Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- openbmb/UltraFeedback
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
---
|
| 9 |
+
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
|
| 10 |
+
|
| 11 |
+
# Llama-3-Instruct-8B-SPPO-Iter2
|
| 12 |
+
|
| 13 |
+
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 2, based on the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Links to Other Models
|
| 17 |
+
- [Llama-3-Instruct-8B-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1)
|
| 18 |
+
- [Llama-3-Instruct-8B-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2)
|
| 19 |
+
- [Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3)
|
| 20 |
+
|
| 21 |
+
### Model Description
|
| 22 |
+
|
| 23 |
+
- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
|
| 24 |
+
- Language(s) (NLP): Primarily English
|
| 25 |
+
- License: Apache-2.0
|
| 26 |
+
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
| Model | LC. Win Rate | Win Rate | Avg. Length |
|
| 33 |
+
|-------------------------------------------|:------------:|:--------:|:-----------:|
|
| 34 |
+
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) |31.73 |31.74 | 1962
|
| 35 |
+
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) |35.15 |35.98 | 2021
|
| 36 |
+
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) |**38.77** |**39.85** | 2066
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
|
| 41 |
+
|
| 42 |
+
Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
|
| 43 |
+
|
| 44 |
+
| | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
|
| 45 |
+
|--------|---------------|----------------|------------|-------|-----------|-------|---------|
|
| 46 |
+
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) | 63.82 | 54.96 | 76.40 | 75.44 | 79.80 | 65.65 | 69.35
|
| 47 |
+
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) | 64.93 | 56.48 | 76.87 | 75.13 | 80.39 | 65.67 | 69.91
|
| 48 |
+
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) | 65.19 | 58.04 | 77.11 | 74.91 | 80.86 | 65.60 | **70.29**
|
| 49 |
+
|
| 50 |
+
### Training hyperparameters
|
| 51 |
+
The following hyperparameters were used during training:
|
| 52 |
+
|
| 53 |
+
- learning_rate: 5e-07
|
| 54 |
+
- eta: 1000
|
| 55 |
+
- per_device_train_batch_size: 8
|
| 56 |
+
- gradient_accumulation_steps: 1
|
| 57 |
+
- seed: 42
|
| 58 |
+
- distributed_type: deepspeed_zero3
|
| 59 |
+
- num_devices: 8
|
| 60 |
+
- optimizer: RMSProp
|
| 61 |
+
- lr_scheduler_type: linear
|
| 62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 63 |
+
- num_train_epochs: 6.0 (stop at epoch=1.0)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
## Citation
|
| 69 |
+
```
|
| 70 |
+
@misc{wu2024self,
|
| 71 |
+
title={Self-Play Preference Optimization for Language Model Alignment},
|
| 72 |
+
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
|
| 73 |
+
year={2024},
|
| 74 |
+
eprint={2405.00675},
|
| 75 |
+
archivePrefix={arXiv},
|
| 76 |
+
primaryClass={cs.LG}
|
| 77 |
+
}
|
| 78 |
+
```
|