andymcgullen commited on
Commit
3a493f0
·
verified ·
1 Parent(s): d029ffd

End of training

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/speecht5_tts
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: speecht5_finetuned_librispeech_custom_7
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # speecht5_finetuned_librispeech_custom_7
16
+
17
+ This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3914
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 2
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 8
43
+ - total_train_batch_size: 32
44
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 50
47
+ - training_steps: 2000
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:-------:|:----:|:---------------:|
54
+ | 0.4417 | 8.9391 | 500 | 0.4079 |
55
+ | 0.4308 | 17.8668 | 1000 | 0.3963 |
56
+ | 0.4225 | 26.7946 | 1500 | 0.3916 |
57
+ | 0.4202 | 35.7223 | 2000 | 0.3914 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.57.3
63
+ - Pytorch 2.7.0+cu126
64
+ - Datasets 3.6.0
65
+ - Tokenizers 0.22.1