Update README.md
Browse files
README.md
CHANGED
|
@@ -11,6 +11,8 @@ license: apache-2.0
|
|
| 11 |
|
| 12 |
A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
|
| 13 |
|
|
|
|
|
|
|
| 14 |
## Model Details
|
| 15 |
|
| 16 |
- **Model Type:** Object detection
|
|
@@ -21,6 +23,7 @@ A Deformable DETR with box refinement object detection model with ConvNeXt v2 Ti
|
|
| 21 |
|
| 22 |
- **Papers:**
|
| 23 |
- Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
|
|
|
|
| 24 |
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
|
| 25 |
|
| 26 |
- **Metrics:**
|
|
@@ -39,6 +42,7 @@ import birder
|
|
| 39 |
from birder.inference.detection import infer_image
|
| 40 |
|
| 41 |
(net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
|
|
|
|
| 42 |
|
| 43 |
# Get the image size the model was trained on
|
| 44 |
size = birder.get_size_from_signature(model_info.signature)
|
|
@@ -67,6 +71,16 @@ detections = infer_image(net, image, transform)
|
|
| 67 |
url={https://arxiv.org/abs/2010.04159},
|
| 68 |
}
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
@misc{woo2023convnextv2codesigningscaling,
|
| 71 |
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
| 72 |
author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
|
|
|
|
| 11 |
|
| 12 |
A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
|
| 13 |
|
| 14 |
+
**Custom Kernels**: This model uses optimized custom kernels for Soft-NMS and Deformable Attention operations. If you encounter compilation issues or prefer to use pure PyTorch implementations, set the environment variable `DISABLE_CUSTOM_KERNELS=1` before loading the model.
|
| 15 |
+
|
| 16 |
## Model Details
|
| 17 |
|
| 18 |
- **Model Type:** Object detection
|
|
|
|
| 23 |
|
| 24 |
- **Papers:**
|
| 25 |
- Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
|
| 26 |
+
- Soft-NMS -- Improving Object Detection With One Line of Code: <https://arxiv.org/abs/1704.04503>
|
| 27 |
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
|
| 28 |
|
| 29 |
- **Metrics:**
|
|
|
|
| 42 |
from birder.inference.detection import infer_image
|
| 43 |
|
| 44 |
(net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
|
| 45 |
+
# Can also load model with Soft-NMS by passing custom_config={"soft_nms": True}
|
| 46 |
|
| 47 |
# Get the image size the model was trained on
|
| 48 |
size = birder.get_size_from_signature(model_info.signature)
|
|
|
|
| 71 |
url={https://arxiv.org/abs/2010.04159},
|
| 72 |
}
|
| 73 |
|
| 74 |
+
@misc{bodla2017softnmsimprovingobject,
|
| 75 |
+
title={Soft-NMS -- Improving Object Detection With One Line of Code},
|
| 76 |
+
author={Navaneeth Bodla and Bharat Singh and Rama Chellappa and Larry S. Davis},
|
| 77 |
+
year={2017},
|
| 78 |
+
eprint={1704.04503},
|
| 79 |
+
archivePrefix={arXiv},
|
| 80 |
+
primaryClass={cs.CV},
|
| 81 |
+
url={https://arxiv.org/abs/1704.04503},
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
@misc{woo2023convnextv2codesigningscaling,
|
| 85 |
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
| 86 |
author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
|