Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
library_name: pytorch
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
pipeline_tag: reinforcement-learning
|
| 6 |
+
tags:
|
| 7 |
+
- reinforcement-learning
|
| 8 |
+
- Generative Model
|
| 9 |
+
- GenerativeRL
|
| 10 |
+
- LunarLanderContinuous-v2
|
| 11 |
+
benchmark_name: Box2d
|
| 12 |
+
task_name: LunarLanderContinuous-v2
|
| 13 |
+
model-index:
|
| 14 |
+
- name: QGPO
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: reinforcement-learning
|
| 18 |
+
name: reinforcement-learning
|
| 19 |
+
dataset:
|
| 20 |
+
name: LunarLanderContinuous-v2
|
| 21 |
+
type: LunarLanderContinuous-v2
|
| 22 |
+
metrics:
|
| 23 |
+
- type: mean_reward
|
| 24 |
+
value: '200.0'
|
| 25 |
+
name: mean_reward
|
| 26 |
+
verified: false
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# Play **LunarLanderContinuous-v2** with **QGPO** Policy
|
| 30 |
+
|
| 31 |
+
## Model Description
|
| 32 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 33 |
+
|
| 34 |
+
This implementation applies **QGPO** to the Box2d **LunarLanderContinuous-v2** environment using [GenerativeRL](https://github.com/opendilab/di-engine).
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
## Model Usage
|
| 39 |
+
### Install the Dependencies
|
| 40 |
+
<details close>
|
| 41 |
+
<summary>(Click for Details)</summary>
|
| 42 |
+
|
| 43 |
+
```shell
|
| 44 |
+
# install GenerativeRL with huggingface support
|
| 45 |
+
pip3 install GenerativeRL[huggingface]
|
| 46 |
+
# install environment dependencies if needed
|
| 47 |
+
pip3 install gym[box2d]==0.23.1
|
| 48 |
+
```
|
| 49 |
+
</details>
|
| 50 |
+
|
| 51 |
+
### Download Model from Huggingface and Run the Model
|
| 52 |
+
|
| 53 |
+
<details close>
|
| 54 |
+
<summary>(Click for Details)</summary>
|
| 55 |
+
|
| 56 |
+
```shell
|
| 57 |
+
# running with trained model
|
| 58 |
+
python3 -u run.py
|
| 59 |
+
```
|
| 60 |
+
**run.py**
|
| 61 |
+
```python
|
| 62 |
+
import gym
|
| 63 |
+
|
| 64 |
+
from grl.algorithms.qgpo import QGPOAlgorithm
|
| 65 |
+
from grl.datasets import QGPOCustomizedTensorDictDataset
|
| 66 |
+
|
| 67 |
+
from grl.utils.huggingface import pull_model_from_hub
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def qgpo_pipeline():
|
| 71 |
+
|
| 72 |
+
policy_state_dict, config = pull_model_from_hub(
|
| 73 |
+
repo_id="zjowowen/LunarLanderContinuous-v2-QGPO",
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
qgpo = QGPOAlgorithm(
|
| 77 |
+
config,
|
| 78 |
+
dataset=QGPOCustomizedTensorDictDataset(
|
| 79 |
+
numpy_data_path="./data.npz",
|
| 80 |
+
action_augment_num=config.train.parameter.action_augment_num,
|
| 81 |
+
),
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
qgpo.model.load_state_dict(policy_state_dict)
|
| 85 |
+
|
| 86 |
+
# ---------------------------------------
|
| 87 |
+
# Customized train code ↓
|
| 88 |
+
# ---------------------------------------
|
| 89 |
+
# qgpo.train()
|
| 90 |
+
# ---------------------------------------
|
| 91 |
+
# Customized train code ↑
|
| 92 |
+
# ---------------------------------------
|
| 93 |
+
|
| 94 |
+
# ---------------------------------------
|
| 95 |
+
# Customized deploy code ↓
|
| 96 |
+
# ---------------------------------------
|
| 97 |
+
agent = qgpo.deploy()
|
| 98 |
+
env = gym.make(config.deploy.env.env_id)
|
| 99 |
+
observation = env.reset()
|
| 100 |
+
images = [env.render(mode="rgb_array")]
|
| 101 |
+
for _ in range(config.deploy.num_deploy_steps):
|
| 102 |
+
observation, reward, done, _ = env.step(agent.act(observation))
|
| 103 |
+
image = env.render(mode="rgb_array")
|
| 104 |
+
images.append(image)
|
| 105 |
+
# save images into mp4 files
|
| 106 |
+
import imageio.v3 as imageio
|
| 107 |
+
import numpy as np
|
| 108 |
+
|
| 109 |
+
images = np.array(images)
|
| 110 |
+
imageio.imwrite("replay.mp4", images, fps=30, quality=8)
|
| 111 |
+
# ---------------------------------------
|
| 112 |
+
# Customized deploy code ↑
|
| 113 |
+
# ---------------------------------------
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
|
| 118 |
+
qgpo_pipeline()
|
| 119 |
+
|
| 120 |
+
```
|
| 121 |
+
</details>
|
| 122 |
+
|
| 123 |
+
## Model Training
|
| 124 |
+
|
| 125 |
+
### Train the Model and Push to Huggingface_hub
|
| 126 |
+
|
| 127 |
+
<details close>
|
| 128 |
+
<summary>(Click for Details)</summary>
|
| 129 |
+
|
| 130 |
+
```shell
|
| 131 |
+
#Training Your Own Agent
|
| 132 |
+
python3 -u train.py
|
| 133 |
+
```
|
| 134 |
+
**train.py**
|
| 135 |
+
```python
|
| 136 |
+
import gym
|
| 137 |
+
|
| 138 |
+
from grl.algorithms.qgpo import QGPOAlgorithm
|
| 139 |
+
from grl.datasets import QGPOCustomizedTensorDictDataset
|
| 140 |
+
from grl.utils.log import log
|
| 141 |
+
from grl_pipelines.diffusion_model.configurations.lunarlander_continuous_qgpo import (
|
| 142 |
+
config,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def qgpo_pipeline(config):
|
| 147 |
+
|
| 148 |
+
qgpo = QGPOAlgorithm(
|
| 149 |
+
config,
|
| 150 |
+
dataset=QGPOCustomizedTensorDictDataset(
|
| 151 |
+
numpy_data_path="./data.npz",
|
| 152 |
+
action_augment_num=config.train.parameter.action_augment_num,
|
| 153 |
+
),
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# ---------------------------------------
|
| 157 |
+
# Customized train code ↓
|
| 158 |
+
# ---------------------------------------
|
| 159 |
+
qgpo.train()
|
| 160 |
+
# ---------------------------------------
|
| 161 |
+
# Customized train code ↑
|
| 162 |
+
# ---------------------------------------
|
| 163 |
+
|
| 164 |
+
# ---------------------------------------
|
| 165 |
+
# Customized deploy code ↓
|
| 166 |
+
# ---------------------------------------
|
| 167 |
+
agent = qgpo.deploy()
|
| 168 |
+
env = gym.make(config.deploy.env.env_id)
|
| 169 |
+
observation = env.reset()
|
| 170 |
+
for _ in range(config.deploy.num_deploy_steps):
|
| 171 |
+
env.render()
|
| 172 |
+
observation, reward, done, _ = env.step(agent.act(observation))
|
| 173 |
+
# ---------------------------------------
|
| 174 |
+
# Customized deploy code ↑
|
| 175 |
+
# ---------------------------------------
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
if __name__ == "__main__":
|
| 179 |
+
log.info("config: \n{}".format(config))
|
| 180 |
+
qgpo_pipeline(config)
|
| 181 |
+
|
| 182 |
+
```
|
| 183 |
+
</details>
|
| 184 |
+
|
| 185 |
+
**Configuration**
|
| 186 |
+
<details close>
|
| 187 |
+
<summary>(Click for Details)</summary>
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
```python
|
| 191 |
+
{'train': {'project': 'LunarLanderContinuous-v2-QGPO-VPSDE', 'device': 'cuda', 'wandb': {'project': 'IQL-LunarLanderContinuous-v2-QGPO-VPSDE'}, 'simulator': {'type': 'GymEnvSimulator', 'args': {'env_id': 'LunarLanderContinuous-v2'}}, 'model': {'QGPOPolicy': {'device': 'cuda', 'critic': {'device': 'cuda', 'q_alpha': 1.0, 'DoubleQNetwork': {'backbone': {'type': 'ConcatenateMLP', 'args': {'hidden_sizes': [10, 256, 256], 'output_size': 1, 'activation': 'relu'}}}}, 'diffusion_model': {'device': 'cuda', 'x_size': 2, 'alpha': 1.0, 'solver': {'type': 'DPMSolver', 'args': {'order': 2, 'device': 'cuda', 'steps': 17}}, 'path': {'type': 'linear_vp_sde', 'beta_0': 0.1, 'beta_1': 20.0}, 'reverse_path': {'type': 'linear_vp_sde', 'beta_0': 0.1, 'beta_1': 20.0}, 'model': {'type': 'noise_function', 'args': {'t_encoder': {'type': 'GaussianFourierProjectionTimeEncoder', 'args': {'embed_dim': 32, 'scale': 30.0}}, 'backbone': {'type': 'TemporalSpatialResidualNet', 'args': {'hidden_sizes': [512, 256, 128], 'output_dim': 2, 't_dim': 32, 'condition_dim': 8, 'condition_hidden_dim': 32, 't_condition_hidden_dim': 128}}}}, 'energy_guidance': {'t_encoder': {'type': 'GaussianFourierProjectionTimeEncoder', 'args': {'embed_dim': 32, 'scale': 30.0}}, 'backbone': {'type': 'ConcatenateMLP', 'args': {'hidden_sizes': [42, 256, 256], 'output_size': 1, 'activation': 'silu'}}}}}}, 'parameter': {'behaviour_policy': {'batch_size': 1024, 'learning_rate': 0.0001, 'epochs': 500}, 'action_augment_num': 16, 'fake_data_t_span': None, 'energy_guided_policy': {'batch_size': 256}, 'critic': {'stop_training_epochs': 500, 'learning_rate': 0.0001, 'discount_factor': 0.99, 'update_momentum': 0.005}, 'energy_guidance': {'epochs': 1000, 'learning_rate': 0.0001}, 'evaluation': {'evaluation_interval': 50, 'guidance_scale': [0.0, 1.0, 2.0]}, 'checkpoint_path': './LunarLanderContinuous-v2-QGPO'}}, 'deploy': {'device': 'cuda', 'env': {'env_id': 'LunarLanderContinuous-v2', 'seed': 0}, 'num_deploy_steps': 1000, 't_span': None}}
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
```json
|
| 195 |
+
{
|
| 196 |
+
"train": {
|
| 197 |
+
"project": "LunarLanderContinuous-v2-QGPO-VPSDE",
|
| 198 |
+
"device": "cuda",
|
| 199 |
+
"wandb": {
|
| 200 |
+
"project": "IQL-LunarLanderContinuous-v2-QGPO-VPSDE"
|
| 201 |
+
},
|
| 202 |
+
"simulator": {
|
| 203 |
+
"type": "GymEnvSimulator",
|
| 204 |
+
"args": {
|
| 205 |
+
"env_id": "LunarLanderContinuous-v2"
|
| 206 |
+
}
|
| 207 |
+
},
|
| 208 |
+
"model": {
|
| 209 |
+
"QGPOPolicy": {
|
| 210 |
+
"device": "cuda",
|
| 211 |
+
"critic": {
|
| 212 |
+
"device": "cuda",
|
| 213 |
+
"q_alpha": 1.0,
|
| 214 |
+
"DoubleQNetwork": {
|
| 215 |
+
"backbone": {
|
| 216 |
+
"type": "ConcatenateMLP",
|
| 217 |
+
"args": {
|
| 218 |
+
"hidden_sizes": [
|
| 219 |
+
10,
|
| 220 |
+
256,
|
| 221 |
+
256
|
| 222 |
+
],
|
| 223 |
+
"output_size": 1,
|
| 224 |
+
"activation": "relu"
|
| 225 |
+
}
|
| 226 |
+
}
|
| 227 |
+
}
|
| 228 |
+
},
|
| 229 |
+
"diffusion_model": {
|
| 230 |
+
"device": "cuda",
|
| 231 |
+
"x_size": 2,
|
| 232 |
+
"alpha": 1.0,
|
| 233 |
+
"solver": {
|
| 234 |
+
"type": "DPMSolver",
|
| 235 |
+
"args": {
|
| 236 |
+
"order": 2,
|
| 237 |
+
"device": "cuda",
|
| 238 |
+
"steps": 17
|
| 239 |
+
}
|
| 240 |
+
},
|
| 241 |
+
"path": {
|
| 242 |
+
"type": "linear_vp_sde",
|
| 243 |
+
"beta_0": 0.1,
|
| 244 |
+
"beta_1": 20.0
|
| 245 |
+
},
|
| 246 |
+
"reverse_path": {
|
| 247 |
+
"type": "linear_vp_sde",
|
| 248 |
+
"beta_0": 0.1,
|
| 249 |
+
"beta_1": 20.0
|
| 250 |
+
},
|
| 251 |
+
"model": {
|
| 252 |
+
"type": "noise_function",
|
| 253 |
+
"args": {
|
| 254 |
+
"t_encoder": {
|
| 255 |
+
"type": "GaussianFourierProjectionTimeEncoder",
|
| 256 |
+
"args": {
|
| 257 |
+
"embed_dim": 32,
|
| 258 |
+
"scale": 30.0
|
| 259 |
+
}
|
| 260 |
+
},
|
| 261 |
+
"backbone": {
|
| 262 |
+
"type": "TemporalSpatialResidualNet",
|
| 263 |
+
"args": {
|
| 264 |
+
"hidden_sizes": [
|
| 265 |
+
512,
|
| 266 |
+
256,
|
| 267 |
+
128
|
| 268 |
+
],
|
| 269 |
+
"output_dim": 2,
|
| 270 |
+
"t_dim": 32,
|
| 271 |
+
"condition_dim": 8,
|
| 272 |
+
"condition_hidden_dim": 32,
|
| 273 |
+
"t_condition_hidden_dim": 128
|
| 274 |
+
}
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
},
|
| 278 |
+
"energy_guidance": {
|
| 279 |
+
"t_encoder": {
|
| 280 |
+
"type": "GaussianFourierProjectionTimeEncoder",
|
| 281 |
+
"args": {
|
| 282 |
+
"embed_dim": 32,
|
| 283 |
+
"scale": 30.0
|
| 284 |
+
}
|
| 285 |
+
},
|
| 286 |
+
"backbone": {
|
| 287 |
+
"type": "ConcatenateMLP",
|
| 288 |
+
"args": {
|
| 289 |
+
"hidden_sizes": [
|
| 290 |
+
42,
|
| 291 |
+
256,
|
| 292 |
+
256
|
| 293 |
+
],
|
| 294 |
+
"output_size": 1,
|
| 295 |
+
"activation": "silu"
|
| 296 |
+
}
|
| 297 |
+
}
|
| 298 |
+
}
|
| 299 |
+
}
|
| 300 |
+
}
|
| 301 |
+
},
|
| 302 |
+
"parameter": {
|
| 303 |
+
"behaviour_policy": {
|
| 304 |
+
"batch_size": 1024,
|
| 305 |
+
"learning_rate": 0.0001,
|
| 306 |
+
"epochs": 500
|
| 307 |
+
},
|
| 308 |
+
"action_augment_num": 16,
|
| 309 |
+
"fake_data_t_span": null,
|
| 310 |
+
"energy_guided_policy": {
|
| 311 |
+
"batch_size": 256
|
| 312 |
+
},
|
| 313 |
+
"critic": {
|
| 314 |
+
"stop_training_epochs": 500,
|
| 315 |
+
"learning_rate": 0.0001,
|
| 316 |
+
"discount_factor": 0.99,
|
| 317 |
+
"update_momentum": 0.005
|
| 318 |
+
},
|
| 319 |
+
"energy_guidance": {
|
| 320 |
+
"epochs": 1000,
|
| 321 |
+
"learning_rate": 0.0001
|
| 322 |
+
},
|
| 323 |
+
"evaluation": {
|
| 324 |
+
"evaluation_interval": 50,
|
| 325 |
+
"guidance_scale": [
|
| 326 |
+
0.0,
|
| 327 |
+
1.0,
|
| 328 |
+
2.0
|
| 329 |
+
]
|
| 330 |
+
},
|
| 331 |
+
"checkpoint_path": "./LunarLanderContinuous-v2-QGPO"
|
| 332 |
+
}
|
| 333 |
+
},
|
| 334 |
+
"deploy": {
|
| 335 |
+
"device": "cuda",
|
| 336 |
+
"env": {
|
| 337 |
+
"env_id": "LunarLanderContinuous-v2",
|
| 338 |
+
"seed": 0
|
| 339 |
+
},
|
| 340 |
+
"num_deploy_steps": 1000,
|
| 341 |
+
"t_span": null
|
| 342 |
+
}
|
| 343 |
+
}
|
| 344 |
+
```
|
| 345 |
+
|
| 346 |
+
</details>
|
| 347 |
+
|
| 348 |
+
**Training Procedure**
|
| 349 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 350 |
+
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/IQL-LunarLanderContinuous-v2-QGPO-VPSDE)
|
| 351 |
+
|
| 352 |
+
## Model Information
|
| 353 |
+
<!-- Provide the basic links for the model. -->
|
| 354 |
+
- **Github Repository:** [repo link](https://github.com/opendilab/GenerativeRL/)
|
| 355 |
+
- **Doc**: [Algorithm link](https://opendilab.github.io/GenerativeRL/)
|
| 356 |
+
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/LunarLanderContinuous-v2-QGPO/blob/main/policy_config.json)
|
| 357 |
+
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLanderContinuous-v2-QGPO/blob/main/replay.mp4)
|
| 358 |
+
<!-- Provide the size information for the model. -->
|
| 359 |
+
- **Parameters total size:** 8799.79 KB
|
| 360 |
+
- **Last Update Date:** 2024-12-04
|
| 361 |
+
|
| 362 |
+
## Environments
|
| 363 |
+
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
| 364 |
+
- **Benchmark:** Box2d
|
| 365 |
+
- **Task:** LunarLanderContinuous-v2
|
| 366 |
+
- **Gym version:** 0.23.1
|
| 367 |
+
- **GenerativeRL version:** v0.0.1
|
| 368 |
+
- **PyTorch version:** 2.4.1+cu121
|
| 369 |
+
- **Doc**: [Environments link](https://www.gymlibrary.dev/environments/box2d/lunar_lander/)
|