Commit
·
ee36b62
1
Parent(s):
e753166
Update README.md
Browse files
README.md
CHANGED
|
@@ -3,3 +3,302 @@ license: other
|
|
| 3 |
license_name: license.md
|
| 4 |
license_link: LICENSE
|
| 5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
license_name: license.md
|
| 4 |
license_link: LICENSE
|
| 5 |
---
|
| 6 |
+
# Model Card for CodeFuse-CodeGeeX2-6B
|
| 7 |
+
<p align="center">
|
| 8 |
+
<img src="https://modelscope.cn/api/v1/models/codefuse-ai/CodeFuse-CodeGeeX2-6B/repo?Revision=master&FilePath=LOGO.jpg&View=true" width="800"/>
|
| 9 |
+
<p>
|
| 10 |
+
|
| 11 |
+
[[中文]](#chinese) [[English]](#english)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
<a id="english"></a>
|
| 15 |
+
|
| 16 |
+
## Model Description
|
| 17 |
+
|
| 18 |
+
CodeFuse-CodeGeeX2-6B is a 6B Code-LLM finetuned by LoRA of multiple code tasks on the base model CodeGeeX2.
|
| 19 |
+
|
| 20 |
+
<br>
|
| 21 |
+
|
| 22 |
+
## News and Updates
|
| 23 |
+
|
| 24 |
+
🔥🔥 2023-11-10 CodeFuse-CodeGeeX2-6B has been released, achieving a pass@1 (greedy decoding) score of 45.12% on HumanEval, which is a 9.22% increase compared to CodeGeeX2 35.9%.
|
| 25 |
+
|
| 26 |
+
🔥🔥 2023-10-20 CodeFuse-QWen-14B technical documentation has been released. For those interested, please refer to the CodeFuse article on our WeChat official account via the provided link.(https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw)
|
| 27 |
+
|
| 28 |
+
🔥🔥 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.
|
| 29 |
+
|
| 30 |
+
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
|
| 31 |
+
|
| 32 |
+
🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary) of [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
|
| 33 |
+
|
| 34 |
+
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary) has achived 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
|
| 35 |
+
|
| 36 |
+
<br>
|
| 37 |
+
|
| 38 |
+
## Code Community
|
| 39 |
+
|
| 40 |
+
**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**)
|
| 41 |
+
|
| 42 |
+
+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
|
| 43 |
+
|
| 44 |
+
+ If you wish to deploy the model yourself, you can visit ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
|
| 45 |
+
|
| 46 |
+
+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
|
| 47 |
+
|
| 48 |
+
<br>
|
| 49 |
+
|
| 50 |
+
## Performance
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
| Model | HumanEval(pass@1) | Date |
|
| 54 |
+
|:----------------------------|:-----------------:|:-------:|
|
| 55 |
+
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
|
| 56 |
+
|**CodeFuse-CodeLlama-34B-4bits** | **73.8%** | 2023.9 |
|
| 57 |
+
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
|
| 58 |
+
| GPT-4(zero-shot) | 67.0% | 2023.3 |
|
| 59 |
+
| PanGu-Coder2 15B | 61.6% | 2023.8 |
|
| 60 |
+
| CodeLlama-34b-Python | 53.7% | 2023.8 |
|
| 61 |
+
| CodeLlama-34b | 48.8% | 2023.8 |
|
| 62 |
+
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
|
| 63 |
+
| OctoCoder | 46.2% | 2023.8 |
|
| 64 |
+
| StarCoder-15B | 33.6% | 2023.5 |
|
| 65 |
+
| Qwen-14b | 32.3% | 2023.10 |
|
| 66 |
+
| **CodeFuse-StarCoder-15B** | **54.9%** | 2023.9 |
|
| 67 |
+
| **CodeFuse-QWen-14B** | **48.78%** | 2023.10 |
|
| 68 |
+
| **CodeFuse-CodeGeeX2-6B** | **45.12%** | 2023.11 |
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
<br>
|
| 72 |
+
|
| 73 |
+
## Requirements
|
| 74 |
+
|
| 75 |
+
* python>=3.8
|
| 76 |
+
* pytorch>=2.0.0
|
| 77 |
+
* transformers==4.33.2
|
| 78 |
+
* Sentencepiece
|
| 79 |
+
* CUDA 11.4
|
| 80 |
+
<br>
|
| 81 |
+
|
| 82 |
+
## Inference String Format
|
| 83 |
+
|
| 84 |
+
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process.
|
| 85 |
+
Here is an example format of the concatenated string:
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
"""
|
| 89 |
+
<s>system
|
| 90 |
+
System instruction
|
| 91 |
+
<s>human
|
| 92 |
+
Human 1st round input
|
| 93 |
+
<s>bot
|
| 94 |
+
Bot 1st round output<|endoftext|>
|
| 95 |
+
<s>human
|
| 96 |
+
Human 2nd round input
|
| 97 |
+
<s>bot
|
| 98 |
+
Bot 2nd round output<|endoftext|>
|
| 99 |
+
...
|
| 100 |
+
...
|
| 101 |
+
...
|
| 102 |
+
<s>human
|
| 103 |
+
Human nth round input
|
| 104 |
+
<s>bot
|
| 105 |
+
{Bot output to be genreated}<|endoftext|>
|
| 106 |
+
"""
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
When applying inference, you always make your input string end with "\<s\>bot" to ask the model generating answers.
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
## Quickstart
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
```bash
|
| 116 |
+
pip install transformers modelscope cpm_kernels -U
|
| 117 |
+
pip install -r requirements.txt
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
import torch
|
| 122 |
+
from modelscope import (
|
| 123 |
+
AutoTokenizer,
|
| 124 |
+
AutoModel,
|
| 125 |
+
snapshot_download
|
| 126 |
+
)
|
| 127 |
+
model_dir = snapshot_download('codefuse-ai/CodeFuse-CodeGeeX2-6B',revision = 'v1.0.0')
|
| 128 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
| 129 |
+
tokenizer.padding_side = "left"
|
| 130 |
+
# try 4bit loading if cuda memory not enough
|
| 131 |
+
model = AutoModel.from_pretrained(model_dir,
|
| 132 |
+
trust_remote_code=True,
|
| 133 |
+
load_in_4bit=False,
|
| 134 |
+
device_map="auto",
|
| 135 |
+
torch_dtype=torch.bfloat16)
|
| 136 |
+
model.eval()
|
| 137 |
+
|
| 138 |
+
HUMAN_ROLE_START_TAG = "<s>human\n"
|
| 139 |
+
BOT_ROLE_START_TAG = "<s>bot\n"
|
| 140 |
+
|
| 141 |
+
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.\n{BOT_ROLE_START_TAG}"
|
| 142 |
+
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
|
| 143 |
+
outputs = model.generate(
|
| 144 |
+
inputs=inputs["input_ids"],
|
| 145 |
+
attention_mask=inputs["attention_mask"],
|
| 146 |
+
max_new_tokens=512,
|
| 147 |
+
top_p=0.95,
|
| 148 |
+
temperature=0.1,
|
| 149 |
+
do_sample=True,
|
| 150 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 151 |
+
pad_token_id=tokenizer.pad_token_id
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
| 155 |
+
print(gen_text[0])
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
<a id="chinese"></a>
|
| 166 |
+
|
| 167 |
+
## 模型简介
|
| 168 |
+
|
| 169 |
+
CodeFuse-CodeGeeX2-6B 是一个通过LoRA对基座模型CodeGeeeX2进行多代码任务微调的代码大模型。
|
| 170 |
+
<br>
|
| 171 |
+
|
| 172 |
+
## 新闻
|
| 173 |
+
|
| 174 |
+
🔥🔥 2023-11-10 开源了CodeFuse-CodeGeeX2-6B模型,在HumanEval pass@1(greedy decoding)上可以达到48.12%, 比CodeGeeX2提高了9.22%的代码能力(HumanEval)
|
| 175 |
+
|
| 176 |
+
🔥🔥 2023-10-20 公布了CodeFuse-QWen-14B技术文档,感兴趣详见微信公众号CodeFuse文章:https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw
|
| 177 |
+
|
| 178 |
+
🔥🔥 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)
|
| 179 |
+
|
| 180 |
+
🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
|
| 181 |
+
|
| 182 |
+
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
|
| 183 |
+
|
| 184 |
+
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
|
| 185 |
+
|
| 186 |
+
<br>
|
| 187 |
+
|
| 188 |
+
## 代码社区
|
| 189 |
+
**大本营**: 🏡 https://github.com/codefuse-ai (**请支持我们的项目Star🌟 + Fork🚀 + Watch👀**)
|
| 190 |
+
|
| 191 |
+
+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
|
| 192 |
+
|
| 193 |
+
+ 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
|
| 194 |
+
|
| 195 |
+
+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
|
| 196 |
+
|
| 197 |
+
<br>
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
## 评测表现
|
| 201 |
+
|
| 202 |
+
### 代码
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
| 模型 | HumanEval(pass@1) | 日期 |
|
| 206 |
+
|:----------------------------|:-----------------:|:-------:|
|
| 207 |
+
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
|
| 208 |
+
|**CodeFuse-CodeLlama-34B-4bits** | **73.8%** | 2023.9 |
|
| 209 |
+
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
|
| 210 |
+
| GPT-4(zero-shot) | 67.0% | 2023.3 |
|
| 211 |
+
| PanGu-Coder2 15B | 61.6% | 2023.8 |
|
| 212 |
+
| CodeLlama-34b-Python | 53.7% | 2023.8 |
|
| 213 |
+
| CodeLlama-34b | 48.8% | 2023.8 |
|
| 214 |
+
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
|
| 215 |
+
| OctoCoder | 46.2% | 2023.8 |
|
| 216 |
+
| StarCoder-15B | 33.6% | 2023.5 |
|
| 217 |
+
| Qwen-14b | 32.3% | 2023.10 |
|
| 218 |
+
| **CodeFuse-StarCoder-15B** | **54.9%** | 2023.9 |
|
| 219 |
+
| **CodeFuse-QWen-14B** | **48.78%** | 2023.8 |
|
| 220 |
+
| **CodeFuse-CodeGeeX2-6B** | **45.12%** | 2023.11 |
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
## Requirements
|
| 224 |
+
|
| 225 |
+
* python>=3.8
|
| 226 |
+
* pytorch>=2.0.0
|
| 227 |
+
* transformers==4.33.2
|
| 228 |
+
* Sentencepiece
|
| 229 |
+
* CUDA 11.4
|
| 230 |
+
<br>
|
| 231 |
+
|
| 232 |
+
## 推理数据格式
|
| 233 |
+
|
| 234 |
+
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:
|
| 235 |
+
|
| 236 |
+
```python
|
| 237 |
+
"""
|
| 238 |
+
<s>system
|
| 239 |
+
这是System指令
|
| 240 |
+
<s>human
|
| 241 |
+
这是第1轮用户输入的问题
|
| 242 |
+
<s>bot
|
| 243 |
+
这是第1轮模型生成的内容<|endoftext|>
|
| 244 |
+
<s>human
|
| 245 |
+
这是第2轮用户输入的问题
|
| 246 |
+
<s>bot
|
| 247 |
+
这是第2轮模型生成的内容<|endoftext|>
|
| 248 |
+
...
|
| 249 |
+
...
|
| 250 |
+
...
|
| 251 |
+
<s>human
|
| 252 |
+
这是第n轮用户输入的问题
|
| 253 |
+
<s>bot
|
| 254 |
+
{模型现在要生成的内容}<|endoftext|>
|
| 255 |
+
"""
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
推理时,请确保拼接的prompt字符串以"\<s\>bot\n"结尾,引导模型生成回答。
|
| 259 |
+
|
| 260 |
+
## 快速使用
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
```bash
|
| 264 |
+
pip install transformers modelscope cpm_kernels -U
|
| 265 |
+
pip install -r requirements.txt
|
| 266 |
+
```
|
| 267 |
+
|
| 268 |
+
```python
|
| 269 |
+
import torch
|
| 270 |
+
from modelscope import (
|
| 271 |
+
AutoTokenizer,
|
| 272 |
+
AutoModel,
|
| 273 |
+
snapshot_download
|
| 274 |
+
)
|
| 275 |
+
model_dir = snapshot_download('codefuse-ai/CodeFuse-CodeGeeX2-6B',revision = 'v1.0.0')
|
| 276 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
| 277 |
+
tokenizer.padding_side = "left"
|
| 278 |
+
# try 4bit loading if cuda memory not enough
|
| 279 |
+
model = AutoModel.from_pretrained(model_dir,
|
| 280 |
+
trust_remote_code=True,
|
| 281 |
+
load_in_4bit=False,
|
| 282 |
+
device_map="auto",
|
| 283 |
+
torch_dtype=torch.bfloat16)
|
| 284 |
+
model.eval()
|
| 285 |
+
|
| 286 |
+
HUMAN_ROLE_START_TAG = "<s>human\n"
|
| 287 |
+
BOT_ROLE_START_TAG = "<s>bot\n"
|
| 288 |
+
|
| 289 |
+
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.\n{BOT_ROLE_START_TAG}"
|
| 290 |
+
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
|
| 291 |
+
outputs = model.generate(
|
| 292 |
+
inputs=inputs["input_ids"],
|
| 293 |
+
attention_mask=inputs["attention_mask"],
|
| 294 |
+
max_new_tokens=512,
|
| 295 |
+
top_p=0.95,
|
| 296 |
+
temperature=0.1,
|
| 297 |
+
do_sample=True,
|
| 298 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 299 |
+
pad_token_id=tokenizer.pad_token_id
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
| 303 |
+
print(gen_text[0])
|
| 304 |
+
```
|