Create preparer.py
Browse files- preparer.py +511 -0
preparer.py
ADDED
|
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =================================================================================== #
|
| 2 |
+
# ImageNet CLIP Feature Extraction - Download-First Strategy
|
| 3 |
+
# Author:AbstractPhil
|
| 4 |
+
#
|
| 5 |
+
# Description: Should sufficiently handle preparing imagenet from a repo of choice.
|
| 6 |
+
# Formatted for colab - uses userdata to set HF_TOKEN with userdata.get('HF_TOKEN')
|
| 7 |
+
# Should run as-is without hassle, but it's a little time consuming.
|
| 8 |
+
#
|
| 9 |
+
# License: MIT
|
| 10 |
+
# =================================================================================== #
|
| 11 |
+
|
| 12 |
+
import os, json, datetime, time
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from typing import Dict, List, Union, Optional, Generator
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from datasets import Dataset, DatasetDict, Features, Value, Sequence
|
| 18 |
+
from transformers import CLIPModel
|
| 19 |
+
from huggingface_hub import HfApi, HfFolder, create_repo
|
| 20 |
+
from google.colab import userdata
|
| 21 |
+
|
| 22 |
+
# Set your HF_TOKEN here.
|
| 23 |
+
HF_TOKEN = userdata.get('HF_TOKEN') # set to os.environ or whatever you want to use.
|
| 24 |
+
os.environ["HF_TOKEN"] = HF_TOKEN
|
| 25 |
+
|
| 26 |
+
import torchvision.transforms.functional as TF
|
| 27 |
+
from torch.utils.data import DataLoader
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Configuration for ImageNet-scale processing
|
| 31 |
+
CONFIG = {
|
| 32 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
| 33 |
+
"batch_size": 256, # A100 can handle much larger batches
|
| 34 |
+
"generator_chunk_size": 5000, # Process and yield in chunks
|
| 35 |
+
"prefetch_factor": 16, # DataLoader prefetch
|
| 36 |
+
"persistent_workers": True, # Keep workers alive
|
| 37 |
+
"num_workers": 2, # Parallel data loading
|
| 38 |
+
|
| 39 |
+
"image_size": 224,
|
| 40 |
+
"vector_dim": 768,
|
| 41 |
+
"normalize_on_gpu": True,
|
| 42 |
+
"clip_mean": (0.48145466, 0.4578275, 0.40821073),
|
| 43 |
+
"clip_std": (0.26862954, 0.26130258, 0.27577711),
|
| 44 |
+
|
| 45 |
+
# Memory management for ImageNet scale
|
| 46 |
+
"max_memory_gb": 64, # Adjust based on available RAM
|
| 47 |
+
"memory_cleanup_interval": 10000, # Clean memory every N images
|
| 48 |
+
|
| 49 |
+
# Output configuration
|
| 50 |
+
"upload_to_hub": False, # set to true if you wish to upload to your repo
|
| 51 |
+
"repo_id": "", #"AbstractPhil/imagenet-clip-features", # change this to your HF repo, you can't upload to mine.
|
| 52 |
+
"generator_version": "2.0.0", # Must be x.y.z format
|
| 53 |
+
|
| 54 |
+
# Download-first strategy (optimized for multiple models)
|
| 55 |
+
"download_first": True, # Download entire dataset before processing
|
| 56 |
+
"cache_dir": "./imagenet_cache", # Where to cache downloaded data
|
| 57 |
+
"keep_dataset_in_memory": False, # False to save RAM
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# Extended list of CLIP models to process
|
| 61 |
+
CLIP_MODELS = [
|
| 62 |
+
# OpenAI CLIP models
|
| 63 |
+
#{"repo_id": "openai/clip-vit-base-patch32", "short_name": "clip_vit_b32", "dim": 512},
|
| 64 |
+
# {"repo_id": "openai/clip-vit-base-patch16", "short_name": "clip_vit_b16", "dim": 512},
|
| 65 |
+
|
| 66 |
+
#{"repo_id": "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", "short_name": "clip_vit_laion_b32", "dim": 512},
|
| 67 |
+
#{"repo_id": "openai/clip-vit-large-patch14", "short_name": "clip_vit_l14", "dim": 768},
|
| 68 |
+
#{"repo_id": "openai/clip-vit-large-patch14-336", "short_name": "clip_vit_l14_336", "dim": 768},
|
| 69 |
+
|
| 70 |
+
# LAION CLIP models (if you want to add them)
|
| 71 |
+
{"repo_id": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", "short_name": "clip_vit_laion_h14", "dim": 1024},
|
| 72 |
+
#{"repo_id": "laion/CLIP-ViT-g-14-laion2B-s12B-b42K", "short_name": "clip_vit_laion_g14", "dim": 1024},
|
| 73 |
+
# {"repo_id": "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", "short_name": "clip_vit_laion_bigg14", "dim": 1280},
|
| 74 |
+
|
| 75 |
+
# You can add more models here
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
TARGET_SPLITS = ["train", "validation", "test"]
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class ImageNetClipFeatureExtractor:
|
| 82 |
+
"""
|
| 83 |
+
Production-ready CLIP feature extractor optimized for processing multiple models.
|
| 84 |
+
Uses download-first strategy for maximum throughput.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(self, config: dict):
|
| 88 |
+
self.cfg = config
|
| 89 |
+
self.device = torch.device(config["device"])
|
| 90 |
+
self._setup_preprocessing()
|
| 91 |
+
self.hf_token = os.environ.get("HF_TOKEN") or userdata.get('HF_TOKEN')
|
| 92 |
+
self.datasets_cache = {} # Cache loaded datasets
|
| 93 |
+
|
| 94 |
+
def _setup_preprocessing(self):
|
| 95 |
+
self._mean = torch.tensor(self.cfg["clip_mean"]).view(1, 3, 1, 1)
|
| 96 |
+
self._std = torch.tensor(self.cfg["clip_std"]).view(1, 3, 1, 1)
|
| 97 |
+
|
| 98 |
+
def _download_datasets(self):
|
| 99 |
+
"""
|
| 100 |
+
Pre-download all datasets once before processing any models.
|
| 101 |
+
This is called once and datasets are reused for all models.
|
| 102 |
+
"""
|
| 103 |
+
from datasets import load_dataset
|
| 104 |
+
|
| 105 |
+
print("=" * 60)
|
| 106 |
+
print("π₯ DOWNLOADING IMAGENET DATASET")
|
| 107 |
+
print("=" * 60)
|
| 108 |
+
|
| 109 |
+
for split in TARGET_SPLITS:
|
| 110 |
+
if split not in self.datasets_cache:
|
| 111 |
+
print(f"\n[β¬] Downloading {split} split to {self.cfg['cache_dir']}...")
|
| 112 |
+
start_time = time.time()
|
| 113 |
+
|
| 114 |
+
dataset = load_dataset(
|
| 115 |
+
"benjamin-paine/imagenet-1k-256x256",
|
| 116 |
+
split=split,
|
| 117 |
+
cache_dir=self.cfg["cache_dir"],
|
| 118 |
+
keep_in_memory=self.cfg["keep_dataset_in_memory"],
|
| 119 |
+
num_proc=None # Disable the progress bar noise
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
download_time = time.time() - start_time
|
| 123 |
+
print(f"[β
] Downloaded {len(dataset)} {split} images in {download_time/60:.1f} minutes")
|
| 124 |
+
if download_time > 0:
|
| 125 |
+
print(f"[π] Download speed: {len(dataset)/download_time:.1f} images/sec")
|
| 126 |
+
|
| 127 |
+
self.datasets_cache[split] = dataset
|
| 128 |
+
|
| 129 |
+
print("\n[β
] All datasets downloaded and cached!")
|
| 130 |
+
print("=" * 60)
|
| 131 |
+
|
| 132 |
+
def _gpu_preprocess(self, images: torch.Tensor) -> torch.Tensor:
|
| 133 |
+
"""Memory-efficient GPU preprocessing."""
|
| 134 |
+
if images.dtype != torch.float32:
|
| 135 |
+
images = images.float()
|
| 136 |
+
|
| 137 |
+
# Handle both 0-1 and 0-255 ranges
|
| 138 |
+
if images.max() > 1.5:
|
| 139 |
+
images = images / 255.0
|
| 140 |
+
|
| 141 |
+
# Resize if needed
|
| 142 |
+
if images.shape[-1] != self.cfg["image_size"]:
|
| 143 |
+
images = F.interpolate(
|
| 144 |
+
images,
|
| 145 |
+
size=(self.cfg["image_size"], self.cfg["image_size"]),
|
| 146 |
+
mode="bilinear",
|
| 147 |
+
align_corners=False
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Normalize
|
| 151 |
+
if self.cfg["normalize_on_gpu"]:
|
| 152 |
+
mean = self._mean.to(images.device, dtype=images.dtype)
|
| 153 |
+
std = self._std.to(images.device, dtype=images.dtype)
|
| 154 |
+
images = (images - mean) / std
|
| 155 |
+
|
| 156 |
+
return images
|
| 157 |
+
|
| 158 |
+
def _collate_fn(self, batch):
|
| 159 |
+
"""Custom collate function for DataLoader."""
|
| 160 |
+
import hashlib
|
| 161 |
+
images = []
|
| 162 |
+
labels = []
|
| 163 |
+
image_ids = []
|
| 164 |
+
|
| 165 |
+
for item in batch:
|
| 166 |
+
image = item['image']
|
| 167 |
+
if image.mode != 'RGB':
|
| 168 |
+
image = image.convert('RGB')
|
| 169 |
+
|
| 170 |
+
# Convert to tensor [3, H, W]
|
| 171 |
+
image_tensor = TF.to_tensor(image)
|
| 172 |
+
|
| 173 |
+
# Generate SHA256 hash of the image
|
| 174 |
+
image_bytes = image.tobytes()
|
| 175 |
+
sha256_hash = hashlib.sha256(image_bytes).hexdigest()
|
| 176 |
+
|
| 177 |
+
images.append(image_tensor)
|
| 178 |
+
labels.append(item.get('label', -1))
|
| 179 |
+
image_ids.append(sha256_hash)
|
| 180 |
+
|
| 181 |
+
return {
|
| 182 |
+
'images': torch.stack(images),
|
| 183 |
+
'labels': labels,
|
| 184 |
+
'image_ids': image_ids
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
def _imagenet_generator_optimized(self, split: str, model_id: str) -> Generator[Dict, None, None]:
|
| 188 |
+
"""
|
| 189 |
+
Optimized generator using pre-downloaded data and DataLoader for parallel loading.
|
| 190 |
+
"""
|
| 191 |
+
# Use cached dataset
|
| 192 |
+
dataset = self.datasets_cache[split]
|
| 193 |
+
|
| 194 |
+
# Create DataLoader for efficient parallel loading
|
| 195 |
+
dataloader = DataLoader(
|
| 196 |
+
dataset,
|
| 197 |
+
batch_size=self.cfg["batch_size"],
|
| 198 |
+
shuffle=False, # Keep order for reproducibility
|
| 199 |
+
num_workers=self.cfg["num_workers"],
|
| 200 |
+
prefetch_factor=self.cfg["prefetch_factor"],
|
| 201 |
+
persistent_workers=self.cfg["persistent_workers"],
|
| 202 |
+
collate_fn=self._collate_fn,
|
| 203 |
+
pin_memory=True # Faster GPU transfer
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# Load CLIP model
|
| 207 |
+
print(f"\n[π€] Loading {model_id}")
|
| 208 |
+
model = CLIPModel.from_pretrained(model_id).to(self.device)
|
| 209 |
+
model.eval()
|
| 210 |
+
|
| 211 |
+
# Setup for chunked processing
|
| 212 |
+
chunk_buffer = []
|
| 213 |
+
timestamp = datetime.datetime.now(datetime.timezone.utc)
|
| 214 |
+
images_processed = 0
|
| 215 |
+
start_time = time.time()
|
| 216 |
+
last_print_time = start_time
|
| 217 |
+
print_interval = 10 # Print progress every 10 seconds
|
| 218 |
+
|
| 219 |
+
try:
|
| 220 |
+
with torch.no_grad():
|
| 221 |
+
for batch_idx, batch in enumerate(dataloader):
|
| 222 |
+
# Move batch to GPU
|
| 223 |
+
image_batch = batch['images'].to(self.device, non_blocking=True)
|
| 224 |
+
labels = batch['labels']
|
| 225 |
+
image_ids = batch['image_ids']
|
| 226 |
+
|
| 227 |
+
# Preprocess on GPU
|
| 228 |
+
image_batch = self._gpu_preprocess(image_batch)
|
| 229 |
+
|
| 230 |
+
# Extract features
|
| 231 |
+
features = model.get_image_features(pixel_values=image_batch)
|
| 232 |
+
features = features / features.norm(dim=-1, keepdim=True)
|
| 233 |
+
|
| 234 |
+
# Create records
|
| 235 |
+
for img_id, label, feature_vec in zip(image_ids, labels, features):
|
| 236 |
+
chunk_buffer.append({
|
| 237 |
+
"image_id": img_id, # Now using SHA256 hash
|
| 238 |
+
"label": int(label),
|
| 239 |
+
"clip_model": model_id,
|
| 240 |
+
"clip_features": feature_vec.detach().cpu().float().numpy().tolist(),
|
| 241 |
+
"vector_dim": features.shape[-1],
|
| 242 |
+
"timestamp": timestamp,
|
| 243 |
+
})
|
| 244 |
+
|
| 245 |
+
images_processed += len(image_ids)
|
| 246 |
+
|
| 247 |
+
# Print progress at regular time intervals
|
| 248 |
+
current_time = time.time()
|
| 249 |
+
if current_time - last_print_time >= print_interval:
|
| 250 |
+
elapsed = current_time - start_time
|
| 251 |
+
speed = images_processed / elapsed
|
| 252 |
+
eta = (len(dataset) - images_processed) / speed
|
| 253 |
+
print(f"[β‘] Progress: {images_processed}/{len(dataset)} "
|
| 254 |
+
f"({100*images_processed/len(dataset):.1f}%) | "
|
| 255 |
+
f"Speed: {speed:.1f} img/sec | "
|
| 256 |
+
f"ETA: {eta/60:.1f} min")
|
| 257 |
+
last_print_time = current_time
|
| 258 |
+
|
| 259 |
+
# Yield chunk when it reaches configured size
|
| 260 |
+
if len(chunk_buffer) >= self.cfg["generator_chunk_size"]:
|
| 261 |
+
elapsed = time.time() - start_time
|
| 262 |
+
speed = images_processed / elapsed
|
| 263 |
+
print(f"[π¦] Yielding chunk of {len(chunk_buffer)} features | "
|
| 264 |
+
f"Progress: {images_processed}/{len(dataset)} "
|
| 265 |
+
f"({100*images_processed/len(dataset):.1f}%)")
|
| 266 |
+
yield from chunk_buffer
|
| 267 |
+
chunk_buffer = []
|
| 268 |
+
|
| 269 |
+
# Memory cleanup at configured interval
|
| 270 |
+
if images_processed % self.cfg["memory_cleanup_interval"] == 0:
|
| 271 |
+
torch.cuda.empty_cache()
|
| 272 |
+
|
| 273 |
+
# Yield remaining chunk buffer
|
| 274 |
+
if chunk_buffer:
|
| 275 |
+
print(f"[π¦] Final chunk of {len(chunk_buffer)} features")
|
| 276 |
+
yield from chunk_buffer
|
| 277 |
+
|
| 278 |
+
# Final stats
|
| 279 |
+
total_time = time.time() - start_time
|
| 280 |
+
print(f"\n[β
] Processed {images_processed} images in {total_time/60:.1f} minutes")
|
| 281 |
+
print(f"[π] Average speed: {images_processed/total_time:.1f} images/sec")
|
| 282 |
+
|
| 283 |
+
finally:
|
| 284 |
+
del model
|
| 285 |
+
torch.cuda.empty_cache()
|
| 286 |
+
|
| 287 |
+
def extract_and_upload(self, model_config: dict, split: str = "train"):
|
| 288 |
+
"""
|
| 289 |
+
Extract features using optimized generator and upload to HuggingFace.
|
| 290 |
+
Returns the dataset if upload fails for retry purposes.
|
| 291 |
+
"""
|
| 292 |
+
model_id = model_config["repo_id"]
|
| 293 |
+
short_name = model_config["short_name"]
|
| 294 |
+
|
| 295 |
+
print("\n" + "=" * 60)
|
| 296 |
+
print(f"βοΈ PROCESSING: {short_name} - {split}")
|
| 297 |
+
print("=" * 60)
|
| 298 |
+
|
| 299 |
+
# Define dataset features
|
| 300 |
+
features = Features({
|
| 301 |
+
"image_id": Value("string"),
|
| 302 |
+
"label": Value("int32"),
|
| 303 |
+
"clip_model": Value("string"),
|
| 304 |
+
"clip_features": Sequence(Value("float32")),
|
| 305 |
+
"vector_dim": Value("int32"),
|
| 306 |
+
"timestamp": Value("timestamp[ns]"),
|
| 307 |
+
})
|
| 308 |
+
|
| 309 |
+
# Suppress the "Generating split" progress bar
|
| 310 |
+
import sys
|
| 311 |
+
import io
|
| 312 |
+
old_stderr = sys.stderr
|
| 313 |
+
sys.stderr = io.StringIO()
|
| 314 |
+
|
| 315 |
+
try:
|
| 316 |
+
# Create dataset from generator
|
| 317 |
+
dataset = Dataset.from_generator(
|
| 318 |
+
lambda: self._imagenet_generator_optimized(split, model_id),
|
| 319 |
+
features=features,
|
| 320 |
+
writer_batch_size=self.cfg["generator_chunk_size"],
|
| 321 |
+
split=split
|
| 322 |
+
)
|
| 323 |
+
except Exception as e:
|
| 324 |
+
raise Exception(e)
|
| 325 |
+
#finally:
|
| 326 |
+
# # Restore stderr
|
| 327 |
+
# sys.stderr = old_stderr
|
| 328 |
+
# return
|
| 329 |
+
|
| 330 |
+
# Add metadata
|
| 331 |
+
dataset.info.description = f"CLIP features for ImageNet-1k 256x256 {split} using {model_id}"
|
| 332 |
+
dataset.info.version = self.cfg["generator_version"]
|
| 333 |
+
|
| 334 |
+
# Save to disk before upload (safety backup)
|
| 335 |
+
temp_path = f"./temp_dataset_{short_name}_{split}"
|
| 336 |
+
print(f"[πΎ] Saving dataset to {temp_path} for safety...")
|
| 337 |
+
dataset.save_to_disk(temp_path)
|
| 338 |
+
|
| 339 |
+
# Upload to HuggingFace
|
| 340 |
+
split_name = f"{short_name}_{split}"
|
| 341 |
+
|
| 342 |
+
print(f"\n[π€] Uploading {split_name} to {self.cfg['repo_id']}")
|
| 343 |
+
try:
|
| 344 |
+
dataset.push_to_hub(
|
| 345 |
+
self.cfg["repo_id"],
|
| 346 |
+
split=split_name,
|
| 347 |
+
token=self.hf_token,
|
| 348 |
+
commit_message=f"Add {split_name} CLIP features",
|
| 349 |
+
max_shard_size="500MB"
|
| 350 |
+
)
|
| 351 |
+
print(f"[β
] Successfully uploaded {split_name}")
|
| 352 |
+
|
| 353 |
+
# Clean up temp file on success
|
| 354 |
+
import shutil
|
| 355 |
+
shutil.rmtree(temp_path, ignore_errors=True)
|
| 356 |
+
return None
|
| 357 |
+
|
| 358 |
+
except Exception as e:
|
| 359 |
+
print(f"[β] Upload failed for {split_name}: {e}")
|
| 360 |
+
print(f"[π‘] Dataset saved at {temp_path} - you can retry upload with:")
|
| 361 |
+
print(f" from datasets import load_from_disk")
|
| 362 |
+
print(f" dataset = load_from_disk('{temp_path}')")
|
| 363 |
+
print(f" dataset.push_to_hub('{self.cfg['repo_id']}', split='{split_name}', ...)")
|
| 364 |
+
return dataset # Return dataset for potential retry
|
| 365 |
+
|
| 366 |
+
def extract_all_models(self, models_to_process=None):
|
| 367 |
+
"""
|
| 368 |
+
Extract features for all models and splits.
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
models_to_process: List of model configs to process (default: all)
|
| 372 |
+
"""
|
| 373 |
+
# Ensure repo exists
|
| 374 |
+
if self.hf_token:
|
| 375 |
+
try:
|
| 376 |
+
create_repo(self.cfg["repo_id"], repo_type="dataset", exist_ok=True, token=self.hf_token)
|
| 377 |
+
print(f"[β
] Repository ready: {self.cfg['repo_id']}")
|
| 378 |
+
except Exception as e:
|
| 379 |
+
print(f"[β οΈ] Repo creation warning: {e}")
|
| 380 |
+
|
| 381 |
+
# Download all data first (once for all models)
|
| 382 |
+
self._download_datasets()
|
| 383 |
+
|
| 384 |
+
# Process specified models or all
|
| 385 |
+
models = models_to_process or CLIP_MODELS
|
| 386 |
+
total_combinations = len(models) * 2 # train + validation
|
| 387 |
+
|
| 388 |
+
print("\n" + "=" * 60)
|
| 389 |
+
print(f"π PROCESSING PLAN: {len(models)} models Γ 2 splits = {total_combinations} tasks")
|
| 390 |
+
print("=" * 60)
|
| 391 |
+
|
| 392 |
+
# Keep track of failed uploads for retry
|
| 393 |
+
failed_uploads = []
|
| 394 |
+
|
| 395 |
+
for i, model_config in enumerate(models, 1):
|
| 396 |
+
print(f"\n[{i}/{len(models)}] Model: {model_config['short_name']}")
|
| 397 |
+
|
| 398 |
+
for split in TARGET_SPLITS: #"train", "test"]:
|
| 399 |
+
try:
|
| 400 |
+
dataset = self.extract_and_upload(model_config, split)
|
| 401 |
+
if dataset is not None:
|
| 402 |
+
# Upload failed but we have the dataset
|
| 403 |
+
failed_uploads.append({
|
| 404 |
+
'model': model_config['short_name'],
|
| 405 |
+
'split': split,
|
| 406 |
+
'dataset': dataset,
|
| 407 |
+
'path': f"./temp_dataset_{model_config['short_name']}_{split}"
|
| 408 |
+
})
|
| 409 |
+
except Exception as e:
|
| 410 |
+
print(f"[β] Failed {model_config['short_name']} {split}: {e}")
|
| 411 |
+
continue
|
| 412 |
+
|
| 413 |
+
# Cleanup between models
|
| 414 |
+
torch.cuda.empty_cache()
|
| 415 |
+
|
| 416 |
+
print("\n" + "=" * 60)
|
| 417 |
+
if failed_uploads:
|
| 418 |
+
print(f"β οΈ PROCESSING COMPLETE WITH {len(failed_uploads)} FAILED UPLOADS")
|
| 419 |
+
print("\nFailed uploads saved to disk:")
|
| 420 |
+
for failure in failed_uploads:
|
| 421 |
+
print(f" - {failure['model']}_{failure['split']}: {failure['path']}")
|
| 422 |
+
print("\nYou can retry these uploads after fixing the issue.")
|
| 423 |
+
else:
|
| 424 |
+
print("π ALL PROCESSING COMPLETE!")
|
| 425 |
+
print("=" * 60)
|
| 426 |
+
|
| 427 |
+
return failed_uploads # Return list of failed uploads for retry
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
# ============================================================
|
| 431 |
+
# Utility Functions
|
| 432 |
+
# ============================================================
|
| 433 |
+
|
| 434 |
+
def estimate_processing_time(num_models=len(CLIP_MODELS)):
|
| 435 |
+
"""
|
| 436 |
+
Estimate total processing time for all models.
|
| 437 |
+
"""
|
| 438 |
+
print("=" * 60)
|
| 439 |
+
print("β±οΈ TIME ESTIMATES")
|
| 440 |
+
print("=" * 60)
|
| 441 |
+
|
| 442 |
+
# Dataset sizes
|
| 443 |
+
train_size = 1_281_167
|
| 444 |
+
val_size = 50_000
|
| 445 |
+
total_images = train_size + val_size
|
| 446 |
+
|
| 447 |
+
# Time estimates
|
| 448 |
+
download_time_min = 60 # minutes
|
| 449 |
+
download_time_max = 120
|
| 450 |
+
|
| 451 |
+
# Processing speeds (images/sec)
|
| 452 |
+
speed_min = 800
|
| 453 |
+
speed_max = 1200
|
| 454 |
+
|
| 455 |
+
print(f"\nπ Dataset sizes:")
|
| 456 |
+
print(f" - Train: {train_size:,} images")
|
| 457 |
+
print(f" - Validation: {val_size:,} images")
|
| 458 |
+
print(f" - Total per model: {total_images:,} images")
|
| 459 |
+
|
| 460 |
+
print(f"\n⬠Download time (one-time):")
|
| 461 |
+
print(f" - Estimated: {download_time_min}-{download_time_max} minutes")
|
| 462 |
+
|
| 463 |
+
print(f"\nπ Processing speed:")
|
| 464 |
+
print(f" - Expected: {speed_min}-{speed_max} images/sec")
|
| 465 |
+
|
| 466 |
+
# Per model
|
| 467 |
+
time_per_model_min = total_images / speed_max / 60
|
| 468 |
+
time_per_model_max = total_images / speed_min / 60
|
| 469 |
+
|
| 470 |
+
print(f"\nβ±οΈ Per model:")
|
| 471 |
+
print(f" - Processing time: {time_per_model_min:.1f}-{time_per_model_max:.1f} minutes")
|
| 472 |
+
|
| 473 |
+
# Total
|
| 474 |
+
total_min = download_time_min + (num_models * time_per_model_min)
|
| 475 |
+
total_max = download_time_max + (num_models * time_per_model_max)
|
| 476 |
+
|
| 477 |
+
print(f"\nπ― Total for {num_models} models:")
|
| 478 |
+
print(f" - Total time: {total_min:.1f}-{total_max:.1f} minutes")
|
| 479 |
+
print(f" - Or: {total_min/60:.1f}-{total_max/60:.1f} hours")
|
| 480 |
+
|
| 481 |
+
print("\nπ‘ Tips:")
|
| 482 |
+
print(" - Processing is GPU-bound, so better GPUs = faster")
|
| 483 |
+
print(" - A100/H100 can use batch_size=1024+ for more speed")
|
| 484 |
+
print(" - Multiple GPUs can process different models in parallel")
|
| 485 |
+
print("=" * 60)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
# ============================================================
|
| 489 |
+
# Main Execution
|
| 490 |
+
# ============================================================
|
| 491 |
+
"""
|
| 492 |
+
Main execution for multi-model ImageNet CLIP feature extraction.
|
| 493 |
+
"""
|
| 494 |
+
# Show time estimates
|
| 495 |
+
estimate_processing_time()
|
| 496 |
+
|
| 497 |
+
# Confirm settings
|
| 498 |
+
print(f"\nπ§ Current configuration:")
|
| 499 |
+
print(f" - Batch size: {CONFIG['batch_size']}")
|
| 500 |
+
print(f" - Chunk size: {CONFIG['generator_chunk_size']}")
|
| 501 |
+
print(f" - Workers: {CONFIG['num_workers']}")
|
| 502 |
+
print(f" - Models to process: {len(CLIP_MODELS)}")
|
| 503 |
+
|
| 504 |
+
# Option to process subset of models
|
| 505 |
+
# For testing, you might want to start with just one:
|
| 506 |
+
# test_models = CLIP_MODELS[:1] # Just first model
|
| 507 |
+
# extractor.extract_all_models(models_to_process=test_models)
|
| 508 |
+
|
| 509 |
+
# Run extraction
|
| 510 |
+
extractor = ImageNetClipFeatureExtractor(CONFIG)
|
| 511 |
+
extractor.extract_all_models() # Process all models
|