--- library_name: transformers language: - jav license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - SLR41 metrics: - wer model-index: - name: Whisper Small Java results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: SLR Javanenese type: SLR41 args: 'config: java, split: train, test' metrics: - name: Wer type: wer value: 26.77317840716534 --- # Whisper Small Java This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SLR Javanenese dataset. It achieves the following results on the evaluation set: - Loss: 0.2729 - Wer: 26.7732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.8934 | 0.3003 | 100 | 0.8003 | 52.4086 | | 0.4852 | 0.6006 | 200 | 0.5305 | 39.4578 | | 0.4111 | 0.9009 | 300 | 0.4214 | 32.8250 | | 0.2101 | 1.2012 | 400 | 0.3655 | 30.4527 | | 0.1803 | 1.5015 | 500 | 0.3257 | 29.1939 | | 0.1845 | 1.8018 | 600 | 0.3072 | 27.4752 | | 0.0899 | 2.1021 | 700 | 0.2997 | 26.4585 | | 0.0816 | 2.4024 | 800 | 0.2850 | 26.3617 | | 0.078 | 2.7027 | 900 | 0.2755 | 26.7248 | | 0.0769 | 3.0030 | 1000 | 0.2729 | 26.7732 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1