File size: 2,918 Bytes
cdb498f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
pipeline_tag: text-to-image
---

# Taming Generative Synthetic Data for X-ray Prohibited Item Detection

This repository contains the Xsyn model, a one-stage X-ray security image synthesis pipeline based on text-to-image generation. Proposed in the paper [Taming Generative Synthetic Data for X-ray Prohibited Item Detection](https://huggingface.co/papers/2511.15299), Xsyn addresses data insufficiency for prohibited item detection by incorporating two effective strategies: Cross-Attention Refinement (CAR) for refining bounding box annotations and Background Occlusion Modeling (BOM) for enhancing imaging complexity. It aims to achieve high-quality X-ray security image synthesis without incurring additional labor-intensive foreground preparation.

Code repository: [https://github.com/pILLOW-1/Xsyn/](https://github.com/pILLOW-1/Xsyn/)

<figure style="display:block; text-align:center; margin:0 auto;">
  <img src="https://github.com/pILLOW-1/Xsyn/raw/main/figures/analysis.jpg"
       alt="Analysis of existing X-ray image synthesis methods"
       style="width:90%; max-width:600px; margin:0 auto; display:block;">
</figure>

## Download Xsyn models

Checkpoints for different datasets are available. All models here are based on GLIGEN.
| Dataset       | Mode       | Download                                                                                                       |
|------------|----------------|----------------------------------------------------------------------------------------------------------------|
| PIDray | text-grounded inpainting       | [HF Hub](https://huggingface.co/Pillow-1/Xsyn)       |
| OPIXray | text-grounded inpainting | [HF Hub](https://huggingface.co/Pillow-1/Xsyn) |
| HiXray | text-grounded inpainting       | [HF Hub](https://huggingface.co/Pillow-1/Xsyn)       |

## Inference

We provide one script to generate x-ray security images and construct their annotations. First download models and put them in `--ckpt_path`. Then run:

```bash
python gligen_inference.py
```

Details of some important args:

- `--output_path`: the path to save your generated x-ray security images
- `--annotation_path`: the path to save the refined annotation (stored in txt format)
- `--vis_path`: the path to save visualization compared with gt
- `--ca_vis_path`: the path to save cross-attention maps
- `--image_path`: the path to load images you want to inpaint
- `--ckpt_path`: the generation model checkpoint path
- `--gligen_caption_pt`: the file to prepare your training/test data in [GLIGEN](https://github.com/gligen/GLIGEN) format
- `--gen_method`: set to 1 for Xsyn-M and 3 for Xsyn-A
- `--refine_anno`: set to True for `CAR`
- `--latent_redist`: set to True for `BOM`

After inference, you can use `downstream_test.sh` to test the performance of our synthetic data. Our downstream detection environment is [mmdetection](https://github.com/open-mmlab/mmdetection).