Add files using upload-large-folder tool
Browse files- .gitattributes +2 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset.json +34 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset_fingerprint.json +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/.DS_Store +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_best.pth +3 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_final.pth +3 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/debug.json +53 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png +3 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_11_10_22_36_21.txt +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/plans.json +532 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset.json +34 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/.DS_Store +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_best.pth +3 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_final.pth +3 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/debug.json +53 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png +3 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_10_28_22_51_12.txt +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_08_36_18.txt +26 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_10_13_43.txt +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_7_21_08_06.txt +0 -0
- Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/plans.json +532 -0
.gitattributes
CHANGED
|
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png filter=lfs diff=lfs merge=lfs -text
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "JHH-Train-test",
|
| 3 |
+
"description": "3151 cases for training; 1958 cases for testing",
|
| 4 |
+
"reference": "ScaleMAI",
|
| 5 |
+
"licence": "CC-BY-SA 4.0",
|
| 6 |
+
"relase": "1.0 10/28/2024",
|
| 7 |
+
"tensorImageSize": "3D",
|
| 8 |
+
"labels": {
|
| 9 |
+
"background": 0,
|
| 10 |
+
"aorta": 1,
|
| 11 |
+
"adrenal_gland_left": 2,
|
| 12 |
+
"adrenal_gland_right": 3,
|
| 13 |
+
"celiac_aa": 4,
|
| 14 |
+
"colon": 5,
|
| 15 |
+
"duodenum": 6,
|
| 16 |
+
"gall_bladder": 7,
|
| 17 |
+
"postcava": 8,
|
| 18 |
+
"kidney_left": 9,
|
| 19 |
+
"kidney_right": 10,
|
| 20 |
+
"liver": 11,
|
| 21 |
+
"pancreas": 12,
|
| 22 |
+
"superior_mesenteric_artery": 13,
|
| 23 |
+
"intestine": 14,
|
| 24 |
+
"spleen": 15,
|
| 25 |
+
"renal_vein_left": 16,
|
| 26 |
+
"renal_vein_right": 17
|
| 27 |
+
},
|
| 28 |
+
"numTraining": 3151,
|
| 29 |
+
"numTest": 1958,
|
| 30 |
+
"file_ending": ".nii.gz",
|
| 31 |
+
"channel_names": {
|
| 32 |
+
"0": "CT"
|
| 33 |
+
}
|
| 34 |
+
}
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/dataset_fingerprint.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54a721b665bc283aefb9aad70ecc34f773fb703b149e3cbe67280fbbe68ad1f9
|
| 3 |
+
size 1122159090
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/checkpoint_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84df811db038623efb6cb3993e5271f688d2b57ab44a9ec45a545acf7f418a38
|
| 3 |
+
size 1122162406
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/debug.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_best_ema": "None",
|
| 3 |
+
"batch_size": "22",
|
| 4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
|
| 5 |
+
"configuration_name": "2d",
|
| 6 |
+
"cudnn_version": 90100,
|
| 7 |
+
"current_epoch": "0",
|
| 8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7fe6c1af0970>",
|
| 9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7fe6c1af0280>",
|
| 10 |
+
"dataloader_train.num_processes": "12",
|
| 11 |
+
"dataloader_train.transform": "None",
|
| 12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7fe6c1af0a00>",
|
| 13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7fe6c1af02e0>",
|
| 14 |
+
"dataloader_val.num_processes": "6",
|
| 15 |
+
"dataloader_val.transform": "None",
|
| 16 |
+
"dataset_json": "{'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}",
|
| 17 |
+
"device": "cuda:0",
|
| 18 |
+
"disable_checkpointing": "False",
|
| 19 |
+
"enable_deep_supervision": "True",
|
| 20 |
+
"fold": "all",
|
| 21 |
+
"folder_with_segs_from_previous_stage": "None",
|
| 22 |
+
"gpu_name": "NVIDIA TITAN RTX",
|
| 23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe6c1b8af70>",
|
| 24 |
+
"hostname": "ccvl18",
|
| 25 |
+
"inference_allowed_mirroring_axes": "(0, 1)",
|
| 26 |
+
"initial_lr": "0.01",
|
| 27 |
+
"is_cascaded": "False",
|
| 28 |
+
"is_ddp": "False",
|
| 29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe796922f40>",
|
| 30 |
+
"local_rank": "0",
|
| 31 |
+
"log_file": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_11_10_22_36_21.txt",
|
| 32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe6c1b8aeb0>",
|
| 33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
| 34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe6b7f10f40>",
|
| 35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}, 'configuration': '2d', 'fold': 'all', 'dataset_json': {'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
| 36 |
+
"network": "OptimizedModule",
|
| 37 |
+
"num_epochs": "1000",
|
| 38 |
+
"num_input_channels": "1",
|
| 39 |
+
"num_iterations_per_epoch": "250",
|
| 40 |
+
"num_val_iterations_per_epoch": "50",
|
| 41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
| 42 |
+
"output_folder": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all",
|
| 43 |
+
"output_folder_base": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d",
|
| 44 |
+
"oversample_foreground_percent": "0.33",
|
| 45 |
+
"plans_manager": "{'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}",
|
| 46 |
+
"preprocessed_dataset_folder": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17/nnUNetPlans_2d",
|
| 47 |
+
"preprocessed_dataset_folder_base": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17",
|
| 48 |
+
"save_every": "50",
|
| 49 |
+
"torch_version": "2.4.0+cu121",
|
| 50 |
+
"unpack_dataset": "True",
|
| 51 |
+
"was_initialized": "True",
|
| 52 |
+
"weight_decay": "3e-05"
|
| 53 |
+
}
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/progress.png
ADDED
|
Git LFS Details
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/fold_all/training_log_2025_11_10_22_36_21.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__2d/plans.json
ADDED
|
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dataset_name": "Dataset809_AbdomenAtlasF17",
|
| 3 |
+
"plans_name": "nnUNetResEncUNetLPlans",
|
| 4 |
+
"original_median_spacing_after_transp": [
|
| 5 |
+
0.7109375,
|
| 6 |
+
0.5,
|
| 7 |
+
0.7109375
|
| 8 |
+
],
|
| 9 |
+
"original_median_shape_after_transp": [
|
| 10 |
+
512,
|
| 11 |
+
608,
|
| 12 |
+
512
|
| 13 |
+
],
|
| 14 |
+
"image_reader_writer": "SimpleITKIO",
|
| 15 |
+
"transpose_forward": [
|
| 16 |
+
1,
|
| 17 |
+
0,
|
| 18 |
+
2
|
| 19 |
+
],
|
| 20 |
+
"transpose_backward": [
|
| 21 |
+
1,
|
| 22 |
+
0,
|
| 23 |
+
2
|
| 24 |
+
],
|
| 25 |
+
"configurations": {
|
| 26 |
+
"2d": {
|
| 27 |
+
"data_identifier": "nnUNetPlans_2d",
|
| 28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 29 |
+
"batch_size": 22,
|
| 30 |
+
"patch_size": [
|
| 31 |
+
640,
|
| 32 |
+
640
|
| 33 |
+
],
|
| 34 |
+
"median_image_size_in_voxels": [
|
| 35 |
+
613.0,
|
| 36 |
+
513.0
|
| 37 |
+
],
|
| 38 |
+
"spacing": [
|
| 39 |
+
0.5,
|
| 40 |
+
0.7109375
|
| 41 |
+
],
|
| 42 |
+
"normalization_schemes": [
|
| 43 |
+
"CTNormalization"
|
| 44 |
+
],
|
| 45 |
+
"use_mask_for_norm": [
|
| 46 |
+
false
|
| 47 |
+
],
|
| 48 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 49 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 50 |
+
"resampling_fn_data_kwargs": {
|
| 51 |
+
"is_seg": false,
|
| 52 |
+
"order": 3,
|
| 53 |
+
"order_z": 0,
|
| 54 |
+
"force_separate_z": null
|
| 55 |
+
},
|
| 56 |
+
"resampling_fn_seg_kwargs": {
|
| 57 |
+
"is_seg": true,
|
| 58 |
+
"order": 1,
|
| 59 |
+
"order_z": 0,
|
| 60 |
+
"force_separate_z": null
|
| 61 |
+
},
|
| 62 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 63 |
+
"resampling_fn_probabilities_kwargs": {
|
| 64 |
+
"is_seg": false,
|
| 65 |
+
"order": 1,
|
| 66 |
+
"order_z": 0,
|
| 67 |
+
"force_separate_z": null
|
| 68 |
+
},
|
| 69 |
+
"architecture": {
|
| 70 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 71 |
+
"arch_kwargs": {
|
| 72 |
+
"n_stages": 8,
|
| 73 |
+
"features_per_stage": [
|
| 74 |
+
32,
|
| 75 |
+
64,
|
| 76 |
+
128,
|
| 77 |
+
256,
|
| 78 |
+
512,
|
| 79 |
+
512,
|
| 80 |
+
512,
|
| 81 |
+
512
|
| 82 |
+
],
|
| 83 |
+
"conv_op": "torch.nn.modules.conv.Conv2d",
|
| 84 |
+
"kernel_sizes": [
|
| 85 |
+
[
|
| 86 |
+
3,
|
| 87 |
+
3
|
| 88 |
+
],
|
| 89 |
+
[
|
| 90 |
+
3,
|
| 91 |
+
3
|
| 92 |
+
],
|
| 93 |
+
[
|
| 94 |
+
3,
|
| 95 |
+
3
|
| 96 |
+
],
|
| 97 |
+
[
|
| 98 |
+
3,
|
| 99 |
+
3
|
| 100 |
+
],
|
| 101 |
+
[
|
| 102 |
+
3,
|
| 103 |
+
3
|
| 104 |
+
],
|
| 105 |
+
[
|
| 106 |
+
3,
|
| 107 |
+
3
|
| 108 |
+
],
|
| 109 |
+
[
|
| 110 |
+
3,
|
| 111 |
+
3
|
| 112 |
+
],
|
| 113 |
+
[
|
| 114 |
+
3,
|
| 115 |
+
3
|
| 116 |
+
]
|
| 117 |
+
],
|
| 118 |
+
"strides": [
|
| 119 |
+
[
|
| 120 |
+
1,
|
| 121 |
+
1
|
| 122 |
+
],
|
| 123 |
+
[
|
| 124 |
+
2,
|
| 125 |
+
2
|
| 126 |
+
],
|
| 127 |
+
[
|
| 128 |
+
2,
|
| 129 |
+
2
|
| 130 |
+
],
|
| 131 |
+
[
|
| 132 |
+
2,
|
| 133 |
+
2
|
| 134 |
+
],
|
| 135 |
+
[
|
| 136 |
+
2,
|
| 137 |
+
2
|
| 138 |
+
],
|
| 139 |
+
[
|
| 140 |
+
2,
|
| 141 |
+
2
|
| 142 |
+
],
|
| 143 |
+
[
|
| 144 |
+
2,
|
| 145 |
+
2
|
| 146 |
+
],
|
| 147 |
+
[
|
| 148 |
+
2,
|
| 149 |
+
2
|
| 150 |
+
]
|
| 151 |
+
],
|
| 152 |
+
"n_blocks_per_stage": [
|
| 153 |
+
1,
|
| 154 |
+
3,
|
| 155 |
+
4,
|
| 156 |
+
6,
|
| 157 |
+
6,
|
| 158 |
+
6,
|
| 159 |
+
6,
|
| 160 |
+
6
|
| 161 |
+
],
|
| 162 |
+
"n_conv_per_stage_decoder": [
|
| 163 |
+
1,
|
| 164 |
+
1,
|
| 165 |
+
1,
|
| 166 |
+
1,
|
| 167 |
+
1,
|
| 168 |
+
1,
|
| 169 |
+
1
|
| 170 |
+
],
|
| 171 |
+
"conv_bias": true,
|
| 172 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
|
| 173 |
+
"norm_op_kwargs": {
|
| 174 |
+
"eps": 1e-05,
|
| 175 |
+
"affine": true
|
| 176 |
+
},
|
| 177 |
+
"dropout_op": null,
|
| 178 |
+
"dropout_op_kwargs": null,
|
| 179 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 180 |
+
"nonlin_kwargs": {
|
| 181 |
+
"inplace": true
|
| 182 |
+
}
|
| 183 |
+
},
|
| 184 |
+
"_kw_requires_import": [
|
| 185 |
+
"conv_op",
|
| 186 |
+
"norm_op",
|
| 187 |
+
"dropout_op",
|
| 188 |
+
"nonlin"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
"batch_dice": true
|
| 192 |
+
},
|
| 193 |
+
"3d_lowres": {
|
| 194 |
+
"data_identifier": "nnUNetResEncUNetLPlans_3d_lowres",
|
| 195 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 196 |
+
"batch_size": 2,
|
| 197 |
+
"patch_size": [
|
| 198 |
+
160,
|
| 199 |
+
224,
|
| 200 |
+
192
|
| 201 |
+
],
|
| 202 |
+
"median_image_size_in_voxels": [
|
| 203 |
+
283,
|
| 204 |
+
339,
|
| 205 |
+
284
|
| 206 |
+
],
|
| 207 |
+
"spacing": [
|
| 208 |
+
1.284032205897787,
|
| 209 |
+
0.9030556173347075,
|
| 210 |
+
1.284032205897787
|
| 211 |
+
],
|
| 212 |
+
"normalization_schemes": [
|
| 213 |
+
"CTNormalization"
|
| 214 |
+
],
|
| 215 |
+
"use_mask_for_norm": [
|
| 216 |
+
false
|
| 217 |
+
],
|
| 218 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 219 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 220 |
+
"resampling_fn_data_kwargs": {
|
| 221 |
+
"is_seg": false,
|
| 222 |
+
"order": 3,
|
| 223 |
+
"order_z": 0,
|
| 224 |
+
"force_separate_z": null
|
| 225 |
+
},
|
| 226 |
+
"resampling_fn_seg_kwargs": {
|
| 227 |
+
"is_seg": true,
|
| 228 |
+
"order": 1,
|
| 229 |
+
"order_z": 0,
|
| 230 |
+
"force_separate_z": null
|
| 231 |
+
},
|
| 232 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 233 |
+
"resampling_fn_probabilities_kwargs": {
|
| 234 |
+
"is_seg": false,
|
| 235 |
+
"order": 1,
|
| 236 |
+
"order_z": 0,
|
| 237 |
+
"force_separate_z": null
|
| 238 |
+
},
|
| 239 |
+
"architecture": {
|
| 240 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 241 |
+
"arch_kwargs": {
|
| 242 |
+
"n_stages": 6,
|
| 243 |
+
"features_per_stage": [
|
| 244 |
+
32,
|
| 245 |
+
64,
|
| 246 |
+
128,
|
| 247 |
+
256,
|
| 248 |
+
320,
|
| 249 |
+
320
|
| 250 |
+
],
|
| 251 |
+
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 252 |
+
"kernel_sizes": [
|
| 253 |
+
[
|
| 254 |
+
3,
|
| 255 |
+
3,
|
| 256 |
+
3
|
| 257 |
+
],
|
| 258 |
+
[
|
| 259 |
+
3,
|
| 260 |
+
3,
|
| 261 |
+
3
|
| 262 |
+
],
|
| 263 |
+
[
|
| 264 |
+
3,
|
| 265 |
+
3,
|
| 266 |
+
3
|
| 267 |
+
],
|
| 268 |
+
[
|
| 269 |
+
3,
|
| 270 |
+
3,
|
| 271 |
+
3
|
| 272 |
+
],
|
| 273 |
+
[
|
| 274 |
+
3,
|
| 275 |
+
3,
|
| 276 |
+
3
|
| 277 |
+
],
|
| 278 |
+
[
|
| 279 |
+
3,
|
| 280 |
+
3,
|
| 281 |
+
3
|
| 282 |
+
]
|
| 283 |
+
],
|
| 284 |
+
"strides": [
|
| 285 |
+
[
|
| 286 |
+
1,
|
| 287 |
+
1,
|
| 288 |
+
1
|
| 289 |
+
],
|
| 290 |
+
[
|
| 291 |
+
2,
|
| 292 |
+
2,
|
| 293 |
+
2
|
| 294 |
+
],
|
| 295 |
+
[
|
| 296 |
+
2,
|
| 297 |
+
2,
|
| 298 |
+
2
|
| 299 |
+
],
|
| 300 |
+
[
|
| 301 |
+
2,
|
| 302 |
+
2,
|
| 303 |
+
2
|
| 304 |
+
],
|
| 305 |
+
[
|
| 306 |
+
2,
|
| 307 |
+
2,
|
| 308 |
+
2
|
| 309 |
+
],
|
| 310 |
+
[
|
| 311 |
+
2,
|
| 312 |
+
2,
|
| 313 |
+
2
|
| 314 |
+
]
|
| 315 |
+
],
|
| 316 |
+
"n_blocks_per_stage": [
|
| 317 |
+
1,
|
| 318 |
+
3,
|
| 319 |
+
4,
|
| 320 |
+
6,
|
| 321 |
+
6,
|
| 322 |
+
6
|
| 323 |
+
],
|
| 324 |
+
"n_conv_per_stage_decoder": [
|
| 325 |
+
1,
|
| 326 |
+
1,
|
| 327 |
+
1,
|
| 328 |
+
1,
|
| 329 |
+
1
|
| 330 |
+
],
|
| 331 |
+
"conv_bias": true,
|
| 332 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 333 |
+
"norm_op_kwargs": {
|
| 334 |
+
"eps": 1e-05,
|
| 335 |
+
"affine": true
|
| 336 |
+
},
|
| 337 |
+
"dropout_op": null,
|
| 338 |
+
"dropout_op_kwargs": null,
|
| 339 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 340 |
+
"nonlin_kwargs": {
|
| 341 |
+
"inplace": true
|
| 342 |
+
}
|
| 343 |
+
},
|
| 344 |
+
"_kw_requires_import": [
|
| 345 |
+
"conv_op",
|
| 346 |
+
"norm_op",
|
| 347 |
+
"dropout_op",
|
| 348 |
+
"nonlin"
|
| 349 |
+
]
|
| 350 |
+
},
|
| 351 |
+
"batch_dice": false,
|
| 352 |
+
"next_stage": "3d_cascade_fullres"
|
| 353 |
+
},
|
| 354 |
+
"3d_fullres": {
|
| 355 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
| 356 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 357 |
+
"batch_size": 2,
|
| 358 |
+
"patch_size": [
|
| 359 |
+
160,
|
| 360 |
+
224,
|
| 361 |
+
192
|
| 362 |
+
],
|
| 363 |
+
"median_image_size_in_voxels": [
|
| 364 |
+
512.0,
|
| 365 |
+
613.0,
|
| 366 |
+
513.0
|
| 367 |
+
],
|
| 368 |
+
"spacing": [
|
| 369 |
+
0.7109375,
|
| 370 |
+
0.5,
|
| 371 |
+
0.7109375
|
| 372 |
+
],
|
| 373 |
+
"normalization_schemes": [
|
| 374 |
+
"CTNormalization"
|
| 375 |
+
],
|
| 376 |
+
"use_mask_for_norm": [
|
| 377 |
+
false
|
| 378 |
+
],
|
| 379 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 380 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 381 |
+
"resampling_fn_data_kwargs": {
|
| 382 |
+
"is_seg": false,
|
| 383 |
+
"order": 3,
|
| 384 |
+
"order_z": 0,
|
| 385 |
+
"force_separate_z": null
|
| 386 |
+
},
|
| 387 |
+
"resampling_fn_seg_kwargs": {
|
| 388 |
+
"is_seg": true,
|
| 389 |
+
"order": 1,
|
| 390 |
+
"order_z": 0,
|
| 391 |
+
"force_separate_z": null
|
| 392 |
+
},
|
| 393 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 394 |
+
"resampling_fn_probabilities_kwargs": {
|
| 395 |
+
"is_seg": false,
|
| 396 |
+
"order": 1,
|
| 397 |
+
"order_z": 0,
|
| 398 |
+
"force_separate_z": null
|
| 399 |
+
},
|
| 400 |
+
"architecture": {
|
| 401 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 402 |
+
"arch_kwargs": {
|
| 403 |
+
"n_stages": 6,
|
| 404 |
+
"features_per_stage": [
|
| 405 |
+
32,
|
| 406 |
+
64,
|
| 407 |
+
128,
|
| 408 |
+
256,
|
| 409 |
+
320,
|
| 410 |
+
320
|
| 411 |
+
],
|
| 412 |
+
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 413 |
+
"kernel_sizes": [
|
| 414 |
+
[
|
| 415 |
+
3,
|
| 416 |
+
3,
|
| 417 |
+
3
|
| 418 |
+
],
|
| 419 |
+
[
|
| 420 |
+
3,
|
| 421 |
+
3,
|
| 422 |
+
3
|
| 423 |
+
],
|
| 424 |
+
[
|
| 425 |
+
3,
|
| 426 |
+
3,
|
| 427 |
+
3
|
| 428 |
+
],
|
| 429 |
+
[
|
| 430 |
+
3,
|
| 431 |
+
3,
|
| 432 |
+
3
|
| 433 |
+
],
|
| 434 |
+
[
|
| 435 |
+
3,
|
| 436 |
+
3,
|
| 437 |
+
3
|
| 438 |
+
],
|
| 439 |
+
[
|
| 440 |
+
3,
|
| 441 |
+
3,
|
| 442 |
+
3
|
| 443 |
+
]
|
| 444 |
+
],
|
| 445 |
+
"strides": [
|
| 446 |
+
[
|
| 447 |
+
1,
|
| 448 |
+
1,
|
| 449 |
+
1
|
| 450 |
+
],
|
| 451 |
+
[
|
| 452 |
+
2,
|
| 453 |
+
2,
|
| 454 |
+
2
|
| 455 |
+
],
|
| 456 |
+
[
|
| 457 |
+
2,
|
| 458 |
+
2,
|
| 459 |
+
2
|
| 460 |
+
],
|
| 461 |
+
[
|
| 462 |
+
2,
|
| 463 |
+
2,
|
| 464 |
+
2
|
| 465 |
+
],
|
| 466 |
+
[
|
| 467 |
+
2,
|
| 468 |
+
2,
|
| 469 |
+
2
|
| 470 |
+
],
|
| 471 |
+
[
|
| 472 |
+
2,
|
| 473 |
+
2,
|
| 474 |
+
2
|
| 475 |
+
]
|
| 476 |
+
],
|
| 477 |
+
"n_blocks_per_stage": [
|
| 478 |
+
1,
|
| 479 |
+
3,
|
| 480 |
+
4,
|
| 481 |
+
6,
|
| 482 |
+
6,
|
| 483 |
+
6
|
| 484 |
+
],
|
| 485 |
+
"n_conv_per_stage_decoder": [
|
| 486 |
+
1,
|
| 487 |
+
1,
|
| 488 |
+
1,
|
| 489 |
+
1,
|
| 490 |
+
1
|
| 491 |
+
],
|
| 492 |
+
"conv_bias": true,
|
| 493 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 494 |
+
"norm_op_kwargs": {
|
| 495 |
+
"eps": 1e-05,
|
| 496 |
+
"affine": true
|
| 497 |
+
},
|
| 498 |
+
"dropout_op": null,
|
| 499 |
+
"dropout_op_kwargs": null,
|
| 500 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 501 |
+
"nonlin_kwargs": {
|
| 502 |
+
"inplace": true
|
| 503 |
+
}
|
| 504 |
+
},
|
| 505 |
+
"_kw_requires_import": [
|
| 506 |
+
"conv_op",
|
| 507 |
+
"norm_op",
|
| 508 |
+
"dropout_op",
|
| 509 |
+
"nonlin"
|
| 510 |
+
]
|
| 511 |
+
},
|
| 512 |
+
"batch_dice": true
|
| 513 |
+
},
|
| 514 |
+
"3d_cascade_fullres": {
|
| 515 |
+
"inherits_from": "3d_fullres",
|
| 516 |
+
"previous_stage": "3d_lowres"
|
| 517 |
+
}
|
| 518 |
+
},
|
| 519 |
+
"experiment_planner_used": "nnUNetPlannerResEncL",
|
| 520 |
+
"label_manager": "LabelManager",
|
| 521 |
+
"foreground_intensity_properties_per_channel": {
|
| 522 |
+
"0": {
|
| 523 |
+
"max": 1000.0,
|
| 524 |
+
"mean": 39.68027877807617,
|
| 525 |
+
"median": 71.0,
|
| 526 |
+
"min": -1000.0,
|
| 527 |
+
"percentile_00_5": -1000.0,
|
| 528 |
+
"percentile_99_5": 379.0,
|
| 529 |
+
"std": 192.4669952392578
|
| 530 |
+
}
|
| 531 |
+
}
|
| 532 |
+
}
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "JHH-Train-test",
|
| 3 |
+
"description": "3151 cases for training; 1958 cases for testing",
|
| 4 |
+
"reference": "ScaleMAI",
|
| 5 |
+
"licence": "CC-BY-SA 4.0",
|
| 6 |
+
"relase": "1.0 10/28/2024",
|
| 7 |
+
"tensorImageSize": "3D",
|
| 8 |
+
"labels": {
|
| 9 |
+
"background": 0,
|
| 10 |
+
"aorta": 1,
|
| 11 |
+
"adrenal_gland_left": 2,
|
| 12 |
+
"adrenal_gland_right": 3,
|
| 13 |
+
"celiac_aa": 4,
|
| 14 |
+
"colon": 5,
|
| 15 |
+
"duodenum": 6,
|
| 16 |
+
"gall_bladder": 7,
|
| 17 |
+
"postcava": 8,
|
| 18 |
+
"kidney_left": 9,
|
| 19 |
+
"kidney_right": 10,
|
| 20 |
+
"liver": 11,
|
| 21 |
+
"pancreas": 12,
|
| 22 |
+
"superior_mesenteric_artery": 13,
|
| 23 |
+
"intestine": 14,
|
| 24 |
+
"spleen": 15,
|
| 25 |
+
"renal_vein_left": 16,
|
| 26 |
+
"renal_vein_right": 17
|
| 27 |
+
},
|
| 28 |
+
"numTraining": 3151,
|
| 29 |
+
"numTest": 1958,
|
| 30 |
+
"file_ending": ".nii.gz",
|
| 31 |
+
"channel_names": {
|
| 32 |
+
"0": "CT"
|
| 33 |
+
}
|
| 34 |
+
}
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/dataset_fingerprint.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_best.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2c5c78b5a40289b05ad8051f385d4b01ea61ead3b48dfadc302d2387a06d50a
|
| 3 |
+
size 820518770
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/checkpoint_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e59f75679e8f119a3ff67bd3c86f34ac005bc687d4875bc59b7e878259e36582
|
| 3 |
+
size 820526982
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/debug.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_best_ema": "0.80715364",
|
| 3 |
+
"batch_size": "2",
|
| 4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
|
| 5 |
+
"configuration_name": "3d_fullres",
|
| 6 |
+
"cudnn_version": 90100,
|
| 7 |
+
"current_epoch": "900",
|
| 8 |
+
"dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7f8cb1b4f820>",
|
| 9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8cb1b4faf0>",
|
| 10 |
+
"dataloader_train.num_processes": "12",
|
| 11 |
+
"dataloader_train.transform": "None",
|
| 12 |
+
"dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0x7f8cb1b4f0a0>",
|
| 13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8cb1b4f9d0>",
|
| 14 |
+
"dataloader_val.num_processes": "6",
|
| 15 |
+
"dataloader_val.transform": "None",
|
| 16 |
+
"dataset_json": "{'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}",
|
| 17 |
+
"device": "cuda:0",
|
| 18 |
+
"disable_checkpointing": "False",
|
| 19 |
+
"enable_deep_supervision": "True",
|
| 20 |
+
"fold": "all",
|
| 21 |
+
"folder_with_segs_from_previous_stage": "None",
|
| 22 |
+
"gpu_name": "NVIDIA TITAN RTX",
|
| 23 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f8cc357cf70>",
|
| 24 |
+
"hostname": "ccvl18",
|
| 25 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
| 26 |
+
"initial_lr": "0.01",
|
| 27 |
+
"is_cascaded": "False",
|
| 28 |
+
"is_ddp": "False",
|
| 29 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f8d983884f0>",
|
| 30 |
+
"local_rank": "0",
|
| 31 |
+
"log_file": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_7_21_08_06.txt",
|
| 32 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f8cc3586c70>",
|
| 33 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
|
| 34 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f8cb92fb1f0>",
|
| 35 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}, 'configuration': '3d_fullres', 'fold': 'all', 'dataset_json': {'name': 'JHH-Train-test', 'description': '3151 cases for training; 1958 cases for testing', 'reference': 'ScaleMAI', 'licence': 'CC-BY-SA 4.0', 'relase': '1.0 10/28/2024', 'tensorImageSize': '3D', 'labels': {'background': 0, 'aorta': 1, 'adrenal_gland_left': 2, 'adrenal_gland_right': 3, 'celiac_aa': 4, 'colon': 5, 'duodenum': 6, 'gall_bladder': 7, 'postcava': 8, 'kidney_left': 9, 'kidney_right': 10, 'liver': 11, 'pancreas': 12, 'superior_mesenteric_artery': 13, 'intestine': 14, 'spleen': 15, 'renal_vein_left': 16, 'renal_vein_right': 17}, 'numTraining': 3151, 'numTest': 1958, 'file_ending': '.nii.gz', 'channel_names': {'0': 'CT'}}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
| 36 |
+
"network": "OptimizedModule",
|
| 37 |
+
"num_epochs": "1000",
|
| 38 |
+
"num_input_channels": "1",
|
| 39 |
+
"num_iterations_per_epoch": "250",
|
| 40 |
+
"num_val_iterations_per_epoch": "50",
|
| 41 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.0012702500959998477\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
| 42 |
+
"output_folder": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all",
|
| 43 |
+
"output_folder_base": "/mnt/T9/tlin67/nnUNet_results/Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres",
|
| 44 |
+
"oversample_foreground_percent": "0.33",
|
| 45 |
+
"plans_manager": "{'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 22, 'patch_size': [640, 640], 'median_image_size_in_voxels': [613.0, 513.0], 'spacing': [0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetResEncUNetLPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [283, 339, 284], 'spacing': [1.284032205897787, 0.9030556173347075, 1.284032205897787], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}",
|
| 46 |
+
"preprocessed_dataset_folder": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17/nnUNetPlans_3d_fullres",
|
| 47 |
+
"preprocessed_dataset_folder_base": "/mnt/T9/tlin67/Dataset_preprocessed/Dataset809_AbdomenAtlasF17",
|
| 48 |
+
"save_every": "50",
|
| 49 |
+
"torch_version": "2.4.0+cu121",
|
| 50 |
+
"unpack_dataset": "True",
|
| 51 |
+
"was_initialized": "True",
|
| 52 |
+
"weight_decay": "3e-05"
|
| 53 |
+
}
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/progress.png
ADDED
|
Git LFS Details
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_10_28_22_51_12.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_08_36_18.txt
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
#######################################################################
|
| 3 |
+
Please cite the following paper when using nnU-Net:
|
| 4 |
+
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
|
| 5 |
+
#######################################################################
|
| 6 |
+
|
| 7 |
+
2025-11-01 08:36:24.398811: Using torch.compile...
|
| 8 |
+
2025-11-01 08:36:45.052451: do_dummy_2d_data_aug: False
|
| 9 |
+
|
| 10 |
+
This is the configuration used by this training:
|
| 11 |
+
Configuration name: 3d_fullres
|
| 12 |
+
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [160, 224, 192], 'median_image_size_in_voxels': [512.0, 613.0, 513.0], 'spacing': [0.7109375, 0.5, 0.7109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.ResidualEncoderUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_blocks_per_stage': [1, 3, 4, 6, 6, 6], 'n_conv_per_stage_decoder': [1, 1, 1, 1, 1], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}
|
| 13 |
+
|
| 14 |
+
These are the global plan.json settings:
|
| 15 |
+
{'dataset_name': 'Dataset809_AbdomenAtlasF17', 'plans_name': 'nnUNetResEncUNetLPlans', 'original_median_spacing_after_transp': [0.7109375, 0.5, 0.7109375], 'original_median_shape_after_transp': [512, 608, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'experiment_planner_used': 'nnUNetPlannerResEncL', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1000.0, 'mean': 39.68027877807617, 'median': 71.0, 'min': -1000.0, 'percentile_00_5': -1000.0, 'percentile_99_5': 379.0, 'std': 192.4669952392578}}}
|
| 16 |
+
|
| 17 |
+
2025-11-01 08:37:17.108070: unpacking dataset...
|
| 18 |
+
2025-11-01 08:38:09.972894: unpacking done...
|
| 19 |
+
2025-11-01 08:38:09.995002: Unable to plot network architecture: nnUNet_compile is enabled!
|
| 20 |
+
2025-11-01 08:38:10.515083:
|
| 21 |
+
2025-11-01 08:38:10.517237: Epoch 450
|
| 22 |
+
2025-11-01 08:38:10.518909: Current learning rate: 0.00584
|
| 23 |
+
2025-11-01 08:55:58.583854: train_loss -0.4371
|
| 24 |
+
2025-11-01 08:55:58.605177: val_loss -0.4559
|
| 25 |
+
2025-11-01 08:55:58.606929: Pseudo dice [np.float32(0.9505), np.float32(0.7827), np.float32(0.7344), np.float32(0.675), np.float32(0.846), np.float32(0.7937), np.float32(0.8776), np.float32(0.8831), np.float32(0.9412), np.float32(0.9393), np.float32(0.9665), np.float32(0.85), np.float32(0.7965), np.float32(0.846), np.float32(0.9684), np.float32(0.2859), np.float32(0.2493)]
|
| 26 |
+
2025-11-01 08:55:58.608141: Epoch time: 1068.08 s
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_1_10_13_43.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/fold_all/training_log_2025_11_7_21_08_06.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Dataset809_AbdomenAtlasF17/nnUNetTrainer__nnUNetResEncUNetLPlans__3d_fullres/plans.json
ADDED
|
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dataset_name": "Dataset809_AbdomenAtlasF17",
|
| 3 |
+
"plans_name": "nnUNetResEncUNetLPlans",
|
| 4 |
+
"original_median_spacing_after_transp": [
|
| 5 |
+
0.7109375,
|
| 6 |
+
0.5,
|
| 7 |
+
0.7109375
|
| 8 |
+
],
|
| 9 |
+
"original_median_shape_after_transp": [
|
| 10 |
+
512,
|
| 11 |
+
608,
|
| 12 |
+
512
|
| 13 |
+
],
|
| 14 |
+
"image_reader_writer": "SimpleITKIO",
|
| 15 |
+
"transpose_forward": [
|
| 16 |
+
1,
|
| 17 |
+
0,
|
| 18 |
+
2
|
| 19 |
+
],
|
| 20 |
+
"transpose_backward": [
|
| 21 |
+
1,
|
| 22 |
+
0,
|
| 23 |
+
2
|
| 24 |
+
],
|
| 25 |
+
"configurations": {
|
| 26 |
+
"2d": {
|
| 27 |
+
"data_identifier": "nnUNetPlans_2d",
|
| 28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 29 |
+
"batch_size": 22,
|
| 30 |
+
"patch_size": [
|
| 31 |
+
640,
|
| 32 |
+
640
|
| 33 |
+
],
|
| 34 |
+
"median_image_size_in_voxels": [
|
| 35 |
+
613.0,
|
| 36 |
+
513.0
|
| 37 |
+
],
|
| 38 |
+
"spacing": [
|
| 39 |
+
0.5,
|
| 40 |
+
0.7109375
|
| 41 |
+
],
|
| 42 |
+
"normalization_schemes": [
|
| 43 |
+
"CTNormalization"
|
| 44 |
+
],
|
| 45 |
+
"use_mask_for_norm": [
|
| 46 |
+
false
|
| 47 |
+
],
|
| 48 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 49 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 50 |
+
"resampling_fn_data_kwargs": {
|
| 51 |
+
"is_seg": false,
|
| 52 |
+
"order": 3,
|
| 53 |
+
"order_z": 0,
|
| 54 |
+
"force_separate_z": null
|
| 55 |
+
},
|
| 56 |
+
"resampling_fn_seg_kwargs": {
|
| 57 |
+
"is_seg": true,
|
| 58 |
+
"order": 1,
|
| 59 |
+
"order_z": 0,
|
| 60 |
+
"force_separate_z": null
|
| 61 |
+
},
|
| 62 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 63 |
+
"resampling_fn_probabilities_kwargs": {
|
| 64 |
+
"is_seg": false,
|
| 65 |
+
"order": 1,
|
| 66 |
+
"order_z": 0,
|
| 67 |
+
"force_separate_z": null
|
| 68 |
+
},
|
| 69 |
+
"architecture": {
|
| 70 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 71 |
+
"arch_kwargs": {
|
| 72 |
+
"n_stages": 8,
|
| 73 |
+
"features_per_stage": [
|
| 74 |
+
32,
|
| 75 |
+
64,
|
| 76 |
+
128,
|
| 77 |
+
256,
|
| 78 |
+
512,
|
| 79 |
+
512,
|
| 80 |
+
512,
|
| 81 |
+
512
|
| 82 |
+
],
|
| 83 |
+
"conv_op": "torch.nn.modules.conv.Conv2d",
|
| 84 |
+
"kernel_sizes": [
|
| 85 |
+
[
|
| 86 |
+
3,
|
| 87 |
+
3
|
| 88 |
+
],
|
| 89 |
+
[
|
| 90 |
+
3,
|
| 91 |
+
3
|
| 92 |
+
],
|
| 93 |
+
[
|
| 94 |
+
3,
|
| 95 |
+
3
|
| 96 |
+
],
|
| 97 |
+
[
|
| 98 |
+
3,
|
| 99 |
+
3
|
| 100 |
+
],
|
| 101 |
+
[
|
| 102 |
+
3,
|
| 103 |
+
3
|
| 104 |
+
],
|
| 105 |
+
[
|
| 106 |
+
3,
|
| 107 |
+
3
|
| 108 |
+
],
|
| 109 |
+
[
|
| 110 |
+
3,
|
| 111 |
+
3
|
| 112 |
+
],
|
| 113 |
+
[
|
| 114 |
+
3,
|
| 115 |
+
3
|
| 116 |
+
]
|
| 117 |
+
],
|
| 118 |
+
"strides": [
|
| 119 |
+
[
|
| 120 |
+
1,
|
| 121 |
+
1
|
| 122 |
+
],
|
| 123 |
+
[
|
| 124 |
+
2,
|
| 125 |
+
2
|
| 126 |
+
],
|
| 127 |
+
[
|
| 128 |
+
2,
|
| 129 |
+
2
|
| 130 |
+
],
|
| 131 |
+
[
|
| 132 |
+
2,
|
| 133 |
+
2
|
| 134 |
+
],
|
| 135 |
+
[
|
| 136 |
+
2,
|
| 137 |
+
2
|
| 138 |
+
],
|
| 139 |
+
[
|
| 140 |
+
2,
|
| 141 |
+
2
|
| 142 |
+
],
|
| 143 |
+
[
|
| 144 |
+
2,
|
| 145 |
+
2
|
| 146 |
+
],
|
| 147 |
+
[
|
| 148 |
+
2,
|
| 149 |
+
2
|
| 150 |
+
]
|
| 151 |
+
],
|
| 152 |
+
"n_blocks_per_stage": [
|
| 153 |
+
1,
|
| 154 |
+
3,
|
| 155 |
+
4,
|
| 156 |
+
6,
|
| 157 |
+
6,
|
| 158 |
+
6,
|
| 159 |
+
6,
|
| 160 |
+
6
|
| 161 |
+
],
|
| 162 |
+
"n_conv_per_stage_decoder": [
|
| 163 |
+
1,
|
| 164 |
+
1,
|
| 165 |
+
1,
|
| 166 |
+
1,
|
| 167 |
+
1,
|
| 168 |
+
1,
|
| 169 |
+
1
|
| 170 |
+
],
|
| 171 |
+
"conv_bias": true,
|
| 172 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
|
| 173 |
+
"norm_op_kwargs": {
|
| 174 |
+
"eps": 1e-05,
|
| 175 |
+
"affine": true
|
| 176 |
+
},
|
| 177 |
+
"dropout_op": null,
|
| 178 |
+
"dropout_op_kwargs": null,
|
| 179 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 180 |
+
"nonlin_kwargs": {
|
| 181 |
+
"inplace": true
|
| 182 |
+
}
|
| 183 |
+
},
|
| 184 |
+
"_kw_requires_import": [
|
| 185 |
+
"conv_op",
|
| 186 |
+
"norm_op",
|
| 187 |
+
"dropout_op",
|
| 188 |
+
"nonlin"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
"batch_dice": true
|
| 192 |
+
},
|
| 193 |
+
"3d_lowres": {
|
| 194 |
+
"data_identifier": "nnUNetResEncUNetLPlans_3d_lowres",
|
| 195 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 196 |
+
"batch_size": 2,
|
| 197 |
+
"patch_size": [
|
| 198 |
+
160,
|
| 199 |
+
224,
|
| 200 |
+
192
|
| 201 |
+
],
|
| 202 |
+
"median_image_size_in_voxels": [
|
| 203 |
+
283,
|
| 204 |
+
339,
|
| 205 |
+
284
|
| 206 |
+
],
|
| 207 |
+
"spacing": [
|
| 208 |
+
1.284032205897787,
|
| 209 |
+
0.9030556173347075,
|
| 210 |
+
1.284032205897787
|
| 211 |
+
],
|
| 212 |
+
"normalization_schemes": [
|
| 213 |
+
"CTNormalization"
|
| 214 |
+
],
|
| 215 |
+
"use_mask_for_norm": [
|
| 216 |
+
false
|
| 217 |
+
],
|
| 218 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 219 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 220 |
+
"resampling_fn_data_kwargs": {
|
| 221 |
+
"is_seg": false,
|
| 222 |
+
"order": 3,
|
| 223 |
+
"order_z": 0,
|
| 224 |
+
"force_separate_z": null
|
| 225 |
+
},
|
| 226 |
+
"resampling_fn_seg_kwargs": {
|
| 227 |
+
"is_seg": true,
|
| 228 |
+
"order": 1,
|
| 229 |
+
"order_z": 0,
|
| 230 |
+
"force_separate_z": null
|
| 231 |
+
},
|
| 232 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 233 |
+
"resampling_fn_probabilities_kwargs": {
|
| 234 |
+
"is_seg": false,
|
| 235 |
+
"order": 1,
|
| 236 |
+
"order_z": 0,
|
| 237 |
+
"force_separate_z": null
|
| 238 |
+
},
|
| 239 |
+
"architecture": {
|
| 240 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 241 |
+
"arch_kwargs": {
|
| 242 |
+
"n_stages": 6,
|
| 243 |
+
"features_per_stage": [
|
| 244 |
+
32,
|
| 245 |
+
64,
|
| 246 |
+
128,
|
| 247 |
+
256,
|
| 248 |
+
320,
|
| 249 |
+
320
|
| 250 |
+
],
|
| 251 |
+
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 252 |
+
"kernel_sizes": [
|
| 253 |
+
[
|
| 254 |
+
3,
|
| 255 |
+
3,
|
| 256 |
+
3
|
| 257 |
+
],
|
| 258 |
+
[
|
| 259 |
+
3,
|
| 260 |
+
3,
|
| 261 |
+
3
|
| 262 |
+
],
|
| 263 |
+
[
|
| 264 |
+
3,
|
| 265 |
+
3,
|
| 266 |
+
3
|
| 267 |
+
],
|
| 268 |
+
[
|
| 269 |
+
3,
|
| 270 |
+
3,
|
| 271 |
+
3
|
| 272 |
+
],
|
| 273 |
+
[
|
| 274 |
+
3,
|
| 275 |
+
3,
|
| 276 |
+
3
|
| 277 |
+
],
|
| 278 |
+
[
|
| 279 |
+
3,
|
| 280 |
+
3,
|
| 281 |
+
3
|
| 282 |
+
]
|
| 283 |
+
],
|
| 284 |
+
"strides": [
|
| 285 |
+
[
|
| 286 |
+
1,
|
| 287 |
+
1,
|
| 288 |
+
1
|
| 289 |
+
],
|
| 290 |
+
[
|
| 291 |
+
2,
|
| 292 |
+
2,
|
| 293 |
+
2
|
| 294 |
+
],
|
| 295 |
+
[
|
| 296 |
+
2,
|
| 297 |
+
2,
|
| 298 |
+
2
|
| 299 |
+
],
|
| 300 |
+
[
|
| 301 |
+
2,
|
| 302 |
+
2,
|
| 303 |
+
2
|
| 304 |
+
],
|
| 305 |
+
[
|
| 306 |
+
2,
|
| 307 |
+
2,
|
| 308 |
+
2
|
| 309 |
+
],
|
| 310 |
+
[
|
| 311 |
+
2,
|
| 312 |
+
2,
|
| 313 |
+
2
|
| 314 |
+
]
|
| 315 |
+
],
|
| 316 |
+
"n_blocks_per_stage": [
|
| 317 |
+
1,
|
| 318 |
+
3,
|
| 319 |
+
4,
|
| 320 |
+
6,
|
| 321 |
+
6,
|
| 322 |
+
6
|
| 323 |
+
],
|
| 324 |
+
"n_conv_per_stage_decoder": [
|
| 325 |
+
1,
|
| 326 |
+
1,
|
| 327 |
+
1,
|
| 328 |
+
1,
|
| 329 |
+
1
|
| 330 |
+
],
|
| 331 |
+
"conv_bias": true,
|
| 332 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 333 |
+
"norm_op_kwargs": {
|
| 334 |
+
"eps": 1e-05,
|
| 335 |
+
"affine": true
|
| 336 |
+
},
|
| 337 |
+
"dropout_op": null,
|
| 338 |
+
"dropout_op_kwargs": null,
|
| 339 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 340 |
+
"nonlin_kwargs": {
|
| 341 |
+
"inplace": true
|
| 342 |
+
}
|
| 343 |
+
},
|
| 344 |
+
"_kw_requires_import": [
|
| 345 |
+
"conv_op",
|
| 346 |
+
"norm_op",
|
| 347 |
+
"dropout_op",
|
| 348 |
+
"nonlin"
|
| 349 |
+
]
|
| 350 |
+
},
|
| 351 |
+
"batch_dice": false,
|
| 352 |
+
"next_stage": "3d_cascade_fullres"
|
| 353 |
+
},
|
| 354 |
+
"3d_fullres": {
|
| 355 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
| 356 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 357 |
+
"batch_size": 2,
|
| 358 |
+
"patch_size": [
|
| 359 |
+
160,
|
| 360 |
+
224,
|
| 361 |
+
192
|
| 362 |
+
],
|
| 363 |
+
"median_image_size_in_voxels": [
|
| 364 |
+
512.0,
|
| 365 |
+
613.0,
|
| 366 |
+
513.0
|
| 367 |
+
],
|
| 368 |
+
"spacing": [
|
| 369 |
+
0.7109375,
|
| 370 |
+
0.5,
|
| 371 |
+
0.7109375
|
| 372 |
+
],
|
| 373 |
+
"normalization_schemes": [
|
| 374 |
+
"CTNormalization"
|
| 375 |
+
],
|
| 376 |
+
"use_mask_for_norm": [
|
| 377 |
+
false
|
| 378 |
+
],
|
| 379 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 380 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 381 |
+
"resampling_fn_data_kwargs": {
|
| 382 |
+
"is_seg": false,
|
| 383 |
+
"order": 3,
|
| 384 |
+
"order_z": 0,
|
| 385 |
+
"force_separate_z": null
|
| 386 |
+
},
|
| 387 |
+
"resampling_fn_seg_kwargs": {
|
| 388 |
+
"is_seg": true,
|
| 389 |
+
"order": 1,
|
| 390 |
+
"order_z": 0,
|
| 391 |
+
"force_separate_z": null
|
| 392 |
+
},
|
| 393 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 394 |
+
"resampling_fn_probabilities_kwargs": {
|
| 395 |
+
"is_seg": false,
|
| 396 |
+
"order": 1,
|
| 397 |
+
"order_z": 0,
|
| 398 |
+
"force_separate_z": null
|
| 399 |
+
},
|
| 400 |
+
"architecture": {
|
| 401 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.ResidualEncoderUNet",
|
| 402 |
+
"arch_kwargs": {
|
| 403 |
+
"n_stages": 6,
|
| 404 |
+
"features_per_stage": [
|
| 405 |
+
32,
|
| 406 |
+
64,
|
| 407 |
+
128,
|
| 408 |
+
256,
|
| 409 |
+
320,
|
| 410 |
+
320
|
| 411 |
+
],
|
| 412 |
+
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 413 |
+
"kernel_sizes": [
|
| 414 |
+
[
|
| 415 |
+
3,
|
| 416 |
+
3,
|
| 417 |
+
3
|
| 418 |
+
],
|
| 419 |
+
[
|
| 420 |
+
3,
|
| 421 |
+
3,
|
| 422 |
+
3
|
| 423 |
+
],
|
| 424 |
+
[
|
| 425 |
+
3,
|
| 426 |
+
3,
|
| 427 |
+
3
|
| 428 |
+
],
|
| 429 |
+
[
|
| 430 |
+
3,
|
| 431 |
+
3,
|
| 432 |
+
3
|
| 433 |
+
],
|
| 434 |
+
[
|
| 435 |
+
3,
|
| 436 |
+
3,
|
| 437 |
+
3
|
| 438 |
+
],
|
| 439 |
+
[
|
| 440 |
+
3,
|
| 441 |
+
3,
|
| 442 |
+
3
|
| 443 |
+
]
|
| 444 |
+
],
|
| 445 |
+
"strides": [
|
| 446 |
+
[
|
| 447 |
+
1,
|
| 448 |
+
1,
|
| 449 |
+
1
|
| 450 |
+
],
|
| 451 |
+
[
|
| 452 |
+
2,
|
| 453 |
+
2,
|
| 454 |
+
2
|
| 455 |
+
],
|
| 456 |
+
[
|
| 457 |
+
2,
|
| 458 |
+
2,
|
| 459 |
+
2
|
| 460 |
+
],
|
| 461 |
+
[
|
| 462 |
+
2,
|
| 463 |
+
2,
|
| 464 |
+
2
|
| 465 |
+
],
|
| 466 |
+
[
|
| 467 |
+
2,
|
| 468 |
+
2,
|
| 469 |
+
2
|
| 470 |
+
],
|
| 471 |
+
[
|
| 472 |
+
2,
|
| 473 |
+
2,
|
| 474 |
+
2
|
| 475 |
+
]
|
| 476 |
+
],
|
| 477 |
+
"n_blocks_per_stage": [
|
| 478 |
+
1,
|
| 479 |
+
3,
|
| 480 |
+
4,
|
| 481 |
+
6,
|
| 482 |
+
6,
|
| 483 |
+
6
|
| 484 |
+
],
|
| 485 |
+
"n_conv_per_stage_decoder": [
|
| 486 |
+
1,
|
| 487 |
+
1,
|
| 488 |
+
1,
|
| 489 |
+
1,
|
| 490 |
+
1
|
| 491 |
+
],
|
| 492 |
+
"conv_bias": true,
|
| 493 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 494 |
+
"norm_op_kwargs": {
|
| 495 |
+
"eps": 1e-05,
|
| 496 |
+
"affine": true
|
| 497 |
+
},
|
| 498 |
+
"dropout_op": null,
|
| 499 |
+
"dropout_op_kwargs": null,
|
| 500 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 501 |
+
"nonlin_kwargs": {
|
| 502 |
+
"inplace": true
|
| 503 |
+
}
|
| 504 |
+
},
|
| 505 |
+
"_kw_requires_import": [
|
| 506 |
+
"conv_op",
|
| 507 |
+
"norm_op",
|
| 508 |
+
"dropout_op",
|
| 509 |
+
"nonlin"
|
| 510 |
+
]
|
| 511 |
+
},
|
| 512 |
+
"batch_dice": true
|
| 513 |
+
},
|
| 514 |
+
"3d_cascade_fullres": {
|
| 515 |
+
"inherits_from": "3d_fullres",
|
| 516 |
+
"previous_stage": "3d_lowres"
|
| 517 |
+
}
|
| 518 |
+
},
|
| 519 |
+
"experiment_planner_used": "nnUNetPlannerResEncL",
|
| 520 |
+
"label_manager": "LabelManager",
|
| 521 |
+
"foreground_intensity_properties_per_channel": {
|
| 522 |
+
"0": {
|
| 523 |
+
"max": 1000.0,
|
| 524 |
+
"mean": 39.68027877807617,
|
| 525 |
+
"median": 71.0,
|
| 526 |
+
"min": -1000.0,
|
| 527 |
+
"percentile_00_5": -1000.0,
|
| 528 |
+
"percentile_99_5": 379.0,
|
| 529 |
+
"std": 192.4669952392578
|
| 530 |
+
}
|
| 531 |
+
}
|
| 532 |
+
}
|