Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
10K - 100K
Tags:
data-to-text
License:
| import csv | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{e2e_cleaned, | |
| address = {Tokyo, Japan}, | |
| title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}}, | |
| url = {https://www.aclweb.org/anthology/W19-8652/}, | |
| booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)}, | |
| author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena}, | |
| year = {2019}, | |
| pages = {421--426}, | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The E2E dataset is designed for a limited-domain data-to-text task -- | |
| generation of restaurant descriptions/recommendations based on up to 8 different | |
| attributes (name, area, price range etc.). | |
| """ | |
| _URLs = { | |
| "train": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv", | |
| "validation": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/validation.json", | |
| "test": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/test.json", | |
| "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip", | |
| } | |
| class E2ENlg(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.1") | |
| DEFAULT_CONFIG_NAME = "e2e_nlg" | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "gem_id": datasets.Value("string"), | |
| "gem_parent_id": datasets.Value("string"), | |
| "meaning_representation": datasets.Value("string"), | |
| "target": datasets.Value("string"), | |
| "references": [datasets.Value("string")], | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=datasets.info.SupervisedKeysData( | |
| input="meaning_representation", output="target" | |
| ), | |
| homepage="http://www.macs.hw.ac.uk/InteractionLab/E2E/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| dl_dir = dl_manager.download_and_extract(_URLs) | |
| challenge_sets = [ | |
| ("challenge_train_sample", "train_e2e_nlg_RandomSample500.json"), | |
| ("challenge_validation_sample", "validation_e2e_nlg_RandomSample500.json"), | |
| ("challenge_test_scramble", "test_e2e_nlg_ScrambleInputStructure500.json"), | |
| ] | |
| return [ | |
| datasets.SplitGenerator( | |
| name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} | |
| ) | |
| for spl in ["train", "validation", "test"] | |
| ] + [ | |
| datasets.SplitGenerator( | |
| name=challenge_split, | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| dl_dir["challenge_set"], "e2e_nlg", filename | |
| ), | |
| "split": challenge_split, | |
| }, | |
| ) | |
| for challenge_split, filename in challenge_sets | |
| ] | |
| def _generate_examples(self, filepath, split, filepaths=None, lang=None): | |
| """Yields examples.""" | |
| if split.startswith("challenge"): | |
| exples = json.load(open(filepath, encoding="utf-8")) | |
| if isinstance(exples, dict): | |
| assert len(exples) == 1, "multiple entries found" | |
| exples = list(exples.values())[0] | |
| for id_, exple in enumerate(exples): | |
| if len(exple) == 0: | |
| continue | |
| exple["gem_parent_id"] = exple["gem_id"] | |
| exple["gem_id"] = f"e2e_nlg-{split}-{id_}" | |
| yield id_, exple | |
| if split.startswith("test") or split.startswith("validation"): | |
| exples = json.load(open(filepath, encoding="utf-8")) | |
| if isinstance(exples, dict): | |
| assert len(exples) == 1, "multiple entries found" | |
| exples = list(exples.values())[0] | |
| for id_, exple in enumerate(exples): | |
| if len(exple) == 0: | |
| continue | |
| yield id_, { | |
| "gem_id": f"e2e_nlg-{split}-{id_}", | |
| "gem_parent_id": f"e2e_nlg-{split}-{id_}", | |
| "meaning_representation": exple["meaning_representation"], | |
| "target": exple["references"][0], | |
| "references": exple["references"], | |
| } | |
| else: | |
| with open(filepath, encoding="utf-8") as f: | |
| reader = csv.DictReader(f) | |
| for id_, example in enumerate(reader): | |
| yield id_, { | |
| "gem_id": f"e2e_nlg-{split}-{id_}", | |
| "gem_parent_id": f"e2e_nlg-{split}-{id_}", | |
| "meaning_representation": example["mr"], | |
| "target": example["ref"], | |
| "references": [] | |
| } | |