Fixed bugs with latest transformers.

#27
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -68,10 +68,10 @@ for message in conversation:
68
  sr=processor.feature_extractor.sampling_rate)[0]
69
  )
70
 
71
- inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
72
- inputs.input_ids = inputs.input_ids.to("cuda")
73
 
74
- generate_ids = model.generate(**inputs, max_length=256)
75
  generate_ids = generate_ids[:, inputs.input_ids.size(1):]
76
 
77
  response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
@@ -116,10 +116,10 @@ for message in conversation:
116
  sr=processor.feature_extractor.sampling_rate)[0]
117
  )
118
 
119
- inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
120
- inputs.input_ids = inputs.input_ids.to("cuda")
121
 
122
- generate_ids = model.generate(**inputs, max_length=256)
123
  generate_ids = generate_ids[:, inputs.input_ids.size(1):]
124
 
125
  response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
@@ -171,11 +171,11 @@ for conversation in conversations:
171
  sr=processor.feature_extractor.sampling_rate)[0]
172
  )
173
 
174
- inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
175
  inputs['input_ids'] = inputs['input_ids'].to("cuda")
176
- inputs.input_ids = inputs.input_ids.to("cuda")
177
 
178
- generate_ids = model.generate(**inputs, max_length=256)
179
  generate_ids = generate_ids[:, inputs.input_ids.size(1):]
180
 
181
  response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
 
68
  sr=processor.feature_extractor.sampling_rate)[0]
69
  )
70
 
71
+ inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
72
+ inputs = inputs.to("cuda")
73
 
74
+ generate_ids = model.generate(**inputs, max_new_tokens=256)
75
  generate_ids = generate_ids[:, inputs.input_ids.size(1):]
76
 
77
  response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
 
116
  sr=processor.feature_extractor.sampling_rate)[0]
117
  )
118
 
119
+ inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
120
+ inputs = inputs.to("cuda")
121
 
122
+ generate_ids = model.generate(**inputs, max_new_tokens=256)
123
  generate_ids = generate_ids[:, inputs.input_ids.size(1):]
124
 
125
  response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
 
171
  sr=processor.feature_extractor.sampling_rate)[0]
172
  )
173
 
174
+ inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
175
  inputs['input_ids'] = inputs['input_ids'].to("cuda")
176
+ inputs = inputs.to("cuda")
177
 
178
+ generate_ids = model.generate(**inputs, max_new_tokens=256)
179
  generate_ids = generate_ids[:, inputs.input_ids.size(1):]
180
 
181
  response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)