Datasets:
Upload folder using huggingface_hub
Browse files- HuggingFaceDataset-Binary.py +124 -0
- metadata.csv +0 -0
HuggingFaceDataset-Binary.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import json
|
| 16 |
+
import os
|
| 17 |
+
import csv
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import pandas as pd
|
| 20 |
+
|
| 21 |
+
import datasets
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
_CITATION = """\
|
| 25 |
+
@inproceedings{gautam2024kvasirvqa,
|
| 26 |
+
title={Kvasir-VQA: A Text-Image Pair GI Tract Dataset},
|
| 27 |
+
author={Gautam, Sushant and Storås, Andrea and Midoglu, Cise and Hicks, Steven A. and Thambawita, Vajira and Halvorsen, Pål and Riegler, Michael A.},
|
| 28 |
+
booktitle={Proceedings of the First International Workshop on Vision-Language Models for Biomedical Applications (VLM4Bio '24)},
|
| 29 |
+
year={2024},
|
| 30 |
+
location={Melbourne, VIC, Australia},
|
| 31 |
+
publisher={ACM},
|
| 32 |
+
doi={10.1145/3689096.3689458}
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
_DESCRIPTION = """\
|
| 37 |
+
The Kvasir-VQA dataset is an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations. This dataset is designed to facilitate advanced machine learning tasks in gastrointestinal (GI) diagnostics, including image captioning, Visual Question Answering (VQA), and text-based generation of synthetic medical images.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
_HOMEPAGE = "https://datasets.simula.no/kvasir-vqa/"
|
| 41 |
+
|
| 42 |
+
_LICENSE = "cc-by-nc-4.0"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class KvasirVQADataset(datasets.GeneratorBasedBuilder):
|
| 46 |
+
"""Kvasir-VQA: A Text-Image Pair GI Tract Dataset"""
|
| 47 |
+
|
| 48 |
+
VERSION = datasets.Version("1.0.0")
|
| 49 |
+
|
| 50 |
+
BUILDER_CONFIGS = [
|
| 51 |
+
datasets.BuilderConfig(
|
| 52 |
+
name="kvasir_vqa", version=VERSION, description="Kvasir-VQA dataset containing text-image pairs with question-and-answer annotations"),
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
DEFAULT_CONFIG_NAME = "kvasir_vqa"
|
| 56 |
+
|
| 57 |
+
def _info(self):
|
| 58 |
+
features = datasets.Features(
|
| 59 |
+
{
|
| 60 |
+
"image": datasets.Image(),
|
| 61 |
+
"source": datasets.Value("string"),
|
| 62 |
+
"question": datasets.Value("string"),
|
| 63 |
+
"answer": datasets.Value("string"),
|
| 64 |
+
"img_id": datasets.Value("string"),
|
| 65 |
+
}
|
| 66 |
+
)
|
| 67 |
+
return datasets.DatasetInfo(
|
| 68 |
+
description=_DESCRIPTION,
|
| 69 |
+
features=features,
|
| 70 |
+
homepage=_HOMEPAGE,
|
| 71 |
+
license=_LICENSE,
|
| 72 |
+
citation=_CITATION,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def _split_generators(self, dl_manager):
|
| 76 |
+
data_dir = "."
|
| 77 |
+
return [
|
| 78 |
+
datasets.SplitGenerator(
|
| 79 |
+
name="raw_annotations",
|
| 80 |
+
gen_kwargs={
|
| 81 |
+
"metadata_file": os.path.join(data_dir, "metadata.csv"),
|
| 82 |
+
"image_dir": data_dir,
|
| 83 |
+
},
|
| 84 |
+
)
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
def _generate_examples(self, metadata_file, image_dir):
|
| 88 |
+
image_cache = {}
|
| 89 |
+
df = pd.read_csv(metadata_file, encoding='utf-8')
|
| 90 |
+
# shuffled_df = df.sample(frac=1, random_state=42).reset_index(drop=True)
|
| 91 |
+
shuffled_df = df
|
| 92 |
+
for idx, row in shuffled_df.iterrows():
|
| 93 |
+
image_file = row["file_name"]
|
| 94 |
+
image_path = os.path.join(image_dir, image_file)
|
| 95 |
+
|
| 96 |
+
if image_file not in image_cache:
|
| 97 |
+
if os.path.exists(image_path):
|
| 98 |
+
with open(image_path, "rb") as img_file:
|
| 99 |
+
image_cache[image_file] = img_file.read()
|
| 100 |
+
else:
|
| 101 |
+
continue # Skip if the image file does not exist
|
| 102 |
+
|
| 103 |
+
yield idx, {
|
| 104 |
+
"image": image_cache[image_file],
|
| 105 |
+
"source": row["source"],
|
| 106 |
+
"question": row["question"],
|
| 107 |
+
"answer": row["answer"],
|
| 108 |
+
"img_id": image_file.replace(".jpg", "").replace("images/", ""),
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
# RUN: datasets-cli test HuggingFaceDataset-Binary.py --save_info --all_configs
|
| 112 |
+
|
| 113 |
+
## upload to huggingface, it will save as arrow
|
| 114 |
+
|
| 115 |
+
# huggingface-cli upload SimulaMet-HOST/xxKvasir-VQA . . --repo-type dataset xxx
|
| 116 |
+
|
| 117 |
+
## then convert the arrow to parqueet
|
| 118 |
+
|
| 119 |
+
# datasets-cli convert_to_parquet SimulaMet-HOST/xxKvasir-VQA
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# The file names were weird. I had to rename them to make it more readable.
|
| 123 |
+
# cloned the repo to local and pushed again to huggingface
|
| 124 |
+
|
metadata.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|