update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
- depth-estimation
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
model-index:
|
| 8 |
+
- name: glpn-nyu-finetuned-diode-230530-204740
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# glpn-nyu-finetuned-diode-230530-204740
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 1.5139
|
| 20 |
+
- Mae: 3.0509
|
| 21 |
+
- Rmse: 3.4756
|
| 22 |
+
- Abs Rel: 5.7613
|
| 23 |
+
- Log Mae: 0.6836
|
| 24 |
+
- Log Rmse: 0.8048
|
| 25 |
+
- Delta1: 0.3028
|
| 26 |
+
- Delta2: 0.3079
|
| 27 |
+
- Delta3: 0.3096
|
| 28 |
+
|
| 29 |
+
## Model description
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Intended uses & limitations
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Training and evaluation data
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Training procedure
|
| 42 |
+
|
| 43 |
+
### Training hyperparameters
|
| 44 |
+
|
| 45 |
+
The following hyperparameters were used during training:
|
| 46 |
+
- learning_rate: 1e-05
|
| 47 |
+
- train_batch_size: 24
|
| 48 |
+
- eval_batch_size: 48
|
| 49 |
+
- seed: 2022
|
| 50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 51 |
+
- lr_scheduler_type: linear
|
| 52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 53 |
+
- num_epochs: 10
|
| 54 |
+
- mixed_precision_training: Native AMP
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 |
|
| 59 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:|
|
| 60 |
+
| No log | 1.0 | 1 | 1.5335 | 3.1427 | 3.6089 | 5.9847 | 0.6920 | 0.8173 | 0.3016 | 0.3077 | 0.3094 |
|
| 61 |
+
| No log | 2.0 | 2 | 1.5297 | 3.1246 | 3.5833 | 5.9419 | 0.6903 | 0.8149 | 0.3018 | 0.3077 | 0.3094 |
|
| 62 |
+
| No log | 3.0 | 3 | 1.5263 | 3.1085 | 3.5602 | 5.9033 | 0.6889 | 0.8128 | 0.3020 | 0.3078 | 0.3095 |
|
| 63 |
+
| No log | 4.0 | 4 | 1.5234 | 3.0947 | 3.5400 | 5.8694 | 0.6876 | 0.8109 | 0.3022 | 0.3078 | 0.3095 |
|
| 64 |
+
| No log | 5.0 | 5 | 1.5208 | 3.0825 | 3.5222 | 5.8395 | 0.6865 | 0.8092 | 0.3024 | 0.3079 | 0.3095 |
|
| 65 |
+
| No log | 6.0 | 6 | 1.5185 | 3.0723 | 3.5072 | 5.8144 | 0.6856 | 0.8078 | 0.3025 | 0.3079 | 0.3095 |
|
| 66 |
+
| No log | 7.0 | 7 | 1.5167 | 3.0639 | 3.4949 | 5.7937 | 0.6848 | 0.8067 | 0.3026 | 0.3079 | 0.3096 |
|
| 67 |
+
| No log | 8.0 | 8 | 1.5153 | 3.0574 | 3.4852 | 5.7775 | 0.6842 | 0.8057 | 0.3027 | 0.3079 | 0.3096 |
|
| 68 |
+
| No log | 9.0 | 9 | 1.5143 | 3.0531 | 3.4788 | 5.7667 | 0.6838 | 0.8051 | 0.3028 | 0.3079 | 0.3096 |
|
| 69 |
+
| No log | 10.0 | 10 | 1.5139 | 3.0509 | 3.4756 | 5.7613 | 0.6836 | 0.8048 | 0.3028 | 0.3079 | 0.3096 |
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
### Framework versions
|
| 73 |
+
|
| 74 |
+
- Transformers 4.29.2
|
| 75 |
+
- Pytorch 2.0.1+cu118
|
| 76 |
+
- Tokenizers 0.13.3
|