TianyuLin commited on
Commit
8723721
·
verified ·
1 Parent(s): 59d63e1

Add files using upload-large-folder tool

Browse files
Files changed (22) hide show
  1. .gitattributes +2 -0
  2. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset.json +34 -0
  3. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset_fingerprint.json +0 -0
  4. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/.DS_Store +0 -0
  5. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_best.pth +3 -0
  6. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_final.pth +3 -0
  7. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/debug.json +53 -0
  8. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png +3 -0
  9. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_11_10_22_36_21.txt +0 -0
  10. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/plans.json +532 -0
  11. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset.json +34 -0
  12. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset_fingerprint.json +0 -0
  13. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/.DS_Store +0 -0
  14. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_best.pth +3 -0
  15. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_final.pth +3 -0
  16. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/debug.json +53 -0
  17. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png +3 -0
  18. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_10_28_22_51_12.txt +0 -0
  19. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_08_36_18.txt +26 -0
  20. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_10_13_43.txt +0 -0
  21. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_7_21_08_06.txt +0 -0
  22. Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/plans.json +532 -0
.gitattributes CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
37
  nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
 
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
37
  nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
38
+ Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
39
+ Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "JHH-Train-test",
3
+ "description": "3151 cases for training; 1958 cases for testing",
4
+ "reference": "ScaleMAI",
5
+ "licence": "CC-BY-SA 4.0",
6
+ "relase": "1.0 10/28/2024",
7
+ "tensorImageSize": "3D",
8
+ "labels": {
9
+ "background": 0,
10
+ "aorta": 1,
11
+ "adrenal_gland_left": 2,
12
+ "adrenal_gland_right": 3,
13
+ "celiac_aa": 4,
14
+ "colon": 5,
15
+ "duodenum": 6,
16
+ "gall_bladder": 7,
17
+ "postcava": 8,
18
+ "kidney_left": 9,
19
+ "kidney_right": 10,
20
+ "liver": 11,
21
+ "pancreas": 12,
22
+ "superior_mesenteric_artery": 13,
23
+ "intestine": 14,
24
+ "spleen": 15,
25
+ "renal_vein_left": 16,
26
+ "renal_vein_right": 17
27
+ },
28
+ "numTraining": 3151,
29
+ "numTest": 1958,
30
+ "file_ending": ".nii.gz",
31
+ "channel_names": {
32
+ "0": "CT"
33
+ }
34
+ }
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a721b665bc283aefb9aad70ecc34f773fb703b149e3cbe67280fbbe68ad1f9
3
+ size 1122159090
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84df811db038623efb6cb3993e5271f688d2b57ab44a9ec45a545acf7f418a38
3
+ size 1122162406
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/debug.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "22",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
5
+ "configuration_name": "2d",
6
+ "cudnn_version": 90100,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7fe6c1af0970>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7fe6c1af0280>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "None",
12
+ "dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7fe6c1af0a00>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7fe6c1af02e0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "None",
16
+ "dataset_json": "{'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "enable_deep_supervision": "True",
20
+ "fold": "all",
21
+ "folder_with_segs_from_previous_stage": "None",
22
+ "gpu_name": "NVIDIA TITAN RTX",
23
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe6c1b8af70>",
24
+ "hostname": "ccvl18",
25
+ "inference_allowed_mirroring_axes": "(0, 1)",
26
+ "initial_lr": "0.01",
27
+ "is_cascaded": "False",
28
+ "is_ddp": "False",
29
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe796922f40>",
30
+ "local_rank": "0",
31
+ "log_file": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_11_10_22_36_21.txt",
32
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe6c1b8aeb0>",
33
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
34
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe6b7f10f40>",
35
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}, 'configuration': '2d', 'fold': 'all', 'dataset_json': {'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}, 'unpack_dataset': True, 'device': device(type='cuda')}",
36
+ "network": "OptimizedModule",
37
+ "num_epochs": "1000",
38
+ "num_input_channels": "1",
39
+ "num_iterations_per_epoch": "250",
40
+ "num_val_iterations_per_epoch": "50",
41
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
+ "output_folder": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all",
43
+ "output_folder_base": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d",
44
+ "oversample_foreground_percent": "0.33",
45
+ "plans_manager": "{'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}",
46
+ "preprocessed_dataset_folder": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17/nnUNetPlans_2d",
47
+ "preprocessed_dataset_folder_base": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17",
48
+ "save_every": "50",
49
+ "torch_version": "2.4.0+cu121",
50
+ "unpack_dataset": "True",
51
+ "was_initialized": "True",
52
+ "weight_decay": "3e-05"
53
+ }
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png ADDED

Git LFS Details

  • SHA256: d94326f8a0604a9a2f429e5306ed13d979f37fe12fefe992b35fa6cfa7cbb0c0
  • Pointer size: 131 Bytes
  • Size of remote file: 547 kB
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_11_10_22_36_21.txt ADDED
The diff for this file is too large to render. See raw diff
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/plans.json ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset809_AbdomenAtlasF17",
3
+ "plans_name": "nnUNetResEncUNetLPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 0.7109375,
6
+ 0.5,
7
+ 0.7109375
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 512,
11
+ 608,
12
+ 512
13
+ ],
14
+ "image_reader_writer": "SimpleITKIO",
15
+ "transpose_forward": [
16
+ 1,
17
+ 0,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 1,
22
+ 0,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 22,
30
+ "patch_size": [
31
+ 640,
32
+ 640
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 613.0,
36
+ 513.0
37
+ ],
38
+ "spacing": [
39
+ 0.5,
40
+ 0.7109375
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
49
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
50
+ "resampling_fn_data_kwargs": {
51
+ "is_seg": false,
52
+ "order": 3,
53
+ "order_z": 0,
54
+ "force_separate_z": null
55
+ },
56
+ "resampling_fn_seg_kwargs": {
57
+ "is_seg": true,
58
+ "order": 1,
59
+ "order_z": 0,
60
+ "force_separate_z": null
61
+ },
62
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
63
+ "resampling_fn_probabilities_kwargs": {
64
+ "is_seg": false,
65
+ "order": 1,
66
+ "order_z": 0,
67
+ "force_separate_z": null
68
+ },
69
+ "architecture": {
70
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
71
+ "arch_kwargs": {
72
+ "n_stages": 8,
73
+ "features_per_stage": [
74
+ 32,
75
+ 64,
76
+ 128,
77
+ 256,
78
+ 512,
79
+ 512,
80
+ 512,
81
+ 512
82
+ ],
83
+ "conv_op": "torch.nn.modules.conv.Conv2d",
84
+ "kernel_sizes": [
85
+ [
86
+ 3,
87
+ 3
88
+ ],
89
+ [
90
+ 3,
91
+ 3
92
+ ],
93
+ [
94
+ 3,
95
+ 3
96
+ ],
97
+ [
98
+ 3,
99
+ 3
100
+ ],
101
+ [
102
+ 3,
103
+ 3
104
+ ],
105
+ [
106
+ 3,
107
+ 3
108
+ ],
109
+ [
110
+ 3,
111
+ 3
112
+ ],
113
+ [
114
+ 3,
115
+ 3
116
+ ]
117
+ ],
118
+ "strides": [
119
+ [
120
+ 1,
121
+ 1
122
+ ],
123
+ [
124
+ 2,
125
+ 2
126
+ ],
127
+ [
128
+ 2,
129
+ 2
130
+ ],
131
+ [
132
+ 2,
133
+ 2
134
+ ],
135
+ [
136
+ 2,
137
+ 2
138
+ ],
139
+ [
140
+ 2,
141
+ 2
142
+ ],
143
+ [
144
+ 2,
145
+ 2
146
+ ],
147
+ [
148
+ 2,
149
+ 2
150
+ ]
151
+ ],
152
+ "n_blocks_per_stage": [
153
+ 1,
154
+ 3,
155
+ 4,
156
+ 6,
157
+ 6,
158
+ 6,
159
+ 6,
160
+ 6
161
+ ],
162
+ "n_conv_per_stage_decoder": [
163
+ 1,
164
+ 1,
165
+ 1,
166
+ 1,
167
+ 1,
168
+ 1,
169
+ 1
170
+ ],
171
+ "conv_bias": true,
172
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
173
+ "norm_op_kwargs": {
174
+ "eps": 1e-05,
175
+ "affine": true
176
+ },
177
+ "dropout_op": null,
178
+ "dropout_op_kwargs": null,
179
+ "nonlin": "torch.nn.LeakyReLU",
180
+ "nonlin_kwargs": {
181
+ "inplace": true
182
+ }
183
+ },
184
+ "_kw_requires_import": [
185
+ "conv_op",
186
+ "norm_op",
187
+ "dropout_op",
188
+ "nonlin"
189
+ ]
190
+ },
191
+ "batch_dice": true
192
+ },
193
+ "3d_lowres": {
194
+ "data_identifier": "nnUNetResEncUNetLPlans_3d_lowres",
195
+ "preprocessor_name": "DefaultPreprocessor",
196
+ "batch_size": 2,
197
+ "patch_size": [
198
+ 160,
199
+ 224,
200
+ 192
201
+ ],
202
+ "median_image_size_in_voxels": [
203
+ 283,
204
+ 339,
205
+ 284
206
+ ],
207
+ "spacing": [
208
+ 1.284032205897787,
209
+ 0.9030556173347075,
210
+ 1.284032205897787
211
+ ],
212
+ "normalization_schemes": [
213
+ "CTNormalization"
214
+ ],
215
+ "use_mask_for_norm": [
216
+ false
217
+ ],
218
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
219
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
220
+ "resampling_fn_data_kwargs": {
221
+ "is_seg": false,
222
+ "order": 3,
223
+ "order_z": 0,
224
+ "force_separate_z": null
225
+ },
226
+ "resampling_fn_seg_kwargs": {
227
+ "is_seg": true,
228
+ "order": 1,
229
+ "order_z": 0,
230
+ "force_separate_z": null
231
+ },
232
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
233
+ "resampling_fn_probabilities_kwargs": {
234
+ "is_seg": false,
235
+ "order": 1,
236
+ "order_z": 0,
237
+ "force_separate_z": null
238
+ },
239
+ "architecture": {
240
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
241
+ "arch_kwargs": {
242
+ "n_stages": 6,
243
+ "features_per_stage": [
244
+ 32,
245
+ 64,
246
+ 128,
247
+ 256,
248
+ 320,
249
+ 320
250
+ ],
251
+ "conv_op": "torch.nn.modules.conv.Conv3d",
252
+ "kernel_sizes": [
253
+ [
254
+ 3,
255
+ 3,
256
+ 3
257
+ ],
258
+ [
259
+ 3,
260
+ 3,
261
+ 3
262
+ ],
263
+ [
264
+ 3,
265
+ 3,
266
+ 3
267
+ ],
268
+ [
269
+ 3,
270
+ 3,
271
+ 3
272
+ ],
273
+ [
274
+ 3,
275
+ 3,
276
+ 3
277
+ ],
278
+ [
279
+ 3,
280
+ 3,
281
+ 3
282
+ ]
283
+ ],
284
+ "strides": [
285
+ [
286
+ 1,
287
+ 1,
288
+ 1
289
+ ],
290
+ [
291
+ 2,
292
+ 2,
293
+ 2
294
+ ],
295
+ [
296
+ 2,
297
+ 2,
298
+ 2
299
+ ],
300
+ [
301
+ 2,
302
+ 2,
303
+ 2
304
+ ],
305
+ [
306
+ 2,
307
+ 2,
308
+ 2
309
+ ],
310
+ [
311
+ 2,
312
+ 2,
313
+ 2
314
+ ]
315
+ ],
316
+ "n_blocks_per_stage": [
317
+ 1,
318
+ 3,
319
+ 4,
320
+ 6,
321
+ 6,
322
+ 6
323
+ ],
324
+ "n_conv_per_stage_decoder": [
325
+ 1,
326
+ 1,
327
+ 1,
328
+ 1,
329
+ 1
330
+ ],
331
+ "conv_bias": true,
332
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
333
+ "norm_op_kwargs": {
334
+ "eps": 1e-05,
335
+ "affine": true
336
+ },
337
+ "dropout_op": null,
338
+ "dropout_op_kwargs": null,
339
+ "nonlin": "torch.nn.LeakyReLU",
340
+ "nonlin_kwargs": {
341
+ "inplace": true
342
+ }
343
+ },
344
+ "_kw_requires_import": [
345
+ "conv_op",
346
+ "norm_op",
347
+ "dropout_op",
348
+ "nonlin"
349
+ ]
350
+ },
351
+ "batch_dice": false,
352
+ "next_stage": "3d_cascade_fullres"
353
+ },
354
+ "3d_fullres": {
355
+ "data_identifier": "nnUNetPlans_3d_fullres",
356
+ "preprocessor_name": "DefaultPreprocessor",
357
+ "batch_size": 2,
358
+ "patch_size": [
359
+ 160,
360
+ 224,
361
+ 192
362
+ ],
363
+ "median_image_size_in_voxels": [
364
+ 512.0,
365
+ 613.0,
366
+ 513.0
367
+ ],
368
+ "spacing": [
369
+ 0.7109375,
370
+ 0.5,
371
+ 0.7109375
372
+ ],
373
+ "normalization_schemes": [
374
+ "CTNormalization"
375
+ ],
376
+ "use_mask_for_norm": [
377
+ false
378
+ ],
379
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
380
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
381
+ "resampling_fn_data_kwargs": {
382
+ "is_seg": false,
383
+ "order": 3,
384
+ "order_z": 0,
385
+ "force_separate_z": null
386
+ },
387
+ "resampling_fn_seg_kwargs": {
388
+ "is_seg": true,
389
+ "order": 1,
390
+ "order_z": 0,
391
+ "force_separate_z": null
392
+ },
393
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
394
+ "resampling_fn_probabilities_kwargs": {
395
+ "is_seg": false,
396
+ "order": 1,
397
+ "order_z": 0,
398
+ "force_separate_z": null
399
+ },
400
+ "architecture": {
401
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
402
+ "arch_kwargs": {
403
+ "n_stages": 6,
404
+ "features_per_stage": [
405
+ 32,
406
+ 64,
407
+ 128,
408
+ 256,
409
+ 320,
410
+ 320
411
+ ],
412
+ "conv_op": "torch.nn.modules.conv.Conv3d",
413
+ "kernel_sizes": [
414
+ [
415
+ 3,
416
+ 3,
417
+ 3
418
+ ],
419
+ [
420
+ 3,
421
+ 3,
422
+ 3
423
+ ],
424
+ [
425
+ 3,
426
+ 3,
427
+ 3
428
+ ],
429
+ [
430
+ 3,
431
+ 3,
432
+ 3
433
+ ],
434
+ [
435
+ 3,
436
+ 3,
437
+ 3
438
+ ],
439
+ [
440
+ 3,
441
+ 3,
442
+ 3
443
+ ]
444
+ ],
445
+ "strides": [
446
+ [
447
+ 1,
448
+ 1,
449
+ 1
450
+ ],
451
+ [
452
+ 2,
453
+ 2,
454
+ 2
455
+ ],
456
+ [
457
+ 2,
458
+ 2,
459
+ 2
460
+ ],
461
+ [
462
+ 2,
463
+ 2,
464
+ 2
465
+ ],
466
+ [
467
+ 2,
468
+ 2,
469
+ 2
470
+ ],
471
+ [
472
+ 2,
473
+ 2,
474
+ 2
475
+ ]
476
+ ],
477
+ "n_blocks_per_stage": [
478
+ 1,
479
+ 3,
480
+ 4,
481
+ 6,
482
+ 6,
483
+ 6
484
+ ],
485
+ "n_conv_per_stage_decoder": [
486
+ 1,
487
+ 1,
488
+ 1,
489
+ 1,
490
+ 1
491
+ ],
492
+ "conv_bias": true,
493
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
494
+ "norm_op_kwargs": {
495
+ "eps": 1e-05,
496
+ "affine": true
497
+ },
498
+ "dropout_op": null,
499
+ "dropout_op_kwargs": null,
500
+ "nonlin": "torch.nn.LeakyReLU",
501
+ "nonlin_kwargs": {
502
+ "inplace": true
503
+ }
504
+ },
505
+ "_kw_requires_import": [
506
+ "conv_op",
507
+ "norm_op",
508
+ "dropout_op",
509
+ "nonlin"
510
+ ]
511
+ },
512
+ "batch_dice": true
513
+ },
514
+ "3d_cascade_fullres": {
515
+ "inherits_from": "3d_fullres",
516
+ "previous_stage": "3d_lowres"
517
+ }
518
+ },
519
+ "experiment_planner_used": "nnUNetPlannerResEncL",
520
+ "label_manager": "LabelManager",
521
+ "foreground_intensity_properties_per_channel": {
522
+ "0": {
523
+ "max": 1000.0,
524
+ "mean": 39.68027877807617,
525
+ "median": 71.0,
526
+ "min": -1000.0,
527
+ "percentile_00_5": -1000.0,
528
+ "percentile_99_5": 379.0,
529
+ "std": 192.4669952392578
530
+ }
531
+ }
532
+ }
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "JHH-Train-test",
3
+ "description": "3151 cases for training; 1958 cases for testing",
4
+ "reference": "ScaleMAI",
5
+ "licence": "CC-BY-SA 4.0",
6
+ "relase": "1.0 10/28/2024",
7
+ "tensorImageSize": "3D",
8
+ "labels": {
9
+ "background": 0,
10
+ "aorta": 1,
11
+ "adrenal_gland_left": 2,
12
+ "adrenal_gland_right": 3,
13
+ "celiac_aa": 4,
14
+ "colon": 5,
15
+ "duodenum": 6,
16
+ "gall_bladder": 7,
17
+ "postcava": 8,
18
+ "kidney_left": 9,
19
+ "kidney_right": 10,
20
+ "liver": 11,
21
+ "pancreas": 12,
22
+ "superior_mesenteric_artery": 13,
23
+ "intestine": 14,
24
+ "spleen": 15,
25
+ "renal_vein_left": 16,
26
+ "renal_vein_right": 17
27
+ },
28
+ "numTraining": 3151,
29
+ "numTest": 1958,
30
+ "file_ending": ".nii.gz",
31
+ "channel_names": {
32
+ "0": "CT"
33
+ }
34
+ }
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c5c78b5a40289b05ad8051f385d4b01ea61ead3b48dfadc302d2387a06d50a
3
+ size 820518770
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e59f75679e8f119a3ff67bd3c86f34ac005bc687d4875bc59b7e878259e36582
3
+ size 820526982
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/debug.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "0.80715364",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 90100,
7
+ "current_epoch": "900",
8
+ "dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7f8cb1b4f820>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8cb1b4faf0>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "None",
12
+ "dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7f8cb1b4f0a0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8cb1b4f9d0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "None",
16
+ "dataset_json": "{'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "enable_deep_supervision": "True",
20
+ "fold": "all",
21
+ "folder_with_segs_from_previous_stage": "None",
22
+ "gpu_name": "NVIDIA TITAN RTX",
23
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f8cc357cf70>",
24
+ "hostname": "ccvl18",
25
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
26
+ "initial_lr": "0.01",
27
+ "is_cascaded": "False",
28
+ "is_ddp": "False",
29
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f8d983884f0>",
30
+ "local_rank": "0",
31
+ "log_file": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_7_21_08_06.txt",
32
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f8cc3586c70>",
33
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
34
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f8cb92fb1f0>",
35
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}, 'configuration': '3d_fullres', 'fold': 'all', 'dataset_json': {'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}, 'unpack_dataset': True, 'device': device(type='cuda')}",
36
+ "network": "OptimizedModule",
37
+ "num_epochs": "1000",
38
+ "num_input_channels": "1",
39
+ "num_iterations_per_epoch": "250",
40
+ "num_val_iterations_per_epoch": "50",
41
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.0012702500959998477\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
+ "output_folder": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all",
43
+ "output_folder_base": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres",
44
+ "oversample_foreground_percent": "0.33",
45
+ "plans_manager": "{'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}",
46
+ "preprocessed_dataset_folder": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17/nnUNetPlans_3d_fullres",
47
+ "preprocessed_dataset_folder_base": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17",
48
+ "save_every": "50",
49
+ "torch_version": "2.4.0+cu121",
50
+ "unpack_dataset": "True",
51
+ "was_initialized": "True",
52
+ "weight_decay": "3e-05"
53
+ }
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png ADDED

Git LFS Details

  • SHA256: 3761cc90cb8d651acb34978204dae754a776901b234cc376ee73bdc1b1c0c068
  • Pointer size: 131 Bytes
  • Size of remote file: 679 kB
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_10_28_22_51_12.txt ADDED
The diff for this file is too large to render. See raw diff
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_08_36_18.txt ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #######################################################################
3
+ Please cite the following paper when using nnU-Net:
4
+ Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
5
+ #######################################################################
6
+
7
+ 2025-11-01 08:36:24.398811: Using torch.compile...
8
+ 2025-11-01 08:36:45.052451: do_dummy_2d_data_aug: False
9
+
10
+ This is the configuration used by this training:
11
+ Configuration name: 3d_fullres
12
+ {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}
13
+
14
+ These are the global plan.json settings:
15
+ {'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}
16
+
17
+ 2025-11-01 08:37:17.108070: unpacking dataset...
18
+ 2025-11-01 08:38:09.972894: unpacking done...
19
+ 2025-11-01 08:38:09.995002: Unable to plot network architecture: nnUNet_compile is enabled!
20
+ 2025-11-01 08:38:10.515083:
21
+ 2025-11-01 08:38:10.517237: Epoch 450
22
+ 2025-11-01 08:38:10.518909: Current learning rate: 0.00584
23
+ 2025-11-01 08:55:58.583854: train_loss -0.4371
24
+ 2025-11-01 08:55:58.605177: val_loss -0.4559
25
+ 2025-11-01 08:55:58.606929: Pseudo dice [np.float32(0.9505), np.float32(0.7827), np.float32(0.7344), np.float32(0.675), np.float32(0.846), np.float32(0.7937), np.float32(0.8776), np.float32(0.8831), np.float32(0.9412), np.float32(0.9393), np.float32(0.9665), np.float32(0.85), np.float32(0.7965), np.float32(0.846), np.float32(0.9684), np.float32(0.2859), np.float32(0.2493)]
26
+ 2025-11-01 08:55:58.608141: Epoch time: 1068.08 s
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_10_13_43.txt ADDED
The diff for this file is too large to render. See raw diff
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_7_21_08_06.txt ADDED
The diff for this file is too large to render. See raw diff
 
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset809_AbdomenAtlasF17",
3
+ "plans_name": "nnUNetResEncUNetLPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 0.7109375,
6
+ 0.5,
7
+ 0.7109375
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 512,
11
+ 608,
12
+ 512
13
+ ],
14
+ "image_reader_writer": "SimpleITKIO",
15
+ "transpose_forward": [
16
+ 1,
17
+ 0,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 1,
22
+ 0,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 22,
30
+ "patch_size": [
31
+ 640,
32
+ 640
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 613.0,
36
+ 513.0
37
+ ],
38
+ "spacing": [
39
+ 0.5,
40
+ 0.7109375
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
49
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
50
+ "resampling_fn_data_kwargs": {
51
+ "is_seg": false,
52
+ "order": 3,
53
+ "order_z": 0,
54
+ "force_separate_z": null
55
+ },
56
+ "resampling_fn_seg_kwargs": {
57
+ "is_seg": true,
58
+ "order": 1,
59
+ "order_z": 0,
60
+ "force_separate_z": null
61
+ },
62
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
63
+ "resampling_fn_probabilities_kwargs": {
64
+ "is_seg": false,
65
+ "order": 1,
66
+ "order_z": 0,
67
+ "force_separate_z": null
68
+ },
69
+ "architecture": {
70
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
71
+ "arch_kwargs": {
72
+ "n_stages": 8,
73
+ "features_per_stage": [
74
+ 32,
75
+ 64,
76
+ 128,
77
+ 256,
78
+ 512,
79
+ 512,
80
+ 512,
81
+ 512
82
+ ],
83
+ "conv_op": "torch.nn.modules.conv.Conv2d",
84
+ "kernel_sizes": [
85
+ [
86
+ 3,
87
+ 3
88
+ ],
89
+ [
90
+ 3,
91
+ 3
92
+ ],
93
+ [
94
+ 3,
95
+ 3
96
+ ],
97
+ [
98
+ 3,
99
+ 3
100
+ ],
101
+ [
102
+ 3,
103
+ 3
104
+ ],
105
+ [
106
+ 3,
107
+ 3
108
+ ],
109
+ [
110
+ 3,
111
+ 3
112
+ ],
113
+ [
114
+ 3,
115
+ 3
116
+ ]
117
+ ],
118
+ "strides": [
119
+ [
120
+ 1,
121
+ 1
122
+ ],
123
+ [
124
+ 2,
125
+ 2
126
+ ],
127
+ [
128
+ 2,
129
+ 2
130
+ ],
131
+ [
132
+ 2,
133
+ 2
134
+ ],
135
+ [
136
+ 2,
137
+ 2
138
+ ],
139
+ [
140
+ 2,
141
+ 2
142
+ ],
143
+ [
144
+ 2,
145
+ 2
146
+ ],
147
+ [
148
+ 2,
149
+ 2
150
+ ]
151
+ ],
152
+ "n_blocks_per_stage": [
153
+ 1,
154
+ 3,
155
+ 4,
156
+ 6,
157
+ 6,
158
+ 6,
159
+ 6,
160
+ 6
161
+ ],
162
+ "n_conv_per_stage_decoder": [
163
+ 1,
164
+ 1,
165
+ 1,
166
+ 1,
167
+ 1,
168
+ 1,
169
+ 1
170
+ ],
171
+ "conv_bias": true,
172
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
173
+ "norm_op_kwargs": {
174
+ "eps": 1e-05,
175
+ "affine": true
176
+ },
177
+ "dropout_op": null,
178
+ "dropout_op_kwargs": null,
179
+ "nonlin": "torch.nn.LeakyReLU",
180
+ "nonlin_kwargs": {
181
+ "inplace": true
182
+ }
183
+ },
184
+ "_kw_requires_import": [
185
+ "conv_op",
186
+ "norm_op",
187
+ "dropout_op",
188
+ "nonlin"
189
+ ]
190
+ },
191
+ "batch_dice": true
192
+ },
193
+ "3d_lowres": {
194
+ "data_identifier": "nnUNetResEncUNetLPlans_3d_lowres",
195
+ "preprocessor_name": "DefaultPreprocessor",
196
+ "batch_size": 2,
197
+ "patch_size": [
198
+ 160,
199
+ 224,
200
+ 192
201
+ ],
202
+ "median_image_size_in_voxels": [
203
+ 283,
204
+ 339,
205
+ 284
206
+ ],
207
+ "spacing": [
208
+ 1.284032205897787,
209
+ 0.9030556173347075,
210
+ 1.284032205897787
211
+ ],
212
+ "normalization_schemes": [
213
+ "CTNormalization"
214
+ ],
215
+ "use_mask_for_norm": [
216
+ false
217
+ ],
218
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
219
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
220
+ "resampling_fn_data_kwargs": {
221
+ "is_seg": false,
222
+ "order": 3,
223
+ "order_z": 0,
224
+ "force_separate_z": null
225
+ },
226
+ "resampling_fn_seg_kwargs": {
227
+ "is_seg": true,
228
+ "order": 1,
229
+ "order_z": 0,
230
+ "force_separate_z": null
231
+ },
232
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
233
+ "resampling_fn_probabilities_kwargs": {
234
+ "is_seg": false,
235
+ "order": 1,
236
+ "order_z": 0,
237
+ "force_separate_z": null
238
+ },
239
+ "architecture": {
240
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
241
+ "arch_kwargs": {
242
+ "n_stages": 6,
243
+ "features_per_stage": [
244
+ 32,
245
+ 64,
246
+ 128,
247
+ 256,
248
+ 320,
249
+ 320
250
+ ],
251
+ "conv_op": "torch.nn.modules.conv.Conv3d",
252
+ "kernel_sizes": [
253
+ [
254
+ 3,
255
+ 3,
256
+ 3
257
+ ],
258
+ [
259
+ 3,
260
+ 3,
261
+ 3
262
+ ],
263
+ [
264
+ 3,
265
+ 3,
266
+ 3
267
+ ],
268
+ [
269
+ 3,
270
+ 3,
271
+ 3
272
+ ],
273
+ [
274
+ 3,
275
+ 3,
276
+ 3
277
+ ],
278
+ [
279
+ 3,
280
+ 3,
281
+ 3
282
+ ]
283
+ ],
284
+ "strides": [
285
+ [
286
+ 1,
287
+ 1,
288
+ 1
289
+ ],
290
+ [
291
+ 2,
292
+ 2,
293
+ 2
294
+ ],
295
+ [
296
+ 2,
297
+ 2,
298
+ 2
299
+ ],
300
+ [
301
+ 2,
302
+ 2,
303
+ 2
304
+ ],
305
+ [
306
+ 2,
307
+ 2,
308
+ 2
309
+ ],
310
+ [
311
+ 2,
312
+ 2,
313
+ 2
314
+ ]
315
+ ],
316
+ "n_blocks_per_stage": [
317
+ 1,
318
+ 3,
319
+ 4,
320
+ 6,
321
+ 6,
322
+ 6
323
+ ],
324
+ "n_conv_per_stage_decoder": [
325
+ 1,
326
+ 1,
327
+ 1,
328
+ 1,
329
+ 1
330
+ ],
331
+ "conv_bias": true,
332
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
333
+ "norm_op_kwargs": {
334
+ "eps": 1e-05,
335
+ "affine": true
336
+ },
337
+ "dropout_op": null,
338
+ "dropout_op_kwargs": null,
339
+ "nonlin": "torch.nn.LeakyReLU",
340
+ "nonlin_kwargs": {
341
+ "inplace": true
342
+ }
343
+ },
344
+ "_kw_requires_import": [
345
+ "conv_op",
346
+ "norm_op",
347
+ "dropout_op",
348
+ "nonlin"
349
+ ]
350
+ },
351
+ "batch_dice": false,
352
+ "next_stage": "3d_cascade_fullres"
353
+ },
354
+ "3d_fullres": {
355
+ "data_identifier": "nnUNetPlans_3d_fullres",
356
+ "preprocessor_name": "DefaultPreprocessor",
357
+ "batch_size": 2,
358
+ "patch_size": [
359
+ 160,
360
+ 224,
361
+ 192
362
+ ],
363
+ "median_image_size_in_voxels": [
364
+ 512.0,
365
+ 613.0,
366
+ 513.0
367
+ ],
368
+ "spacing": [
369
+ 0.7109375,
370
+ 0.5,
371
+ 0.7109375
372
+ ],
373
+ "normalization_schemes": [
374
+ "CTNormalization"
375
+ ],
376
+ "use_mask_for_norm": [
377
+ false
378
+ ],
379
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
380
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
381
+ "resampling_fn_data_kwargs": {
382
+ "is_seg": false,
383
+ "order": 3,
384
+ "order_z": 0,
385
+ "force_separate_z": null
386
+ },
387
+ "resampling_fn_seg_kwargs": {
388
+ "is_seg": true,
389
+ "order": 1,
390
+ "order_z": 0,
391
+ "force_separate_z": null
392
+ },
393
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
394
+ "resampling_fn_probabilities_kwargs": {
395
+ "is_seg": false,
396
+ "order": 1,
397
+ "order_z": 0,
398
+ "force_separate_z": null
399
+ },
400
+ "architecture": {
401
+ "network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
402
+ "arch_kwargs": {
403
+ "n_stages": 6,
404
+ "features_per_stage": [
405
+ 32,
406
+ 64,
407
+ 128,
408
+ 256,
409
+ 320,
410
+ 320
411
+ ],
412
+ "conv_op": "torch.nn.modules.conv.Conv3d",
413
+ "kernel_sizes": [
414
+ [
415
+ 3,
416
+ 3,
417
+ 3
418
+ ],
419
+ [
420
+ 3,
421
+ 3,
422
+ 3
423
+ ],
424
+ [
425
+ 3,
426
+ 3,
427
+ 3
428
+ ],
429
+ [
430
+ 3,
431
+ 3,
432
+ 3
433
+ ],
434
+ [
435
+ 3,
436
+ 3,
437
+ 3
438
+ ],
439
+ [
440
+ 3,
441
+ 3,
442
+ 3
443
+ ]
444
+ ],
445
+ "strides": [
446
+ [
447
+ 1,
448
+ 1,
449
+ 1
450
+ ],
451
+ [
452
+ 2,
453
+ 2,
454
+ 2
455
+ ],
456
+ [
457
+ 2,
458
+ 2,
459
+ 2
460
+ ],
461
+ [
462
+ 2,
463
+ 2,
464
+ 2
465
+ ],
466
+ [
467
+ 2,
468
+ 2,
469
+ 2
470
+ ],
471
+ [
472
+ 2,
473
+ 2,
474
+ 2
475
+ ]
476
+ ],
477
+ "n_blocks_per_stage": [
478
+ 1,
479
+ 3,
480
+ 4,
481
+ 6,
482
+ 6,
483
+ 6
484
+ ],
485
+ "n_conv_per_stage_decoder": [
486
+ 1,
487
+ 1,
488
+ 1,
489
+ 1,
490
+ 1
491
+ ],
492
+ "conv_bias": true,
493
+ "norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
494
+ "norm_op_kwargs": {
495
+ "eps": 1e-05,
496
+ "affine": true
497
+ },
498
+ "dropout_op": null,
499
+ "dropout_op_kwargs": null,
500
+ "nonlin": "torch.nn.LeakyReLU",
501
+ "nonlin_kwargs": {
502
+ "inplace": true
503
+ }
504
+ },
505
+ "_kw_requires_import": [
506
+ "conv_op",
507
+ "norm_op",
508
+ "dropout_op",
509
+ "nonlin"
510
+ ]
511
+ },
512
+ "batch_dice": true
513
+ },
514
+ "3d_cascade_fullres": {
515
+ "inherits_from": "3d_fullres",
516
+ "previous_stage": "3d_lowres"
517
+ }
518
+ },
519
+ "experiment_planner_used": "nnUNetPlannerResEncL",
520
+ "label_manager": "LabelManager",
521
+ "foreground_intensity_properties_per_channel": {
522
+ "0": {
523
+ "max": 1000.0,
524
+ "mean": 39.68027877807617,
525
+ "median": 71.0,
526
+ "min": -1000.0,
527
+ "percentile_00_5": -1000.0,
528
+ "percentile_99_5": 379.0,
529
+ "std": 192.4669952392578
530
+ }
531
+ }
532
+ }