Upload H2Retrieval_Dmeta.py
Browse files- H2Retrieval_Dmeta.py +76 -0
H2Retrieval_Dmeta.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
from mteb import MTEB
|
| 3 |
+
from mteb.abstasks.AbsTaskRetrieval import AbsTaskRetrieval
|
| 4 |
+
from datasets import DatasetDict
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
import pandas as pd
|
| 7 |
+
def load_dataset(path):
|
| 8 |
+
df = pd.read_parquet(path, engine="pyarrow")
|
| 9 |
+
return df
|
| 10 |
+
|
| 11 |
+
def load_retrieval_data(path):
|
| 12 |
+
eval_split = 'dev'
|
| 13 |
+
|
| 14 |
+
corpus = {e['cid']: {'text': e['text']} for i, e in load_dataset(path + r'\data\corpus.parquet.gz').iterrows()}
|
| 15 |
+
queries = {e['qid']: e['text'] for i, e in load_dataset(path + r'\data\queries.parquet.gz').iterrows()}
|
| 16 |
+
relevant_docs = defaultdict(dict)
|
| 17 |
+
for i, e in load_dataset(path + r'\data\qrels.parquet.gz').iterrows():
|
| 18 |
+
relevant_docs[e['qid']][e['cid']] = e['score']
|
| 19 |
+
|
| 20 |
+
corpus = DatasetDict({eval_split: corpus})
|
| 21 |
+
queries = DatasetDict({eval_split: queries})
|
| 22 |
+
relevant_docs = DatasetDict({eval_split: relevant_docs})
|
| 23 |
+
return corpus, queries, relevant_docs
|
| 24 |
+
|
| 25 |
+
# conda install sentence-transformers -c conda-forge
|
| 26 |
+
# $env:HF_ENDPOINT="https://hf-mirror.com"; python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='DMetaSoul/Dmeta-embedding', local_dir=r'D:\models\Dmeta')"
|
| 27 |
+
# pip install pytrec-eval-terrier
|
| 28 |
+
# 修改 envs\HelloGPT\lib\site-packages\pip\_vendor\resolvelib\resolvers.py 的 Resolution 对象
|
| 29 |
+
# 的 _get_updated_criteria 方法,给 for 循环里添加如下代码
|
| 30 |
+
# def _get_updated_criteria(self, candidate):
|
| 31 |
+
# criteria = self.state.criteria.copy()
|
| 32 |
+
# for requirement in self._p.get_dependencies(candidate=candidate):
|
| 33 |
+
# if 'pytrec-eval' in repr(requirement):
|
| 34 |
+
# continue
|
| 35 |
+
# self._add_to_criteria(criteria, requirement, parent=candidate)
|
| 36 |
+
# return criteria
|
| 37 |
+
# pip install mteb[beir] -i https://pypi.tuna.tsinghua.edu.cn/simple/ # 需要开 tun 模式
|
| 38 |
+
|
| 39 |
+
# mteb 会给 encode 的 batch_size 设置 128, 显存不够得手动修改 SentenceTransformer.py
|
| 40 |
+
# def encode 的相关内容, 将 batch_size 强制调回 32, 添加一行 batch_size = 32
|
| 41 |
+
model = SentenceTransformer(r'D:\models\Dmeta', device='cuda:0')
|
| 42 |
+
|
| 43 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
| 44 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
| 45 |
+
embs1 = model.encode(texts1, normalize_embeddings=True)
|
| 46 |
+
embs2 = model.encode(texts2, normalize_embeddings=True)
|
| 47 |
+
similarity = embs1 @ embs2.T
|
| 48 |
+
print(similarity)
|
| 49 |
+
|
| 50 |
+
class H2Retrieval(AbsTaskRetrieval):
|
| 51 |
+
@property
|
| 52 |
+
def description(self):
|
| 53 |
+
return {
|
| 54 |
+
'name': 'H2Retrieval',
|
| 55 |
+
'hf_hub_name': 'Limour/H2Retrieval',
|
| 56 |
+
'reference': 'https://huggingface.co/datasets/a686d380/h-corpus-2023',
|
| 57 |
+
'description': 'h-corpus 领域的 Retrieval 评价数据集。',
|
| 58 |
+
'type': 'Retrieval',
|
| 59 |
+
'category': 's2p',
|
| 60 |
+
'eval_splits': ['dev'],
|
| 61 |
+
'eval_langs': ['zh'],
|
| 62 |
+
'main_score': 'ndcg_at_10'
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
def load_data(self, **kwargs):
|
| 66 |
+
if self.data_loaded:
|
| 67 |
+
return
|
| 68 |
+
|
| 69 |
+
self.corpus, self.queries, self.relevant_docs = load_retrieval_data(r'D:\datasets\H2Retrieval')
|
| 70 |
+
self.data_loaded = True
|
| 71 |
+
|
| 72 |
+
evaluation = MTEB(tasks=[H2Retrieval()])
|
| 73 |
+
evaluation.run(model)
|
| 74 |
+
# torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 25.34 GiB.
|
| 75 |
+
# return torch.mm(a_norm, b_norm.transpose(0, 1)) #TODO: this keeps allocating GPU memory
|
| 76 |
+
# 无语了,最耗时间的跑完了,这里给我整不会了
|