File size: 4,621 Bytes
9caa8f9 0286e1a ae68fb3 f8ada0e 81951b2 04a6692 9bffa9f 9eb9bd1 df4db26 5787daa 9475bdf f4824f2 ff35473 f8863cb 83a5da9 9caa8f9 933f1c7 0286e1a ae68fb3 f8ada0e 81951b2 04a6692 9bffa9f 9eb9bd1 df4db26 9475bdf f4824f2 ff35473 f8863cb 83a5da9 7b5f1d8 c7785b4 5787daa 59b82a8 ec1399a 3c5276f ec1399a c1383cb 5866578 dccb858 13c476d a66a237 13c476d 39fcf3e c7785b4 1706fdd c7785b4 805da2c c7785b4 dccb858 805da2c c7785b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
dataset_info:
features:
- name: image_id
dtype: string
- name: label
dtype: int32
- name: clip_model
dtype: string
- name: clip_features
list: float32
- name: vector_dim
dtype: int32
- name: timestamp
dtype: timestamp[ns]
splits:
- name: clip_vit_b32_train
num_bytes: 2723761042
num_examples: 1281167
- name: clip_vit_laion_b32_train
num_bytes: 2789100559
num_examples: 1281167
- name: clip_vit_laion_b32_validation
num_bytes: 108850000
num_examples: 50000
- name: clip_vit_b16_train
num_bytes: 2777570056
num_examples: 1281167
- name: clip_vit_b16_validation
num_bytes: 108400000
num_examples: 50000
- name: clip_vit_l14_train
num_bytes: 4090766231
num_examples: 1281167
- name: clip_vit_l14_validation
num_bytes: 159650000
num_examples: 50000
- name: clip_vit_laion_bigg14_train
num_bytes: 6728689084
num_examples: 1281167
- name: clip_vit_laion_bigg14_validation
num_bytes: 262600000
num_examples: 50000
- name: clip_vit_b32_validation
num_bytes: 108400000
num_examples: 50000
- name: clip_vit_b32_test
num_bytes: 216800000
num_examples: 100000
- name: clip_vit_b16_test
num_bytes: 216800000
num_examples: 100000
- name: clip_vit_laion_b32_test
num_bytes: 217700000
num_examples: 100000
- name: clip_vit_l14_test
num_bytes: 319300000
num_examples: 100000
- name: clip_vit_laion_h14_test
num_bytes: 422500000
num_examples: 100000
download_size: 25438949728
dataset_size: 21250886972
configs:
- config_name: default
data_files:
- split: clip_vit_b32_train
path: data/clip_vit_b32_train-*
- split: clip_vit_b32_validation
path: data/clip_vit_b32_validation-*
- split: clip_vit_laion_b32_train
path: data/clip_vit_laion_b32_train-*
- split: clip_vit_laion_b32_validation
path: data/clip_vit_laion_b32_validation-*
- split: clip_vit_b16_train
path: data/clip_vit_b16_train-*
- split: clip_vit_b16_validation
path: data/clip_vit_b16_validation-*
- split: clip_vit_l14_train
path: data/clip_vit_l14_train-*
- split: clip_vit_l14_validation
path: data/clip_vit_l14_validation-*
- split: clip_vit_laion_bigg14_train
path: data/clip_vit_laion_bigg14_train-*
- split: clip_vit_laion_bigg14_validation
path: data/clip_vit_laion_bigg14_validation-*
- split: clip_vit_b32_test
path: data/clip_vit_b32_test-*
- split: clip_vit_b16_test
path: data/clip_vit_b16_test-*
- split: clip_vit_laion_b32_test
path: data/clip_vit_laion_b32_test-*
- split: clip_vit_l14_test
path: data/clip_vit_l14_test-*
- split: clip_vit_laion_h14_test
path: data/clip_vit_laion_h14_test-*
task_categories:
- feature-extraction
- image-feature-extraction
license: mit
tags:
- features
- image_features
- extracted_features
- precomputed_features
- imagenet
- imagenet_features
- clip_vit
- variants
size_categories:
- 1M<n<10M
---
# Update: 10/2/2025
Claude said that I'm not being careful enough with my database curation after grilling me for 20 minutes, so I included the preparer script as well.
Claude Sonnet 4.5 is kind of a chad.
# Update; 9/26/2025
Having to download this whole repo is annoying, so I'm making sure the splits are named train/val/test (if they exist) and the named subset is the clip name.
# Older non-dated updates
Everything extracted with torch configured as deterministic; using seed 42 on an a100 using colab; so if it has variances from expectation it's on cuda.
It's a little quirky;
* Most of the splits have train, test, val. Many do not.
* Most of the splits have a proper "image_id" md5 id for verification.
The prompts used were direct literal prompts for the classification name;
No use of "a photo of" or any such invariance; just the classification text.
This is a series of clip-vit extracted feature maps from a 256x256 cropped and resized imagenet variant hosted here on huggingface.
I ran the processor 224x224 and then extracted features from the entire dataset batch-sequentially while simultaneously capturing the necessary classifiers and classifications associated with the images for downstream testing and assessment.
Academic and research purpose use only.
clip-vit-large-patch14 variations do exist in the splits.
clip-vit-bigG is the 1280 dim variation and it does exist; it took quite a while to extract - and it is in fact missing it's test split. Sorry about that.
There are many variants of clip-vit-base from many variant forms. Each of them extracted using the same process as the others.
|