or thinking == True -%}{{ '<think>' }}{%- elif thinking == 'False' or thinking == False -%}{{ '</think>' }}{%- else -%}{{ '' }}{%- endif -%}{%- elif role == 'assistant' -%}{%- set ns.is_last_user = false -%}{%- if ns.is_tool_output -%}<|tool▁outputs▁end|>{% endif -%}{%- set ns.is_tool_output = false -%}{{ vision_content.value }}{{ text_content.value }}{%- if message.get('tool_calls') -%}<|tool▁calls▁begin|>{%- set ns.is_first_tool_call = true -%}{%- for tool in message['tool_calls'] -%}{%- if not ns.is_first_tool_call %}{{'
|
| 4 |
+
'}}{% endif -%}<|tool▁call▁begin|>{{ tool['type'] }}<|tool▁sep|>{{ tool['function']['name'] }}json{{ tool['function']['arguments'] }}<|tool▁call▁end|>{%- set ns.is_first_tool_call = false -%}{%- endfor -%}<|tool▁calls▁end|><|end▁of▁sentence|>{%- else -%}<|end▁of▁sentence|>{%- endif -%}{%- elif role == 'tool' -%}{%- set ns.is_last_user = false -%}{%- if not ns.is_tool_output -%}<|tool▁outputs▁begin|>{% set ns.is_tool_output = true %}{% else %}{{ '
|
| 5 |
+
' }}{% endif -%}<|tool▁output▁begin|>{{ content }}<|tool▁output▁end|>{%- endif -%}{%- endfor -%}{%- if ns.is_tool_output -%}<|tool▁outputs▁end|>{% endif -%}{%- if add_generation_prompt and not ns.is_last_user and not ns.is_tool_output -%}<|Assistant|>{%- if thinking == 'True' or thinking == True -%}{{ '<think>' }}{%- elif thinking == 'False' or thinking == False -%}{{ '</think>' }}{%- else -%}{{ '' }}{%- endif -%}{% endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"KeyeVLMoeForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_deepseek.DeepseekR1Config"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 0,
|
| 11 |
+
"dtype": "bfloat16",
|
| 12 |
+
"eos_token_id": 1,
|
| 13 |
+
"ep_size": 1,
|
| 14 |
+
"fast_video_token_id": 128021,
|
| 15 |
+
"first_k_dense_replace": 3,
|
| 16 |
+
"head_dim": 128,
|
| 17 |
+
"hidden_act": "silu",
|
| 18 |
+
"hidden_size": 7168,
|
| 19 |
+
"image_token_id": 128010,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 18432,
|
| 22 |
+
"kv_lora_rank": 512,
|
| 23 |
+
"max_position_embeddings": 163840,
|
| 24 |
+
"model_type": "deepseek_r1",
|
| 25 |
+
"moe_intermediate_size": 2048,
|
| 26 |
+
"moe_layer_freq": 1,
|
| 27 |
+
"n_group": 8,
|
| 28 |
+
"n_routed_experts": 256,
|
| 29 |
+
"n_shared_experts": 1,
|
| 30 |
+
"norm_topk_prob": true,
|
| 31 |
+
"num_attention_heads": 128,
|
| 32 |
+
"num_experts_per_tok": 8,
|
| 33 |
+
"num_hidden_layers": 61,
|
| 34 |
+
"num_key_value_heads": 128,
|
| 35 |
+
"num_nextn_predict_layers": 1,
|
| 36 |
+
"q_lora_rank": 1536,
|
| 37 |
+
"qk_nope_head_dim": 128,
|
| 38 |
+
"qk_rope_head_dim": 64,
|
| 39 |
+
"quantization_config": {
|
| 40 |
+
"activation_scheme": "dynamic",
|
| 41 |
+
"fmt": "e4m3",
|
| 42 |
+
"quant_method": "fp8",
|
| 43 |
+
"ignored_layers": [
|
| 44 |
+
"mlp_AR.linear_1",
|
| 45 |
+
"mlp_AR.linear_2",
|
| 46 |
+
"visual.vision_model.encoder.layers.0.self_attn.k_proj",
|
| 47 |
+
"visual.vision_model.encoder.layers.0.self_attn.v_proj",
|
| 48 |
+
"visual.vision_model.encoder.layers.0.self_attn.q_proj",
|
| 49 |
+
"visual.vision_model.encoder.layers.0.self_attn.out_proj",
|
| 50 |
+
"visual.vision_model.encoder.layers.0.mlp.fc1",
|
| 51 |
+
"visual.vision_model.encoder.layers.0.mlp.fc2",
|
| 52 |
+
"visual.vision_model.encoder.layers.1.self_attn.k_proj",
|
| 53 |
+
"visual.vision_model.encoder.layers.1.self_attn.v_proj",
|
| 54 |
+
"visual.vision_model.encoder.layers.1.self_attn.q_proj",
|
| 55 |
+
"visual.vision_model.encoder.layers.1.self_attn.out_proj",
|
| 56 |
+
"visual.vision_model.encoder.layers.1.mlp.fc1",
|
| 57 |
+
"visual.vision_model.encoder.layers.1.mlp.fc2",
|
| 58 |
+
"visual.vision_model.encoder.layers.2.self_attn.k_proj",
|
| 59 |
+
"visual.vision_model.encoder.layers.2.self_attn.v_proj",
|
| 60 |
+
"visual.vision_model.encoder.layers.2.self_attn.q_proj",
|
| 61 |
+
"visual.vision_model.encoder.layers.2.self_attn.out_proj",
|
| 62 |
+
"visual.vision_model.encoder.layers.2.mlp.fc1",
|
| 63 |
+
"visual.vision_model.encoder.layers.2.mlp.fc2",
|
| 64 |
+
"visual.vision_model.encoder.layers.3.self_attn.k_proj",
|
| 65 |
+
"visual.vision_model.encoder.layers.3.self_attn.v_proj",
|
| 66 |
+
"visual.vision_model.encoder.layers.3.self_attn.q_proj",
|
| 67 |
+
"visual.vision_model.encoder.layers.3.self_attn.out_proj",
|
| 68 |
+
"visual.vision_model.encoder.layers.3.mlp.fc1",
|
| 69 |
+
"visual.vision_model.encoder.layers.3.mlp.fc2",
|
| 70 |
+
"visual.vision_model.encoder.layers.4.self_attn.k_proj",
|
| 71 |
+
"visual.vision_model.encoder.layers.4.self_attn.v_proj",
|
| 72 |
+
"visual.vision_model.encoder.layers.4.self_attn.q_proj",
|
| 73 |
+
"visual.vision_model.encoder.layers.4.self_attn.out_proj",
|
| 74 |
+
"visual.vision_model.encoder.layers.4.mlp.fc1",
|
| 75 |
+
"visual.vision_model.encoder.layers.4.mlp.fc2",
|
| 76 |
+
"visual.vision_model.encoder.layers.5.self_attn.k_proj",
|
| 77 |
+
"visual.vision_model.encoder.layers.5.self_attn.v_proj",
|
| 78 |
+
"visual.vision_model.encoder.layers.5.self_attn.q_proj",
|
| 79 |
+
"visual.vision_model.encoder.layers.5.self_attn.out_proj",
|
| 80 |
+
"visual.vision_model.encoder.layers.5.mlp.fc1",
|
| 81 |
+
"visual.vision_model.encoder.layers.5.mlp.fc2",
|
| 82 |
+
"visual.vision_model.encoder.layers.6.self_attn.k_proj",
|
| 83 |
+
"visual.vision_model.encoder.layers.6.self_attn.v_proj",
|
| 84 |
+
"visual.vision_model.encoder.layers.6.self_attn.q_proj",
|
| 85 |
+
"visual.vision_model.encoder.layers.6.self_attn.out_proj",
|
| 86 |
+
"visual.vision_model.encoder.layers.6.mlp.fc1",
|
| 87 |
+
"visual.vision_model.encoder.layers.6.mlp.fc2",
|
| 88 |
+
"visual.vision_model.encoder.layers.7.self_attn.k_proj",
|
| 89 |
+
"visual.vision_model.encoder.layers.7.self_attn.v_proj",
|
| 90 |
+
"visual.vision_model.encoder.layers.7.self_attn.q_proj",
|
| 91 |
+
"visual.vision_model.encoder.layers.7.self_attn.out_proj",
|
| 92 |
+
"visual.vision_model.encoder.layers.7.mlp.fc1",
|
| 93 |
+
"visual.vision_model.encoder.layers.7.mlp.fc2",
|
| 94 |
+
"visual.vision_model.encoder.layers.8.self_attn.k_proj",
|
| 95 |
+
"visual.vision_model.encoder.layers.8.self_attn.v_proj",
|
| 96 |
+
"visual.vision_model.encoder.layers.8.self_attn.q_proj",
|
| 97 |
+
"visual.vision_model.encoder.layers.8.self_attn.out_proj",
|
| 98 |
+
"visual.vision_model.encoder.layers.8.mlp.fc1",
|
| 99 |
+
"visual.vision_model.encoder.layers.8.mlp.fc2",
|
| 100 |
+
"visual.vision_model.encoder.layers.9.self_attn.k_proj",
|
| 101 |
+
"visual.vision_model.encoder.layers.9.self_attn.v_proj",
|
| 102 |
+
"visual.vision_model.encoder.layers.9.self_attn.q_proj",
|
| 103 |
+
"visual.vision_model.encoder.layers.9.self_attn.out_proj",
|
| 104 |
+
"visual.vision_model.encoder.layers.9.mlp.fc1",
|
| 105 |
+
"visual.vision_model.encoder.layers.9.mlp.fc2",
|
| 106 |
+
"visual.vision_model.encoder.layers.10.self_attn.k_proj",
|
| 107 |
+
"visual.vision_model.encoder.layers.10.self_attn.v_proj",
|
| 108 |
+
"visual.vision_model.encoder.layers.10.self_attn.q_proj",
|
| 109 |
+
"visual.vision_model.encoder.layers.10.self_attn.out_proj",
|
| 110 |
+
"visual.vision_model.encoder.layers.10.mlp.fc1",
|
| 111 |
+
"visual.vision_model.encoder.layers.10.mlp.fc2",
|
| 112 |
+
"visual.vision_model.encoder.layers.11.self_attn.k_proj",
|
| 113 |
+
"visual.vision_model.encoder.layers.11.self_attn.v_proj",
|
| 114 |
+
"visual.vision_model.encoder.layers.11.self_attn.q_proj",
|
| 115 |
+
"visual.vision_model.encoder.layers.11.self_attn.out_proj",
|
| 116 |
+
"visual.vision_model.encoder.layers.11.mlp.fc1",
|
| 117 |
+
"visual.vision_model.encoder.layers.11.mlp.fc2",
|
| 118 |
+
"visual.vision_model.encoder.layers.12.self_attn.k_proj",
|
| 119 |
+
"visual.vision_model.encoder.layers.12.self_attn.v_proj",
|
| 120 |
+
"visual.vision_model.encoder.layers.12.self_attn.q_proj",
|
| 121 |
+
"visual.vision_model.encoder.layers.12.self_attn.out_proj",
|
| 122 |
+
"visual.vision_model.encoder.layers.12.mlp.fc1",
|
| 123 |
+
"visual.vision_model.encoder.layers.12.mlp.fc2",
|
| 124 |
+
"visual.vision_model.encoder.layers.13.self_attn.k_proj",
|
| 125 |
+
"visual.vision_model.encoder.layers.13.self_attn.v_proj",
|
| 126 |
+
"visual.vision_model.encoder.layers.13.self_attn.q_proj",
|
| 127 |
+
"visual.vision_model.encoder.layers.13.self_attn.out_proj",
|
| 128 |
+
"visual.vision_model.encoder.layers.13.mlp.fc1",
|
| 129 |
+
"visual.vision_model.encoder.layers.13.mlp.fc2",
|
| 130 |
+
"visual.vision_model.encoder.layers.14.self_attn.k_proj",
|
| 131 |
+
"visual.vision_model.encoder.layers.14.self_attn.v_proj",
|
| 132 |
+
"visual.vision_model.encoder.layers.14.self_attn.q_proj",
|
| 133 |
+
"visual.vision_model.encoder.layers.14.self_attn.out_proj",
|
| 134 |
+
"visual.vision_model.encoder.layers.14.mlp.fc1",
|
| 135 |
+
"visual.vision_model.encoder.layers.14.mlp.fc2",
|
| 136 |
+
"visual.vision_model.encoder.layers.15.self_attn.k_proj",
|
| 137 |
+
"visual.vision_model.encoder.layers.15.self_attn.v_proj",
|
| 138 |
+
"visual.vision_model.encoder.layers.15.self_attn.q_proj",
|
| 139 |
+
"visual.vision_model.encoder.layers.15.self_attn.out_proj",
|
| 140 |
+
"visual.vision_model.encoder.layers.15.mlp.fc1",
|
| 141 |
+
"visual.vision_model.encoder.layers.15.mlp.fc2",
|
| 142 |
+
"visual.vision_model.encoder.layers.16.self_attn.k_proj",
|
| 143 |
+
"visual.vision_model.encoder.layers.16.self_attn.v_proj",
|
| 144 |
+
"visual.vision_model.encoder.layers.16.self_attn.q_proj",
|
| 145 |
+
"visual.vision_model.encoder.layers.16.self_attn.out_proj",
|
| 146 |
+
"visual.vision_model.encoder.layers.16.mlp.fc1",
|
| 147 |
+
"visual.vision_model.encoder.layers.16.mlp.fc2",
|
| 148 |
+
"visual.vision_model.encoder.layers.17.self_attn.k_proj",
|
| 149 |
+
"visual.vision_model.encoder.layers.17.self_attn.v_proj",
|
| 150 |
+
"visual.vision_model.encoder.layers.17.self_attn.q_proj",
|
| 151 |
+
"visual.vision_model.encoder.layers.17.self_attn.out_proj",
|
| 152 |
+
"visual.vision_model.encoder.layers.17.mlp.fc1",
|
| 153 |
+
"visual.vision_model.encoder.layers.17.mlp.fc2",
|
| 154 |
+
"visual.vision_model.encoder.layers.18.self_attn.k_proj",
|
| 155 |
+
"visual.vision_model.encoder.layers.18.self_attn.v_proj",
|
| 156 |
+
"visual.vision_model.encoder.layers.18.self_attn.q_proj",
|
| 157 |
+
"visual.vision_model.encoder.layers.18.self_attn.out_proj",
|
| 158 |
+
"visual.vision_model.encoder.layers.18.mlp.fc1",
|
| 159 |
+
"visual.vision_model.encoder.layers.18.mlp.fc2",
|
| 160 |
+
"visual.vision_model.encoder.layers.19.self_attn.k_proj",
|
| 161 |
+
"visual.vision_model.encoder.layers.19.self_attn.v_proj",
|
| 162 |
+
"visual.vision_model.encoder.layers.19.self_attn.q_proj",
|
| 163 |
+
"visual.vision_model.encoder.layers.19.self_attn.out_proj",
|
| 164 |
+
"visual.vision_model.encoder.layers.19.mlp.fc1",
|
| 165 |
+
"visual.vision_model.encoder.layers.19.mlp.fc2",
|
| 166 |
+
"visual.vision_model.encoder.layers.20.self_attn.k_proj",
|
| 167 |
+
"visual.vision_model.encoder.layers.20.self_attn.v_proj",
|
| 168 |
+
"visual.vision_model.encoder.layers.20.self_attn.q_proj",
|
| 169 |
+
"visual.vision_model.encoder.layers.20.self_attn.out_proj",
|
| 170 |
+
"visual.vision_model.encoder.layers.20.mlp.fc1",
|
| 171 |
+
"visual.vision_model.encoder.layers.20.mlp.fc2",
|
| 172 |
+
"visual.vision_model.encoder.layers.21.self_attn.k_proj",
|
| 173 |
+
"visual.vision_model.encoder.layers.21.self_attn.v_proj",
|
| 174 |
+
"visual.vision_model.encoder.layers.21.self_attn.q_proj",
|
| 175 |
+
"visual.vision_model.encoder.layers.21.self_attn.out_proj",
|
| 176 |
+
"visual.vision_model.encoder.layers.21.mlp.fc1",
|
| 177 |
+
"visual.vision_model.encoder.layers.21.mlp.fc2",
|
| 178 |
+
"visual.vision_model.encoder.layers.22.self_attn.k_proj",
|
| 179 |
+
"visual.vision_model.encoder.layers.22.self_attn.v_proj",
|
| 180 |
+
"visual.vision_model.encoder.layers.22.self_attn.q_proj",
|
| 181 |
+
"visual.vision_model.encoder.layers.22.self_attn.out_proj",
|
| 182 |
+
"visual.vision_model.encoder.layers.22.mlp.fc1",
|
| 183 |
+
"visual.vision_model.encoder.layers.22.mlp.fc2",
|
| 184 |
+
"visual.vision_model.encoder.layers.23.self_attn.k_proj",
|
| 185 |
+
"visual.vision_model.encoder.layers.23.self_attn.v_proj",
|
| 186 |
+
"visual.vision_model.encoder.layers.23.self_attn.q_proj",
|
| 187 |
+
"visual.vision_model.encoder.layers.23.self_attn.out_proj",
|
| 188 |
+
"visual.vision_model.encoder.layers.23.mlp.fc1",
|
| 189 |
+
"visual.vision_model.encoder.layers.23.mlp.fc2",
|
| 190 |
+
"visual.vision_model.encoder.layers.24.self_attn.k_proj",
|
| 191 |
+
"visual.vision_model.encoder.layers.24.self_attn.v_proj",
|
| 192 |
+
"visual.vision_model.encoder.layers.24.self_attn.q_proj",
|
| 193 |
+
"visual.vision_model.encoder.layers.24.self_attn.out_proj",
|
| 194 |
+
"visual.vision_model.encoder.layers.24.mlp.fc1",
|
| 195 |
+
"visual.vision_model.encoder.layers.24.mlp.fc2",
|
| 196 |
+
"visual.vision_model.encoder.layers.25.self_attn.k_proj",
|
| 197 |
+
"visual.vision_model.encoder.layers.25.self_attn.v_proj",
|
| 198 |
+
"visual.vision_model.encoder.layers.25.self_attn.q_proj",
|
| 199 |
+
"visual.vision_model.encoder.layers.25.self_attn.out_proj",
|
| 200 |
+
"visual.vision_model.encoder.layers.25.mlp.fc1",
|
| 201 |
+
"visual.vision_model.encoder.layers.25.mlp.fc2",
|
| 202 |
+
"visual.vision_model.encoder.layers.26.self_attn.k_proj",
|
| 203 |
+
"visual.vision_model.encoder.layers.26.self_attn.v_proj",
|
| 204 |
+
"visual.vision_model.encoder.layers.26.self_attn.q_proj",
|
| 205 |
+
"visual.vision_model.encoder.layers.26.self_attn.out_proj",
|
| 206 |
+
"visual.vision_model.encoder.layers.26.mlp.fc1",
|
| 207 |
+
"visual.vision_model.encoder.layers.26.mlp.fc2",
|
| 208 |
+
"lm_head"
|
| 209 |
+
],
|
| 210 |
+
"weight_block_size": [
|
| 211 |
+
128,
|
| 212 |
+
128
|
| 213 |
+
],
|
| 214 |
+
"modules_to_not_convert": [
|
| 215 |
+
"mlp_AR",
|
| 216 |
+
"visual.vision_model",
|
| 217 |
+
"lm_head"
|
| 218 |
+
]
|
| 219 |
+
},
|
| 220 |
+
"rms_norm_eps": 1e-06,
|
| 221 |
+
"rope_scaling": {
|
| 222 |
+
"beta_fast": 32,
|
| 223 |
+
"beta_slow": 1,
|
| 224 |
+
"factor": 40,
|
| 225 |
+
"mscale": 1.0,
|
| 226 |
+
"mscale_all_dim": 1.0,
|
| 227 |
+
"original_max_position_embeddings": 4096,
|
| 228 |
+
"type": "yarn"
|
| 229 |
+
},
|
| 230 |
+
"rope_theta": 10000,
|
| 231 |
+
"routed_scaling_factor": 2.5,
|
| 232 |
+
"scoring_func": "sigmoid",
|
| 233 |
+
"tie_word_embeddings": false,
|
| 234 |
+
"topk_group": 4,
|
| 235 |
+
"topk_method": "noaux_tc",
|
| 236 |
+
"transformers_version": "4.56.2",
|
| 237 |
+
"use_cache": true,
|
| 238 |
+
"v_head_dim": 128,
|
| 239 |
+
"video_token_id": 128011,
|
| 240 |
+
"vision_config": {
|
| 241 |
+
"_attn_implementation_autoset": true,
|
| 242 |
+
"architectures": [
|
| 243 |
+
"SiglipVisionModel"
|
| 244 |
+
],
|
| 245 |
+
"attention_dropout": 0.0,
|
| 246 |
+
"auto_map": {
|
| 247 |
+
"AutoConfig": "configuration_deepseek.KeyeVisionConfig",
|
| 248 |
+
"AutoModel": "modeling_deepseek.SiglipVisionModel"
|
| 249 |
+
},
|
| 250 |
+
"has_learnable_position_embedding": true,
|
| 251 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 252 |
+
"hidden_size": 1152,
|
| 253 |
+
"image_size": 384,
|
| 254 |
+
"intermediate_size": 4304,
|
| 255 |
+
"layer_norm_eps": 1e-06,
|
| 256 |
+
"model_type": "Keye",
|
| 257 |
+
"num_attention_heads": 16,
|
| 258 |
+
"num_channels": 3,
|
| 259 |
+
"num_hidden_layers": 27,
|
| 260 |
+
"patch_size": 14,
|
| 261 |
+
"rope_theta": 10000,
|
| 262 |
+
"spatial_merge_size": 2,
|
| 263 |
+
"temporal_patch_size": 2,
|
| 264 |
+
"tokens_per_second": 2
|
| 265 |
+
},
|
| 266 |
+
"vision_end_token_id": 128008,
|
| 267 |
+
"vision_start_token_id": 128007,
|
| 268 |
+
"vision_token_id": 128009,
|
| 269 |
+
"vocab_size": 129280
|
| 270 |
+
}
|
configuration_deepseek.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The Keye Team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 21 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class KeyeVisionConfig(PretrainedConfig):
|
| 26 |
+
model_type = "Keye"
|
| 27 |
+
base_config_key = "vision_config"
|
| 28 |
+
|
| 29 |
+
def __init__(
|
| 30 |
+
self,
|
| 31 |
+
hidden_size=768,
|
| 32 |
+
intermediate_size=3072,
|
| 33 |
+
num_hidden_layers=12,
|
| 34 |
+
num_attention_heads=12,
|
| 35 |
+
num_channels=3,
|
| 36 |
+
image_size=224,
|
| 37 |
+
patch_size=14,
|
| 38 |
+
hidden_act="gelu_pytorch_tanh",
|
| 39 |
+
layer_norm_eps=1e-6,
|
| 40 |
+
attention_dropout=0.0,
|
| 41 |
+
spatial_merge_size=2,
|
| 42 |
+
temporal_patch_size=2,
|
| 43 |
+
tokens_per_second=2,
|
| 44 |
+
**kwargs,
|
| 45 |
+
):
|
| 46 |
+
super().__init__(**kwargs)
|
| 47 |
+
|
| 48 |
+
self.hidden_size = hidden_size
|
| 49 |
+
self.intermediate_size = intermediate_size
|
| 50 |
+
self.num_hidden_layers = num_hidden_layers
|
| 51 |
+
self.num_attention_heads = num_attention_heads
|
| 52 |
+
self.num_channels = num_channels
|
| 53 |
+
self.patch_size = patch_size
|
| 54 |
+
self.image_size = image_size
|
| 55 |
+
self.attention_dropout = attention_dropout
|
| 56 |
+
self.layer_norm_eps = layer_norm_eps
|
| 57 |
+
self.hidden_act = hidden_act
|
| 58 |
+
self.spatial_merge_size = spatial_merge_size
|
| 59 |
+
self.temporal_patch_size = temporal_patch_size
|
| 60 |
+
self.tokens_per_second = tokens_per_second
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class DeepseekR1Config(PretrainedConfig):
|
| 64 |
+
r"""
|
| 65 |
+
This is the configuration class to store the configuration of a [`KeyeModel`]. It is used to instantiate a
|
| 66 |
+
KeyeVLMoeForConditionalGeneration model according to the specified arguments, defining the model architecture.
|
| 67 |
+
|
| 68 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 69 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
vocab_size (`int`, *optional*, defaults to 152064):
|
| 74 |
+
Vocabulary size of the Keye model. Defines the number of different tokens that can be represented by the
|
| 75 |
+
`inputs_ids` passed when calling [`KeyeModel`]
|
| 76 |
+
hidden_size (`int`, *optional*, defaults to 8192):
|
| 77 |
+
Dimension of the hidden representations.
|
| 78 |
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
| 79 |
+
Dimension of the MLP representations.
|
| 80 |
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
| 81 |
+
Number of hidden layers in the Transformer encoder.
|
| 82 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
| 83 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 84 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
| 85 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 86 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 87 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 88 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 89 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 90 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 91 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 92 |
+
The non-linear activation function (function or string) in the decoder.
|
| 93 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 94 |
+
The maximum sequence length that this model might ever be used with.
|
| 95 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 96 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 97 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 98 |
+
The epsilon used by the rms normalization layers.
|
| 99 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 100 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 101 |
+
relevant if `config.is_decoder=True`.
|
| 102 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 103 |
+
Whether the model's input and output word embeddings should be tied.
|
| 104 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
| 105 |
+
The base period of the RoPE embeddings.
|
| 106 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 107 |
+
Whether to use sliding window attention.
|
| 108 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 109 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 110 |
+
max_window_layers (`int`, *optional*, defaults to 80):
|
| 111 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 112 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 113 |
+
The dropout ratio for the attention probabilities.
|
| 114 |
+
vision_config (`Dict`, *optional*):
|
| 115 |
+
The config for the visual encoder initialization.
|
| 116 |
+
rope_scaling (`Dict`, *optional*):
|
| 117 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 118 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 119 |
+
accordingly.
|
| 120 |
+
Expected contents:
|
| 121 |
+
`rope_type` (`str`):
|
| 122 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 123 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 124 |
+
`factor` (`float`, *optional*):
|
| 125 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 126 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 127 |
+
original maximum pre-trained length.
|
| 128 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 129 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 130 |
+
pretraining.
|
| 131 |
+
`attention_factor` (`float`, *optional*):
|
| 132 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 133 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 134 |
+
`factor` field to infer the suggested value.
|
| 135 |
+
`beta_fast` (`float`, *optional*):
|
| 136 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 137 |
+
ramp function. If unspecified, it defaults to 32.
|
| 138 |
+
`beta_slow` (`float`, *optional*):
|
| 139 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 140 |
+
ramp function. If unspecified, it defaults to 1.
|
| 141 |
+
`short_factor` (`List[float]`, *optional*):
|
| 142 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 143 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 144 |
+
size divided by the number of attention heads divided by 2
|
| 145 |
+
`long_factor` (`List[float]`, *optional*):
|
| 146 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 147 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 148 |
+
size divided by the number of attention heads divided by 2
|
| 149 |
+
`low_freq_factor` (`float`, *optional*):
|
| 150 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 151 |
+
`high_freq_factor` (`float`, *optional*):
|
| 152 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 153 |
+
|
| 154 |
+
```python
|
| 155 |
+
>>> from transformers import KeyeForConditionalGeneration, KeyeConfig
|
| 156 |
+
|
| 157 |
+
>>> # Initializing a Keye style configuration
|
| 158 |
+
>>> configuration = KeyeConfig()
|
| 159 |
+
|
| 160 |
+
>>> # Initializing a model from the Keye-VL-671B-A37B style configuration
|
| 161 |
+
>>> model = KeyeForConditionalGeneration(configuration)
|
| 162 |
+
|
| 163 |
+
>>> # Accessing the model configuration
|
| 164 |
+
>>> configuration = model.config
|
| 165 |
+
```"""
|
| 166 |
+
|
| 167 |
+
model_type = "deepseek_r1"
|
| 168 |
+
sub_configs = {"vision_config": KeyeVisionConfig}
|
| 169 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 170 |
+
|
| 171 |
+
def __init__(
|
| 172 |
+
self,
|
| 173 |
+
vocab_size=129280,
|
| 174 |
+
hidden_size=7168,
|
| 175 |
+
intermediate_size=18432,
|
| 176 |
+
moe_intermediate_size = 2048,
|
| 177 |
+
num_hidden_layers=61,
|
| 178 |
+
num_nextn_predict_layers=1,
|
| 179 |
+
num_attention_heads=128,
|
| 180 |
+
num_key_value_heads=128,
|
| 181 |
+
n_shared_experts = 1,
|
| 182 |
+
n_routed_experts = 256,
|
| 183 |
+
ep_size = 1,
|
| 184 |
+
routed_scaling_factor = 2.5,
|
| 185 |
+
kv_lora_rank = 512,
|
| 186 |
+
q_lora_rank = 1536,
|
| 187 |
+
qk_rope_head_dim = 64,
|
| 188 |
+
v_head_dim = 128,
|
| 189 |
+
qk_nope_head_dim = 128,
|
| 190 |
+
topk_method = 'noaux_tc',
|
| 191 |
+
n_group = 8,
|
| 192 |
+
topk_group = 4,
|
| 193 |
+
num_experts_per_tok = 8,
|
| 194 |
+
moe_layer_freq = 1,
|
| 195 |
+
first_k_dense_replace = 3,
|
| 196 |
+
norm_topk_prob = True,
|
| 197 |
+
scoring_func = 'sigmoid',
|
| 198 |
+
hidden_act="silu",
|
| 199 |
+
max_position_embeddings=4096,
|
| 200 |
+
initializer_range=0.02,
|
| 201 |
+
rms_norm_eps=1e-6,
|
| 202 |
+
use_cache=True,
|
| 203 |
+
pad_token_id=None,
|
| 204 |
+
bos_token_id=0,
|
| 205 |
+
eos_token_id=1,
|
| 206 |
+
tie_word_embeddings=False,
|
| 207 |
+
rope_theta=10000.0,
|
| 208 |
+
rope_scaling=None,
|
| 209 |
+
attention_bias=False,
|
| 210 |
+
attention_dropout=0.0,
|
| 211 |
+
vision_config=None,
|
| 212 |
+
**kwargs,
|
| 213 |
+
):
|
| 214 |
+
if isinstance(vision_config, dict):
|
| 215 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
| 216 |
+
elif vision_config is None:
|
| 217 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
| 218 |
+
|
| 219 |
+
self.vocab_size = vocab_size
|
| 220 |
+
self.max_position_embeddings = max_position_embeddings
|
| 221 |
+
self.hidden_size = hidden_size
|
| 222 |
+
self.intermediate_size = intermediate_size
|
| 223 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 224 |
+
self.num_hidden_layers = num_hidden_layers
|
| 225 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
| 226 |
+
self.num_attention_heads = num_attention_heads
|
| 227 |
+
self.n_shared_experts = n_shared_experts
|
| 228 |
+
self.n_routed_experts = n_routed_experts
|
| 229 |
+
self.ep_size = ep_size
|
| 230 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 231 |
+
self.kv_lora_rank = kv_lora_rank
|
| 232 |
+
self.q_lora_rank = q_lora_rank
|
| 233 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
| 234 |
+
self.v_head_dim = v_head_dim
|
| 235 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
| 236 |
+
self.topk_method = topk_method
|
| 237 |
+
self.n_group = n_group
|
| 238 |
+
self.topk_group = topk_group
|
| 239 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 240 |
+
self.moe_layer_freq = moe_layer_freq
|
| 241 |
+
self.first_k_dense_replace = first_k_dense_replace
|
| 242 |
+
self.norm_topk_prob = norm_topk_prob
|
| 243 |
+
self.scoring_func = scoring_func
|
| 244 |
+
# for backward compatibility
|
| 245 |
+
if num_key_value_heads is None:
|
| 246 |
+
num_key_value_heads = num_attention_heads
|
| 247 |
+
|
| 248 |
+
self.num_key_value_heads = num_key_value_heads
|
| 249 |
+
self.hidden_act = hidden_act
|
| 250 |
+
self.initializer_range = initializer_range
|
| 251 |
+
self.rms_norm_eps = rms_norm_eps
|
| 252 |
+
self.use_cache = use_cache
|
| 253 |
+
self.rope_theta = rope_theta
|
| 254 |
+
self.rope_scaling = rope_scaling
|
| 255 |
+
self.attention_bias = attention_bias
|
| 256 |
+
self.attention_dropout = attention_dropout
|
| 257 |
+
|
| 258 |
+
super().__init__(
|
| 259 |
+
pad_token_id=pad_token_id,
|
| 260 |
+
bos_token_id=bos_token_id,
|
| 261 |
+
eos_token_id=eos_token_id,
|
| 262 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 263 |
+
**kwargs,
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
__all__ = ["DeepseekR1Config"]
|
generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"temperature": 0.6,
|
| 10 |
+
"top_k": 20,
|
| 11 |
+
"top_p": 0.95,
|
| 12 |
+
"transformers_version": "4.56.2"
|
| 13 |
+
}
|
image_processing_keye.py
ADDED
|
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Keye team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""Image processor class for Keye-VL-671B-A37B."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
from typing import Dict, List, Optional, Union
|
| 24 |
+
from PIL import Image
|
| 25 |
+
|
| 26 |
+
import numpy as np
|
| 27 |
+
import torch
|
| 28 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 29 |
+
from torchvision.transforms import functional as TF
|
| 30 |
+
from transformers.image_transforms import (
|
| 31 |
+
convert_to_rgb,
|
| 32 |
+
resize,
|
| 33 |
+
to_channel_dimension_format,
|
| 34 |
+
)
|
| 35 |
+
from transformers.image_utils import (
|
| 36 |
+
OPENAI_CLIP_MEAN,
|
| 37 |
+
OPENAI_CLIP_STD,
|
| 38 |
+
ChannelDimension,
|
| 39 |
+
PILImageResampling,
|
| 40 |
+
get_image_size,
|
| 41 |
+
infer_channel_dimension_format,
|
| 42 |
+
is_scaled_image,
|
| 43 |
+
is_valid_image,
|
| 44 |
+
make_list_of_images,
|
| 45 |
+
to_numpy_array,
|
| 46 |
+
valid_images,
|
| 47 |
+
validate_preprocess_arguments,
|
| 48 |
+
)
|
| 49 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 50 |
+
|
| 51 |
+
import numpy as np
|
| 52 |
+
|
| 53 |
+
ImageInput = Union[
|
| 54 |
+
"PIL.Image.Image", np.ndarray, "torch.Tensor", list["PIL.Image.Image"], list[np.ndarray], list["torch.Tensor"]
|
| 55 |
+
] # noqa
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
VideoInput = Union[
|
| 59 |
+
list["PIL.Image.Image"],
|
| 60 |
+
"np.ndarray",
|
| 61 |
+
"torch.Tensor",
|
| 62 |
+
list["np.ndarray"],
|
| 63 |
+
list["torch.Tensor"],
|
| 64 |
+
list[list["PIL.Image.Image"]],
|
| 65 |
+
list[list["np.ndarrray"]],
|
| 66 |
+
list[list["torch.Tensor"]],
|
| 67 |
+
] # noqa
|
| 68 |
+
|
| 69 |
+
logger = logging.get_logger(__name__)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
if is_vision_available():
|
| 73 |
+
from PIL import Image
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 77 |
+
"""
|
| 78 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 82 |
+
The input image.
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
list: A list of images.
|
| 86 |
+
"""
|
| 87 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 88 |
+
return [img for img_list in images for img in img_list]
|
| 89 |
+
|
| 90 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 91 |
+
return images
|
| 92 |
+
|
| 93 |
+
elif is_valid_image(images):
|
| 94 |
+
return [images]
|
| 95 |
+
|
| 96 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def adjust_size(size, patch_size):
|
| 100 |
+
num_patches = size // patch_size
|
| 101 |
+
if num_patches % 2 != 0: # 如果是奇数,减1
|
| 102 |
+
num_patches -= 1
|
| 103 |
+
return num_patches * patch_size
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
| 107 |
+
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
|
| 108 |
+
return videos
|
| 109 |
+
|
| 110 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
| 111 |
+
if isinstance(videos[0], Image.Image):
|
| 112 |
+
return [videos]
|
| 113 |
+
elif len(videos[0].shape) == 4:
|
| 114 |
+
return [list(video) for video in videos]
|
| 115 |
+
|
| 116 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
| 117 |
+
return [list(videos)]
|
| 118 |
+
|
| 119 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def smart_resize(
|
| 123 |
+
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4096
|
| 124 |
+
):
|
| 125 |
+
"""Rescales the image so that the following conditions are met:
|
| 126 |
+
|
| 127 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 128 |
+
|
| 129 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 130 |
+
|
| 131 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 132 |
+
|
| 133 |
+
"""
|
| 134 |
+
#if height < factor or width < factor:
|
| 135 |
+
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
| 136 |
+
# if int(height < factor//4) + int(width < factor//4):
|
| 137 |
+
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor//4}")
|
| 138 |
+
|
| 139 |
+
if height < factor:
|
| 140 |
+
print(f"smart_resize: height={height} < factor={factor}, reset height=factor")
|
| 141 |
+
width = round((width * factor) / height)
|
| 142 |
+
height = factor
|
| 143 |
+
|
| 144 |
+
if width < factor:
|
| 145 |
+
print(f"smart_resize: width={width} < factor={factor}, reset width=factor")
|
| 146 |
+
height = round((height * factor) / width)
|
| 147 |
+
width = factor
|
| 148 |
+
|
| 149 |
+
if max(height, width) / min(height, width) > 200:
|
| 150 |
+
raise ValueError(
|
| 151 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 152 |
+
)
|
| 153 |
+
h_bar = round(height / factor) * factor
|
| 154 |
+
w_bar = round(width / factor) * factor
|
| 155 |
+
if h_bar * w_bar > max_pixels:
|
| 156 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 157 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 158 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 159 |
+
elif h_bar * w_bar < min_pixels:
|
| 160 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 161 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 162 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 163 |
+
return h_bar, w_bar
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class SiglipImageProcessor(BaseImageProcessor):
|
| 167 |
+
r"""
|
| 168 |
+
Constructs a Keye-VL-671B-A37B image processor that dynamically resizes images based on the original images.
|
| 169 |
+
|
| 170 |
+
Args:
|
| 171 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 172 |
+
Whether to resize the image's (height, width) dimensions.
|
| 173 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 174 |
+
Resampling filter to use when resizing the image.
|
| 175 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 176 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 177 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 178 |
+
Scale factor to use if rescaling the image.
|
| 179 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 180 |
+
Whether to normalize the image.
|
| 181 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 182 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 183 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 184 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 185 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 186 |
+
Whether to convert the image to RGB.
|
| 187 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
| 188 |
+
The min pixels of the image to resize the image.
|
| 189 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
| 190 |
+
The max pixels of the image to resize the image.
|
| 191 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 192 |
+
The spacial patch size of the vision encoder.
|
| 193 |
+
temporal_patch_size (`int`, *optional*, defaults to 2):
|
| 194 |
+
The temporal patch size of the vision encoder.
|
| 195 |
+
merge_size (`int`, *optional*, defaults to 2):
|
| 196 |
+
The merge size of the vision encoder to llm encoder.
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
|
| 200 |
+
|
| 201 |
+
def __init__(
|
| 202 |
+
self,
|
| 203 |
+
do_resize: bool = True,
|
| 204 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
| 205 |
+
do_rescale: bool = True,
|
| 206 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 207 |
+
do_normalize: bool = True,
|
| 208 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 209 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 210 |
+
do_convert_rgb: bool = True,
|
| 211 |
+
min_pixels: int = 56 * 56,
|
| 212 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 213 |
+
patch_size: int = 14,
|
| 214 |
+
temporal_patch_size: int = 1,
|
| 215 |
+
merge_size: int = 2,
|
| 216 |
+
**kwargs,
|
| 217 |
+
) -> None:
|
| 218 |
+
super().__init__(**kwargs)
|
| 219 |
+
self.do_resize = do_resize
|
| 220 |
+
self.resample = resample
|
| 221 |
+
self.do_rescale = do_rescale
|
| 222 |
+
self.rescale_factor = rescale_factor
|
| 223 |
+
self.do_normalize = do_normalize
|
| 224 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 225 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 226 |
+
self.min_pixels = min_pixels
|
| 227 |
+
self.max_pixels = max_pixels
|
| 228 |
+
self.patch_size = patch_size
|
| 229 |
+
self.temporal_patch_size = temporal_patch_size
|
| 230 |
+
self.merge_size = merge_size
|
| 231 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
| 232 |
+
self.do_convert_rgb = do_convert_rgb
|
| 233 |
+
|
| 234 |
+
def mvit_rescale(
|
| 235 |
+
self, image: Image.Image, merge_size: int = 2
|
| 236 |
+
) -> Image.Image:
|
| 237 |
+
try:
|
| 238 |
+
w, h = image.size
|
| 239 |
+
except:
|
| 240 |
+
raise ValueError(str((type(image), image)))
|
| 241 |
+
patch_size = self.patch_size
|
| 242 |
+
|
| 243 |
+
if (w // patch_size) * (h // patch_size) > self.in_token_limit:
|
| 244 |
+
scale = math.sqrt(self.in_token_limit / ((w // patch_size) * (h // patch_size)))
|
| 245 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
| 246 |
+
|
| 247 |
+
image = image.resize((new_w, new_h), Image.Resampling.BILINEAR)
|
| 248 |
+
if self.pad_input:
|
| 249 |
+
new_w, new_h = image.size
|
| 250 |
+
pad_size_h = merge_size * patch_size
|
| 251 |
+
pad_size_w = merge_size * patch_size
|
| 252 |
+
|
| 253 |
+
pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h
|
| 254 |
+
pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w
|
| 255 |
+
|
| 256 |
+
image = TF.pad(image, (0, 0, pad_w, pad_h))
|
| 257 |
+
else:
|
| 258 |
+
new_w, new_h = image.size
|
| 259 |
+
new_w = new_w - new_w % patch_size
|
| 260 |
+
new_h = new_h - new_h % patch_size
|
| 261 |
+
|
| 262 |
+
new_w = adjust_size(new_w, patch_size)
|
| 263 |
+
new_h = adjust_size(new_h, patch_size)
|
| 264 |
+
|
| 265 |
+
image = TF.center_crop(image, (new_h, new_w))
|
| 266 |
+
|
| 267 |
+
w, h = image.size
|
| 268 |
+
if w // patch_size >= 512 or h // patch_size >= 512:
|
| 269 |
+
new_h = min(patch_size * 510, h)
|
| 270 |
+
new_w = min(patch_size * 510, w)
|
| 271 |
+
image = TF.center_crop(image, (new_h, new_w))
|
| 272 |
+
#raise ValueError("Exceed pos emb")
|
| 273 |
+
return image
|
| 274 |
+
def _preprocess(
|
| 275 |
+
self,
|
| 276 |
+
images: Union[ImageInput, VideoInput],
|
| 277 |
+
do_resize: bool = None,
|
| 278 |
+
size: Dict[str, int] = None,
|
| 279 |
+
resample: PILImageResampling = None,
|
| 280 |
+
do_rescale: bool = None,
|
| 281 |
+
rescale_factor: float = None,
|
| 282 |
+
do_normalize: bool = None,
|
| 283 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 284 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 285 |
+
do_convert_rgb: bool = None,
|
| 286 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 287 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 288 |
+
):
|
| 289 |
+
"""
|
| 290 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 291 |
+
|
| 292 |
+
Args:
|
| 293 |
+
images (`ImageInput`):
|
| 294 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 295 |
+
vision_info (`List[Dict]`, *optional*):
|
| 296 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
| 297 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 298 |
+
Whether to resize the image.
|
| 299 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 300 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 301 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 302 |
+
Whether to rescale the image.
|
| 303 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 304 |
+
Scale factor to use if rescaling the image.
|
| 305 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 306 |
+
Whether to normalize the image.
|
| 307 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 308 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 309 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 310 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 311 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 312 |
+
Whether to convert the image to RGB.
|
| 313 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 314 |
+
The channel dimension format for the output image. Can be one of:
|
| 315 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 316 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 317 |
+
- Unset: Use the channel dimension format of the input image.
|
| 318 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 319 |
+
The channel dimension format for the input image. Can be one of:
|
| 320 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 321 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 322 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 323 |
+
"""
|
| 324 |
+
images = make_list_of_images(images)
|
| 325 |
+
|
| 326 |
+
if do_convert_rgb:
|
| 327 |
+
images = [convert_to_rgb(image) for image in images]
|
| 328 |
+
|
| 329 |
+
# All transformations expect numpy arrays.
|
| 330 |
+
images = [to_numpy_array(image) for image in images]
|
| 331 |
+
|
| 332 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 333 |
+
logger.warning_once(
|
| 334 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 335 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 336 |
+
)
|
| 337 |
+
if input_data_format is None:
|
| 338 |
+
# We assume that all images have the same channel dimension format.
|
| 339 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 340 |
+
|
| 341 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 342 |
+
resized_height, resized_width = height, width
|
| 343 |
+
processed_images = []
|
| 344 |
+
for image in images:
|
| 345 |
+
# image = self.mvit_rescale(image, merge_size=self.merge_size)
|
| 346 |
+
if do_resize:
|
| 347 |
+
if size is not None and "height" in size.keys():
|
| 348 |
+
resized_height, resized_width = size["height"], size["width"]
|
| 349 |
+
else:
|
| 350 |
+
resized_height, resized_width = smart_resize(
|
| 351 |
+
height,
|
| 352 |
+
width,
|
| 353 |
+
factor=self.patch_size * self.merge_size,
|
| 354 |
+
min_pixels=self.min_pixels,
|
| 355 |
+
max_pixels=self.max_pixels,
|
| 356 |
+
)
|
| 357 |
+
image = resize(
|
| 358 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
if do_rescale:
|
| 362 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
| 363 |
+
|
| 364 |
+
if do_normalize:
|
| 365 |
+
image = self.normalize(
|
| 366 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
| 370 |
+
processed_images.append(image)
|
| 371 |
+
|
| 372 |
+
patches = np.array(processed_images)
|
| 373 |
+
if data_format == ChannelDimension.LAST:
|
| 374 |
+
patches = patches.transpose(0, 3, 1, 2)
|
| 375 |
+
if patches.shape[0] == 1:
|
| 376 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
| 377 |
+
init_patches = patches
|
| 378 |
+
channel = patches.shape[1]
|
| 379 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
| 380 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
| 381 |
+
patches = patches.reshape(
|
| 382 |
+
grid_t,
|
| 383 |
+
self.temporal_patch_size,
|
| 384 |
+
channel,
|
| 385 |
+
grid_h,
|
| 386 |
+
self.patch_size,
|
| 387 |
+
grid_w,
|
| 388 |
+
self.patch_size,
|
| 389 |
+
)
|
| 390 |
+
patches = patches.transpose(0, 3, 5, 2, 1, 4, 6)
|
| 391 |
+
assert self.temporal_patch_size == 1
|
| 392 |
+
flatten_patches = patches.reshape(
|
| 393 |
+
grid_t * grid_h * grid_w, channel, self.patch_size, self.patch_size
|
| 394 |
+
)
|
| 395 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
| 396 |
+
|
| 397 |
+
def preprocess(
|
| 398 |
+
self,
|
| 399 |
+
images: ImageInput,
|
| 400 |
+
videos: VideoInput = None,
|
| 401 |
+
do_resize: bool = None,
|
| 402 |
+
size: Dict[str, int] = None,
|
| 403 |
+
resample: PILImageResampling = None,
|
| 404 |
+
do_rescale: bool = None,
|
| 405 |
+
rescale_factor: float = None,
|
| 406 |
+
do_normalize: bool = None,
|
| 407 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 408 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 409 |
+
do_convert_rgb: bool = None,
|
| 410 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 411 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 412 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 413 |
+
):
|
| 414 |
+
"""
|
| 415 |
+
Args:
|
| 416 |
+
images (`ImageInput`):
|
| 417 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 418 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 419 |
+
videos (`VideoInput`):
|
| 420 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
| 421 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
| 422 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 423 |
+
Whether to resize the image.
|
| 424 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 425 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 426 |
+
the longest edge resized to keep the input aspect ratio.
|
| 427 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 428 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 429 |
+
has an effect if `do_resize` is set to `True`.
|
| 430 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 431 |
+
Whether to rescale the image.
|
| 432 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 433 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 434 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 435 |
+
Whether to normalize the image.
|
| 436 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 437 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 438 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 439 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 440 |
+
`True`.
|
| 441 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 442 |
+
Whether to convert the image to RGB.
|
| 443 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 444 |
+
The type of tensors to return. Can be one of:
|
| 445 |
+
- Unset: Return a list of `np.ndarray`.
|
| 446 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 447 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 448 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 449 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 450 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 451 |
+
The channel dimension format for the output image. Can be one of:
|
| 452 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 453 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 454 |
+
- Unset: Use the channel dimension format of the input image.
|
| 455 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 456 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 457 |
+
from the input image. Can be one of:
|
| 458 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 459 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 460 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 461 |
+
|
| 462 |
+
"""
|
| 463 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 464 |
+
size = size if size is not None else self.size
|
| 465 |
+
resample = resample if resample is not None else self.resample
|
| 466 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 467 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 468 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 469 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 470 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 471 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 472 |
+
|
| 473 |
+
if images is not None:
|
| 474 |
+
images = make_batched_images(images)
|
| 475 |
+
if videos is not None:
|
| 476 |
+
videos = make_batched_videos(videos)
|
| 477 |
+
|
| 478 |
+
if images is not None and not valid_images(images):
|
| 479 |
+
raise ValueError(
|
| 480 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 481 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
validate_preprocess_arguments(
|
| 485 |
+
rescale_factor=rescale_factor,
|
| 486 |
+
do_normalize=do_normalize,
|
| 487 |
+
image_mean=image_mean,
|
| 488 |
+
image_std=image_std,
|
| 489 |
+
do_resize=do_resize,
|
| 490 |
+
size=size,
|
| 491 |
+
resample=resample,
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
if images is not None:
|
| 495 |
+
pixel_values, vision_grid_thws = [], []
|
| 496 |
+
for image in images:
|
| 497 |
+
patches, image_grid_thw = self._preprocess(
|
| 498 |
+
image,
|
| 499 |
+
do_resize=do_resize,
|
| 500 |
+
size = size,
|
| 501 |
+
resample=resample,
|
| 502 |
+
do_rescale=do_rescale,
|
| 503 |
+
rescale_factor=rescale_factor,
|
| 504 |
+
do_normalize=do_normalize,
|
| 505 |
+
image_mean=image_mean,
|
| 506 |
+
image_std=image_std,
|
| 507 |
+
data_format=data_format,
|
| 508 |
+
do_convert_rgb=do_convert_rgb,
|
| 509 |
+
input_data_format=input_data_format,
|
| 510 |
+
)
|
| 511 |
+
pixel_values.extend(patches)
|
| 512 |
+
vision_grid_thws.append(image_grid_thw)
|
| 513 |
+
pixel_values = np.array(pixel_values)
|
| 514 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 515 |
+
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
| 516 |
+
|
| 517 |
+
if videos is not None:
|
| 518 |
+
pixel_values, vision_grid_thws = [], []
|
| 519 |
+
for images in videos:
|
| 520 |
+
patches, video_grid_thw = self._preprocess(
|
| 521 |
+
images,
|
| 522 |
+
do_resize=do_resize,
|
| 523 |
+
size = size,
|
| 524 |
+
resample=resample,
|
| 525 |
+
do_rescale=do_rescale,
|
| 526 |
+
rescale_factor=rescale_factor,
|
| 527 |
+
do_normalize=do_normalize,
|
| 528 |
+
image_mean=image_mean,
|
| 529 |
+
image_std=image_std,
|
| 530 |
+
data_format=data_format,
|
| 531 |
+
do_convert_rgb=do_convert_rgb,
|
| 532 |
+
input_data_format=input_data_format,
|
| 533 |
+
)
|
| 534 |
+
pixel_values.extend(patches)
|
| 535 |
+
vision_grid_thws.append(video_grid_thw)
|
| 536 |
+
pixel_values = np.array(pixel_values)
|
| 537 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 538 |
+
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
|
| 539 |
+
|
| 540 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 541 |
+
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f8def83c2332ebb0fb07399dd1ff8c643f3b22966d6f063a0aeb9d921f900be
|
| 3 |
+
size 4992443296
|
model-00003-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:783fe07320638f175a97b04bda9fa56e2481f156a5e6c3aea4298798ce09e97a
|
| 3 |
+
size 4992525496
|
model-00004-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8234d82d79b8460750644b74e2bd4102c9bb2fb63b8f9f121761db6bcaca0fd4
|
| 3 |
+
size 4992490496
|
model-00009-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49a96dbf5df71bd81f91df442f518d6334a9d437d2c0766cd61492ca17eeca7e
|
| 3 |
+
size 4992524984
|
model-00021-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f307fc57b7c118e7e18fc11e9dcbe64f8ddb8057fa6766a96299f9eb40a110fd
|
| 3 |
+
size 4992525976
|
model-00035-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c308c5e569fce7b6ef03a3aa0f61a4f347f4025013c44b70bbb62de5b34fa00a
|
| 3 |
+
size 4992526088
|
model-00039-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f04643034c4910206ab5a48e5230ae632e74047e27450af4e15c025c958941b
|
| 3 |
+
size 4992525672
|
model-00041-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e3d2d9890b89ff587732193a85e58cb1604f14fd7babcaaf72a3141d57765b7
|
| 3 |
+
size 4992491096
|
model-00046-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ae4b649002abec029c5b223994db661a4d901a530e4d198d7a93042dd705971
|
| 3 |
+
size 4992525728
|
model-00048-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b6edd7cb0d469274bd888e47326be1fe14db5ce58350d7493fc1cbe424ae5af
|
| 3 |
+
size 4992491064
|
model-00050-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4468368ee604420339ebf4c75abb4317136487eb72906ff81733531b57efbf9a
|
| 3 |
+
size 4992491248
|
model-00057-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b19c29ccd8b66887135e178c6313730a1e87f3f6f6c2fee5b7d6069ea068275f
|
| 3 |
+
size 4992491192
|
model-00059-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86aa5f23ec2473a8c12f072ff754d84fd03a567ffb986fd395b9bd352a056a0e
|
| 3 |
+
size 4992491400
|
model-00061-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15499f621462c19dbf63382a8ff5fd9742dd1a08b2097c58f6ccaa993427c373
|
| 3 |
+
size 4992491616
|
model-00063-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:976da05bcdd232d06594020f89bafe479433c507e9405bd54bd18feeb92ec266
|
| 3 |
+
size 4992526176
|
model-00066-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d691e93c460ec6006edac71608c8aa58b23bcb9abc0bd231f46b1a9c2f236c25
|
| 3 |
+
size 4992491344
|
model-00068-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb7ead31a8c46beabe30fd8e6bb602800c406035e92927be166115ebe368499b
|
| 3 |
+
size 4992491552
|
model-00069-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddae7b8835a480518055609c234d4025ab5fcbb1cbdf6624779028bc0f4767e7
|
| 3 |
+
size 4992525688
|
model-00073-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11b561e2ab1f9e230d36015face285d6634efdb9d1a404062583640808a618f5
|
| 3 |
+
size 4992491288
|
model-00077-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeae8aeb9828d640e2fc187058b6e578c4aaa7169df668b077bba525d80a17f1
|
| 3 |
+
size 4992526176
|
model-00080-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bef40110db347f6a50a167deacb270d08164dcf147da7334380f4fdbb2690ef7
|
| 3 |
+
size 4992491232
|
model-00083-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c7d28ba65411738740041570940e5766e3bd447305c7460c096cd10f938e18f
|
| 3 |
+
size 4992525800
|
model-00086-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:266fac4e673e340f10b68303ced5db2c2b1c3064bb3f0718920c14c712bea4a0
|
| 3 |
+
size 4992526176
|
model-00096-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9cf10aa7578e790c8f3cb5d3f7c83b323770ce35bae151b22367e9ae7a2c48c
|
| 3 |
+
size 4992491328
|
model-00101-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16fb974116f89ff15e10d085943f5b6077c90533b3110696cdc9504cd7a1e560
|
| 3 |
+
size 4992491064
|
model-00102-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3515511abb5b831728be5228adb6effdd6cc2f6a672b5ec3008bafddd8f56cf
|
| 3 |
+
size 4992526176
|
model-00103-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1939f174dddaad1d9e4418d0c44d750c1eb040bf0e97a007d903727f975cc7f3
|
| 3 |
+
size 4992491272
|
model-00109-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5019f53bc9a05196da4b8aaf2f3cc6dbc18ce591a883549e648064a5d094b189
|
| 3 |
+
size 4992526176
|
model-00110-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:710c5dc48b6c949bcbece419791fba03f0b46715f668caf9d5304be07faf0cd6
|
| 3 |
+
size 4992491216
|
model-00113-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a687b4ef3d52be153e9aaed6e9cf3d7a9e8c098918a6225fa4d2f7b876299683
|
| 3 |
+
size 4992525816
|
model-00116-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5db87372a5a4ed422df2caa91635610020081c91c25c8ddb1930f94b619c1e9b
|
| 3 |
+
size 4992526176
|
model-00124-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98972af38e95797831bf7b6fa4de8cd6e8cfc72bc73049b3142e3457e1dfd204
|
| 3 |
+
size 4992491104
|
model-00128-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4dda12a925d7c1841eddc3d9874cd1d786e17723b77c05ded47468e194b85767
|
| 3 |
+
size 4992491520
|
model-00130-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a867da69417bc70179f14a09c7df5652ea348b762cbd84375b9f2e3cab8b7a59
|
| 3 |
+
size 4992526176
|
model-00131-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3cc49078e6c09aaf03eeb896b7a080ab664ae14a021b27ed270e520df5f22134
|
| 3 |
+
size 4992491064
|
model-00135-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65ae76ac1753eef389e2abdb68c26cddca11f57e5e45049e8cc64258ae9c7b96
|
| 3 |
+
size 3336955648
|
model-00136-of-00136.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d5ad10363f651e6d5923b478aa12c47ccd2daf794c1f7b3a7f0a71a10f95c371
|
| 3 |
+
size 1853358208
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_keye.SiglipImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_keye.KeyeProcessor"
|
| 5 |
+
},
|
| 6 |
+
"do_convert_rgb": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_rescale": true,
|
| 9 |
+
"do_resize": true,
|
| 10 |
+
"image_mean": [
|
| 11 |
+
0.5,
|
| 12 |
+
0.5,
|
| 13 |
+
0.5
|
| 14 |
+
],
|
| 15 |
+
"image_processor_type": "SiglipImageProcessor",
|
| 16 |
+
"image_std": [
|
| 17 |
+
0.5,
|
| 18 |
+
0.5,
|
| 19 |
+
0.5
|
| 20 |
+
],
|
| 21 |
+
"max_pixels": 16056320,
|
| 22 |
+
"merge_size": 2,
|
| 23 |
+
"min_pixels": 3136,
|
| 24 |
+
"patch_size": 14,
|
| 25 |
+
"processor_class": "KeyeProcessor",
|
| 26 |
+
"resample": 2,
|
| 27 |
+
"rescale_factor": 0.00392156862745098,
|
| 28 |
+
"size": {
|
| 29 |
+
"max_pixels": 16056320,
|
| 30 |
+
"min_pixels": 3136
|
| 31 |
+
},
|
| 32 |
+
"temporal_patch_size": 1
|
| 33 |
+
}
|
processing_keye.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The Keye Team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
from typing import List, Union, Optional
|
| 21 |
+
|
| 22 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 23 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
|
| 24 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 25 |
+
from .image_processing_keye import SiglipImageProcessor
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn as nn
|
| 28 |
+
import numpy as np
|
| 29 |
+
from itertools import chain
|
| 30 |
+
from typing import List
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
import numpy as np
|
| 34 |
+
|
| 35 |
+
ImageInput = Union[
|
| 36 |
+
"PIL.Image.Image", np.ndarray, "torch.Tensor", List["PIL.Image.Image"], List[np.ndarray], List["torch.Tensor"]
|
| 37 |
+
] # noqa
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
VideoInput = Union[
|
| 41 |
+
List["PIL.Image.Image"],
|
| 42 |
+
"np.ndarray",
|
| 43 |
+
"torch.Tensor",
|
| 44 |
+
List["np.ndarray"],
|
| 45 |
+
List["torch.Tensor"],
|
| 46 |
+
List[List["PIL.Image.Image"]],
|
| 47 |
+
List[List["np.ndarrray"]],
|
| 48 |
+
List[List["torch.Tensor"]],
|
| 49 |
+
] # noqa
|
| 50 |
+
|
| 51 |
+
class KeyeVideosProcessorKwargs(VideosKwargs, total=False):
|
| 52 |
+
fps: Optional[Union[List[float], float]]
|
| 53 |
+
# 准备reszie到的width(slow)
|
| 54 |
+
width: Optional[Union[List[int], int]]
|
| 55 |
+
# 准备reszie到的height(slow)
|
| 56 |
+
height: Optional[Union[List[int], int]]
|
| 57 |
+
# 准备resize到的width(fast)
|
| 58 |
+
fast_width: Optional[Union[List[int], int]]
|
| 59 |
+
# 准备resize到的height(fast)
|
| 60 |
+
fast_height: Optional[Union[List[int], int]]
|
| 61 |
+
# 用于标记每一帧的时间戳,数量和帧数相等
|
| 62 |
+
timestamps: Optional[Union[List[torch.Tensor], torch.Tensor]]
|
| 63 |
+
# 用于标记每一帧的类型是slow还是fast,slow=0, fast=1
|
| 64 |
+
frame_types: Optional[Union[List[torch.Tensor], torch.Tensor]]
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class KeyeProcessorKwargs(ProcessingKwargs, total=False):
|
| 68 |
+
videos_kwargs: KeyeVideosProcessorKwargs
|
| 69 |
+
_defaults = {
|
| 70 |
+
"text_kwargs": {
|
| 71 |
+
"padding": False,
|
| 72 |
+
},
|
| 73 |
+
"videos_kwargs": {"fps": 2.0},
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def select_slow_fast_frames(frames: torch.Tensor, frame_types: torch.Tensor):
|
| 77 |
+
"""
|
| 78 |
+
Selects frames from a tensor based on a mask list.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
frames (torch.Tensor): A tensor of shape (nframes, c, h, w).
|
| 82 |
+
frame_types (torch.Tensor): A int tensor of shape (nframes,)
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
tuple[torch.Tensor, torch.Tensor]: A tuple containing two tensors:
|
| 86 |
+
- slow_frames: Frames which the type is 0.
|
| 87 |
+
- fast_frames: Frames where the type is 1.
|
| 88 |
+
"""
|
| 89 |
+
nframes, _, _, _ = frames.shape
|
| 90 |
+
if frame_types.shape[-1] != nframes:
|
| 91 |
+
raise ValueError("Length of mask must be equal to the number of frames.")
|
| 92 |
+
|
| 93 |
+
mask = (frame_types == 0)
|
| 94 |
+
|
| 95 |
+
slow_frames = frames[mask]
|
| 96 |
+
fast_frames = frames[~mask]
|
| 97 |
+
|
| 98 |
+
return slow_frames, fast_frames
|
| 99 |
+
|
| 100 |
+
def split_thw(tensor):
|
| 101 |
+
"""Split grid_thw in t dimension, the result tensor should like [[1, h, w],...]"""
|
| 102 |
+
repeats = tensor[:, 0]
|
| 103 |
+
new_thw = torch.cat([
|
| 104 |
+
torch.ones(tensor.shape[0], 1, dtype=tensor.dtype,
|
| 105 |
+
device=tensor.device),
|
| 106 |
+
tensor[:, 1:]
|
| 107 |
+
], dim=1)
|
| 108 |
+
return torch.repeat_interleave(new_thw, repeats, dim=0)
|
| 109 |
+
|
| 110 |
+
def merge_hws(hws):
|
| 111 |
+
"""
|
| 112 |
+
优化版本:使用更高效的方法合并张量
|
| 113 |
+
"""
|
| 114 |
+
merged = []
|
| 115 |
+
last_hw = [-1, -1]
|
| 116 |
+
|
| 117 |
+
for hw in hws:
|
| 118 |
+
# 找到连续相同形状的张量
|
| 119 |
+
if hw[1:] == last_hw:
|
| 120 |
+
merged[-1][0] += 1
|
| 121 |
+
else:
|
| 122 |
+
merged.append(hw)
|
| 123 |
+
last_hw = hw[1:]
|
| 124 |
+
|
| 125 |
+
return torch.tensor(merged)
|
| 126 |
+
|
| 127 |
+
class KeyeProcessor(ProcessorMixin):
|
| 128 |
+
r"""
|
| 129 |
+
[`KeyeProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`Qwen2TokenizerFast`]. See the
|
| 130 |
+
[`~KeyeProcessor.__call__`] and [`~KeyeProcessor.decode`] for more information.
|
| 131 |
+
Args:
|
| 132 |
+
image_processor ([`SiglipImageProcessor`], *optional*):
|
| 133 |
+
The image processor is a required input.
|
| 134 |
+
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
| 135 |
+
The tokenizer is a required input.
|
| 136 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
| 137 |
+
in a chat into a tokenizable string.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
attributes = ["image_processor", "tokenizer"]
|
| 141 |
+
valid_kwargs = [
|
| 142 |
+
"chat_template","image_std", "min_pixels", "image_mean", "merge_size", "image_processor_type",
|
| 143 |
+
"temporal_patch_size", "patch_size", "max_pixels"
|
| 144 |
+
]
|
| 145 |
+
|
| 146 |
+
image_processor_class = "AutoImageProcessor"
|
| 147 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 148 |
+
|
| 149 |
+
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
| 150 |
+
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
| 151 |
+
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
|
| 152 |
+
self.frame_token = "<|frame|>" if not hasattr(tokenizer, "frame_token") else tokenizer.frame_token
|
| 153 |
+
self.fast_video_token = "<|fast_video_pad|>" if not hasattr(tokenizer, "fast_video_token") else tokenizer.fast_video_token
|
| 154 |
+
self.fast_start = "<|fast_start|>" if not hasattr(tokenizer, "fast_start") else tokenizer.fast_start
|
| 155 |
+
self.fast_end = "<|fast_end|>" if not hasattr(tokenizer, "fast_end") else tokenizer.fast_end
|
| 156 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
| 157 |
+
|
| 158 |
+
self.slowfast = True
|
| 159 |
+
|
| 160 |
+
def __call__(
|
| 161 |
+
self,
|
| 162 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 163 |
+
images: ImageInput = None,
|
| 164 |
+
videos: VideoInput = None,
|
| 165 |
+
**kwargs: Unpack[KeyeProcessorKwargs],
|
| 166 |
+
) -> BatchFeature:
|
| 167 |
+
"""
|
| 168 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 169 |
+
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
|
| 170 |
+
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
| 171 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `vision_infos` is not `None`.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 175 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 176 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 177 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 178 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 179 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 180 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 181 |
+
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 182 |
+
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
| 183 |
+
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
|
| 184 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 185 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 186 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 187 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 188 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 189 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 193 |
+
|
| 194 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 195 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 196 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 197 |
+
`None`).
|
| 198 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 199 |
+
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
|
| 200 |
+
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
| 201 |
+
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
|
| 202 |
+
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
|
| 203 |
+
"""
|
| 204 |
+
output_kwargs = self._merge_kwargs(
|
| 205 |
+
KeyeProcessorKwargs,
|
| 206 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 207 |
+
**kwargs,
|
| 208 |
+
)
|
| 209 |
+
if images is not None:
|
| 210 |
+
# slow_images = images
|
| 211 |
+
image_inputs = self.image_processor(images=images, return_tensors="pt")
|
| 212 |
+
image_inputs['pixel_values'] = image_inputs['pixel_values']
|
| 213 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
| 214 |
+
else:
|
| 215 |
+
image_inputs = {}
|
| 216 |
+
image_grid_thw = None
|
| 217 |
+
|
| 218 |
+
num_frames = []
|
| 219 |
+
if videos is not None:
|
| 220 |
+
batch_slow_frames = []
|
| 221 |
+
batch_fast_frames = []
|
| 222 |
+
|
| 223 |
+
videos_kwargs = output_kwargs["videos_kwargs"]
|
| 224 |
+
num_videos = len(videos)
|
| 225 |
+
batch_frame_types = videos_kwargs.get("frame_types", [None] * num_videos)
|
| 226 |
+
batch_timestamps = videos_kwargs.get("timestamps", [None] * num_videos)
|
| 227 |
+
batch_width = videos_kwargs.get("width", [None] * num_videos)
|
| 228 |
+
batch_height = videos_kwargs.get("height", [None] * num_videos)
|
| 229 |
+
batch_fast_width = videos_kwargs.get("fast_width", [None] * num_videos)
|
| 230 |
+
batch_fast_height = videos_kwargs.get("fast_height", [None] * num_videos)
|
| 231 |
+
|
| 232 |
+
for index, frames in enumerate(videos):
|
| 233 |
+
if isinstance(frames, np.ndarray):
|
| 234 |
+
frames = torch.from_numpy(frames.copy())
|
| 235 |
+
nframes = frames.shape[0]
|
| 236 |
+
num_frames.append(nframes)
|
| 237 |
+
assert nframes > 0, "No frames in video"
|
| 238 |
+
if batch_frame_types[index] is None:
|
| 239 |
+
# default to all slow frames
|
| 240 |
+
batch_frame_types[index] = torch.Tensor([0] * nframes)
|
| 241 |
+
frame_types = batch_frame_types[index]
|
| 242 |
+
slow_frames, fast_frames = select_slow_fast_frames(frames, frame_types)
|
| 243 |
+
has_fast_frames = fast_frames.shape[0] > 0
|
| 244 |
+
# resize slow frames
|
| 245 |
+
resized_width = batch_width[index]
|
| 246 |
+
resized_height = batch_height[index]
|
| 247 |
+
if resized_width is not None and resized_height is not None:
|
| 248 |
+
slow_frames = nn.functional.interpolate(
|
| 249 |
+
slow_frames,
|
| 250 |
+
[resized_height, resized_width],
|
| 251 |
+
mode="bilinear",
|
| 252 |
+
antialias=True,
|
| 253 |
+
).float()
|
| 254 |
+
# Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
|
| 255 |
+
# slow_frames = list(slow_frames.split(1, dim=0)),不split,在模型里面做
|
| 256 |
+
slow_video_inputs = self.image_processor(
|
| 257 |
+
images=None, videos=[slow_frames], **output_kwargs["images_kwargs"])
|
| 258 |
+
slow_video_grid_thw = slow_video_inputs["video_grid_thw"]
|
| 259 |
+
batch_slow_frames.append(slow_video_inputs)
|
| 260 |
+
# # 当前这个视频每一帧的token数
|
| 261 |
+
# slow_frames_patch_nums[index] = int(slow_video_inputs["pixel_values_videos"].shape[0] / \
|
| 262 |
+
# slow_video_grid_thw.squeeze()[0])
|
| 263 |
+
|
| 264 |
+
if has_fast_frames:
|
| 265 |
+
# TODO: shrink fast_frames
|
| 266 |
+
fast_resized_width = batch_fast_width[index]
|
| 267 |
+
fast_resized_height = batch_fast_height[index]
|
| 268 |
+
if fast_resized_width is not None and fast_resized_height is not None:
|
| 269 |
+
fast_frames = nn.functional.interpolate(
|
| 270 |
+
fast_frames,
|
| 271 |
+
[fast_resized_height, fast_resized_width],
|
| 272 |
+
mode="bilinear",
|
| 273 |
+
antialias=True,
|
| 274 |
+
).float()
|
| 275 |
+
# Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
|
| 276 |
+
# fast_frames = list(fast_frames.split(1, dim=0))
|
| 277 |
+
fast_video_inputs = self.image_processor(
|
| 278 |
+
images=None, videos=[fast_frames], **output_kwargs["images_kwargs"])
|
| 279 |
+
fast_video_grid_thw = fast_video_inputs["video_grid_thw"]
|
| 280 |
+
batch_fast_frames.append(fast_video_inputs)
|
| 281 |
+
# # 当前这个视频的所有token数
|
| 282 |
+
# fast_frames_token_nums[index] = int(fast_video_inputs["pixel_values_videos"].shape[0] / \
|
| 283 |
+
# fast_video_grid_thw.squeeze()[0])
|
| 284 |
+
|
| 285 |
+
assert len(batch_slow_frames) > 0, "Slow frames should not be empty."
|
| 286 |
+
slow_pixel_values_videos_list = [
|
| 287 |
+
video["pixel_values_videos"] for video in batch_slow_frames if video is not None]
|
| 288 |
+
slow_video_grid_thw_list = [
|
| 289 |
+
video["video_grid_thw"] for video in batch_slow_frames if video is not None]
|
| 290 |
+
|
| 291 |
+
slow_pixel_values_videos = torch.concat(slow_pixel_values_videos_list, dim=0)
|
| 292 |
+
slow_video_grid_thw = torch.concat(slow_video_grid_thw_list, dim=0)
|
| 293 |
+
|
| 294 |
+
if has_fast_frames:
|
| 295 |
+
fast_pixel_values_videos_list = [
|
| 296 |
+
video["pixel_values_videos"] for video in batch_fast_frames \
|
| 297 |
+
if video is not None]
|
| 298 |
+
fast_video_grid_thw_list = [
|
| 299 |
+
video["video_grid_thw"] for video in batch_fast_frames \
|
| 300 |
+
if video is not None]
|
| 301 |
+
|
| 302 |
+
fast_pixel_values_videos = \
|
| 303 |
+
torch.concat(fast_pixel_values_videos_list, dim=0)
|
| 304 |
+
fast_video_grid_thw = \
|
| 305 |
+
torch.concat(fast_video_grid_thw_list, dim=0)
|
| 306 |
+
else:
|
| 307 |
+
fast_video_grid_thw = None
|
| 308 |
+
else:
|
| 309 |
+
slow_video_grid_thw = None
|
| 310 |
+
fast_video_grid_thw = None
|
| 311 |
+
|
| 312 |
+
if not isinstance(text, list):
|
| 313 |
+
text = [text]
|
| 314 |
+
if image_grid_thw is not None:
|
| 315 |
+
index = 0
|
| 316 |
+
for i in range(len(text)):
|
| 317 |
+
while self.image_token in text[i]:
|
| 318 |
+
# image_place_holder_tempale = "<|placeholder|>" * (
|
| 319 |
+
# image_grid_thw[index].prod() // self.image_processor.merge_size ** 2)
|
| 320 |
+
image_place_holder_tempale = ""
|
| 321 |
+
_, h_merged, w_merged = image_grid_thw[index]// self.image_processor.merge_size
|
| 322 |
+
for i_h in range(h_merged.item()):
|
| 323 |
+
image_place_holder_tempale += "<|placeholder|>" * w_merged + "<|mm_pos_start|>" + f"{i_h},{w_merged}" + "<|mm_pos_end|>"
|
| 324 |
+
|
| 325 |
+
text[i] = text[i].replace(
|
| 326 |
+
self.image_token,
|
| 327 |
+
image_place_holder_tempale,
|
| 328 |
+
1,
|
| 329 |
+
)
|
| 330 |
+
index += 1
|
| 331 |
+
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
| 332 |
+
pixel_values_videos = []
|
| 333 |
+
video_grid_thw = []
|
| 334 |
+
videos_inputs = {}
|
| 335 |
+
if slow_video_grid_thw is not None:
|
| 336 |
+
slow_video_grid_thw = split_thw(slow_video_grid_thw)
|
| 337 |
+
if fast_video_grid_thw is not None:
|
| 338 |
+
fast_video_grid_thw = split_thw(fast_video_grid_thw)
|
| 339 |
+
index = 0
|
| 340 |
+
slow_index = 0
|
| 341 |
+
fast_index = 0
|
| 342 |
+
slow_pixels_index = 0
|
| 343 |
+
fast_pixels_index = 0
|
| 344 |
+
for i in range(len(text)):
|
| 345 |
+
while self.video_token in text[i]:
|
| 346 |
+
video_place_holder_tempale = ""
|
| 347 |
+
|
| 348 |
+
for j in range(batch_frame_types[index].shape[-1]):
|
| 349 |
+
if batch_timestamps[index] is not None: # 如果有时间戳
|
| 350 |
+
video_place_holder_tempale += self.frame_token + format(batch_timestamps[index][j], ".1f")
|
| 351 |
+
else:
|
| 352 |
+
video_place_holder_tempale += self.frame_token
|
| 353 |
+
|
| 354 |
+
# 当前帧是slow
|
| 355 |
+
if batch_frame_types[index][j] == 0:
|
| 356 |
+
num_patches = int(slow_video_grid_thw[slow_index].prod())
|
| 357 |
+
|
| 358 |
+
# video_place_holder_tempale += "<|placeholder|>" * (
|
| 359 |
+
# num_patches // self.image_processor.merge_size ** 2)
|
| 360 |
+
|
| 361 |
+
_, h_merged, w_merged = slow_video_grid_thw[slow_index]// self.image_processor.merge_size
|
| 362 |
+
for i_h in range(h_merged.item()):
|
| 363 |
+
video_place_holder_tempale += "<|placeholder|>" * w_merged + "<|mm_pos_start|>" + f"{i_h},{w_merged}" + "<|mm_pos_end|>"
|
| 364 |
+
|
| 365 |
+
pixel_values_videos.append(
|
| 366 |
+
slow_pixel_values_videos[slow_pixels_index:slow_pixels_index + num_patches])
|
| 367 |
+
slow_pixels_index = slow_pixels_index + num_patches
|
| 368 |
+
video_grid_thw.append(slow_video_grid_thw[slow_index].tolist())
|
| 369 |
+
slow_index += 1
|
| 370 |
+
|
| 371 |
+
# 当前帧是fast
|
| 372 |
+
elif batch_frame_types[index][j] == 1:
|
| 373 |
+
num_patches = int(fast_video_grid_thw[fast_index].prod())
|
| 374 |
+
|
| 375 |
+
# video_place_holder_tempale += self.fast_start + "<|placeholder|>" * (
|
| 376 |
+
# num_patches // self.image_processor.merge_size ** 2) + \
|
| 377 |
+
# self.fast_end
|
| 378 |
+
|
| 379 |
+
_, h_merged, w_merged = fast_video_grid_thw[fast_index] // self.image_processor.merge_size
|
| 380 |
+
video_place_holder_tempale += self.fast_start
|
| 381 |
+
|
| 382 |
+
for i_h in range(h_merged.item()):
|
| 383 |
+
video_place_holder_tempale += "<|placeholder|>" * w_merged + "<|mm_pos_start|>" + f"{i_h},{w_merged}" + "<|mm_pos_end|>"
|
| 384 |
+
|
| 385 |
+
video_place_holder_tempale += self.fast_end
|
| 386 |
+
|
| 387 |
+
pixel_values_videos.append(
|
| 388 |
+
fast_pixel_values_videos[fast_pixels_index:fast_pixels_index + num_patches])
|
| 389 |
+
fast_pixels_index = fast_pixels_index + num_patches
|
| 390 |
+
video_grid_thw.append(fast_video_grid_thw[fast_index].tolist())
|
| 391 |
+
fast_index += 1
|
| 392 |
+
text[i] = text[i].replace(
|
| 393 |
+
self.video_token,
|
| 394 |
+
video_place_holder_tempale,
|
| 395 |
+
1,
|
| 396 |
+
)
|
| 397 |
+
index += 1
|
| 398 |
+
text[i] = text[i].replace("<|placeholder|>", self.video_token)
|
| 399 |
+
|
| 400 |
+
videos_inputs["pixel_values_videos"] = torch.cat(pixel_values_videos, dim=0)
|
| 401 |
+
videos_inputs["video_grid_thw"] = merge_hws(video_grid_thw)
|
| 402 |
+
videos_inputs["num_frames"] = torch.tensor(num_frames)
|
| 403 |
+
|
| 404 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 405 |
+
|
| 406 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
| 407 |
+
|
| 408 |
+
def batch_decode(self, *args, **kwargs):
|
| 409 |
+
"""
|
| 410 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 411 |
+
refer to the docstring of this method for more information.
|
| 412 |
+
"""
|
| 413 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 414 |
+
|
| 415 |
+
def decode(self, *args, **kwargs):
|
| 416 |
+
"""
|
| 417 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 418 |
+
the docstring of this method for more information.
|
| 419 |
+
"""
|
| 420 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 421 |
+
|
| 422 |
+
def post_process_image_text_to_text(
|
| 423 |
+
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
|
| 424 |
+
):
|
| 425 |
+
"""
|
| 426 |
+
Post-process the output of the model to decode the text.
|
| 427 |
+
|
| 428 |
+
Args:
|
| 429 |
+
generated_outputs (`torch.Tensor` or `np.ndarray`):
|
| 430 |
+
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
|
| 431 |
+
or `(sequence_length,)`.
|
| 432 |
+
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
| 433 |
+
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
|
| 434 |
+
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 435 |
+
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
|
| 436 |
+
**kwargs:
|
| 437 |
+
Additional arguments to be passed to the tokenizer's `batch_decode method`.
|
| 438 |
+
|
| 439 |
+
Returns:
|
| 440 |
+
`List[str]`: The decoded text.
|
| 441 |
+
"""
|
| 442 |
+
return self.tokenizer.batch_decode(
|
| 443 |
+
generated_outputs,
|
| 444 |
+
skip_special_tokens=skip_special_tokens,
|
| 445 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 446 |
+
**kwargs,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
@property
|
| 450 |
+
def model_input_names(self):
|
| 451 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 452 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 453 |
+
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 454 |
+
return names_from_processor
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def apply_chat_template(self, messages, tokenize=True, add_generation_prompt=True, thinking='auto', **kwargs):
|
| 458 |
+
"""
|
| 459 |
+
将对话消息列表转换为模型可接受的格式,支持添加思维标记
|
| 460 |
+
|
| 461 |
+
Args:
|
| 462 |
+
messages (list): 对话消息列表,每个消息是一个字典,包含"role"和"content"
|
| 463 |
+
tokenize (bool): 是否对结果进行分词,默认为True
|
| 464 |
+
add_generation_prompt (bool): 是否添加生成提示,默认为True
|
| 465 |
+
enable_thinking (bool): 是否启用思维标记,默认为None
|
| 466 |
+
|
| 467 |
+
Returns:
|
| 468 |
+
如果tokenize=True,返回分词后的输入;否则返回格式化的文本字符串
|
| 469 |
+
"""
|
| 470 |
+
# 使用父类的apply_chat_template生成基础模板
|
| 471 |
+
formatted_text = super().apply_chat_template(
|
| 472 |
+
messages,
|
| 473 |
+
tokenize=False,
|
| 474 |
+
add_generation_prompt=add_generation_prompt,
|
| 475 |
+
thinking=thinking,
|
| 476 |
+
**kwargs
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
# if enable_thinking == 'auto':
|
| 480 |
+
# pass
|
| 481 |
+
# elif enable_thinking == True:
|
| 482 |
+
# formatted_text += "<think>"
|
| 483 |
+
# elif enable_thinking == False:
|
| 484 |
+
# formatted_text += f"</think>"
|
| 485 |
+
# else:
|
| 486 |
+
# raise RuntimeError(f"Bad enable_thinking={enable_thinking}")
|
| 487 |
+
# 如果需要分词,返回分词结果;否则返回格式化文本
|
| 488 |
+
# print(formatted_text)
|
| 489 |
+
return self.tokenizer(formatted_text, **kwargs) if tokenize else formatted_text
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
__all__ = ["KeyeProcessor"]
|
| 494 |
+
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_keye.KeyeProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "KeyeProcessor"
|
| 6 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|