albertvillanova
HF Staff
Move ans2label and id2feature loading to _generate_examples
c499ad4
verified
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """The GQA dataset preprocessed for LXMERT.""" | |
| import base64 | |
| import csv | |
| import json | |
| import os | |
| import sys | |
| import datasets | |
| import numpy as np | |
| csv.field_size_limit(sys.maxsize) | |
| _CITATION = """\ | |
| @inproceedings{hudson2019gqa, | |
| title={Gqa: A new dataset for real-world visual reasoning and compositional question answering}, | |
| author={Hudson, Drew A and Manning, Christopher D}, | |
| booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, | |
| pages={6700--6709}, | |
| year={2019} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| GQA is a new dataset for real-world visual reasoning and compositional question answering, | |
| seeking to address key shortcomings of previous visual question answering (VQA) datasets. | |
| """ | |
| _URLS = { | |
| "train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json", | |
| "dev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json", | |
| "feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip", | |
| "ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json", | |
| } | |
| _FEAT_PATH = "vg_gqa_imgfeat/vg_gqa_obj36.tsv" | |
| FIELDNAMES = [ | |
| "img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features" | |
| ] | |
| _SHAPE_FEATURES = (36, 2048) | |
| _SHAPE_BOXES = (36, 4) | |
| class GqaLxmert(datasets.GeneratorBasedBuilder): | |
| """The GQA dataset preprocessed for LXMERT, with the objects features detected by a Faster RCNN replacing the | |
| raw images.""" | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="gqa", version=datasets.Version("1.0.0"), description="GQA dataset."), | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "question": datasets.Value("string"), | |
| "question_id": datasets.Value("int32"), | |
| "image_id": datasets.Value("string"), | |
| "features": datasets.Array2D(_SHAPE_FEATURES, dtype="float32"), | |
| "normalized_boxes": datasets.Array2D(_SHAPE_BOXES, dtype="float32"), | |
| "label": datasets.Value("int32"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| dl_dir = dl_manager.download_and_extract(_URLS) | |
| features_path = os.path.join(dl_dir["feat"], _FEAT_PATH) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": dl_dir["train"], | |
| "ans2label_path": dl_dir["ans2label"], | |
| "features_path": features_path, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": dl_dir["dev"], | |
| "ans2label_path": dl_dir["ans2label"], | |
| "features_path": features_path, | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, ans2label_path, features_path): | |
| """ Yields examples as (key, example) tuples.""" | |
| if not hasattr(self, "ans2label"): | |
| with open(ans2label_path, encoding="utf-8") as f: | |
| self.ans2label = json.load(f) | |
| if not hasattr(self, "id2features"): | |
| self.id2features = self._load_features(features_path) | |
| with open(filepath, encoding="utf-8") as f: | |
| gqa = json.load(f) | |
| for id_, d in enumerate(gqa): | |
| img_features = self.id2features[d["img_id"]] | |
| label = self.ans2label[next(iter(d["label"]))] | |
| yield id_, { | |
| "question": d["sent"], | |
| "question_id": d["question_id"], | |
| "image_id": d["img_id"], | |
| "features": img_features["features"], | |
| "normalized_boxes": img_features["normalized_boxes"], | |
| "label": label, | |
| } | |
| def _load_features(self, filepath): | |
| """Returns a dictionary mapping an image id to the corresponding image's objects features.""" | |
| id2features = {} | |
| with open(filepath) as f: | |
| reader = csv.DictReader(f, FIELDNAMES, delimiter="\t") | |
| for i, item in enumerate(reader): | |
| features = {} | |
| img_h = int(item["img_h"]) | |
| img_w = int(item["img_w"]) | |
| num_boxes = int(item["num_boxes"]) | |
| features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape( | |
| (num_boxes, -1) | |
| ) | |
| boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4)) | |
| features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w) | |
| id2features[item["img_id"]] = features | |
| return id2features | |
| def _normalize_boxes(self, boxes, img_h, img_w): | |
| """ Normalizes the input boxes given the original image size.""" | |
| normalized_boxes = boxes.copy() | |
| normalized_boxes[:, (0, 2)] /= img_w | |
| normalized_boxes[:, (1, 3)] /= img_h | |
| return normalized_boxes | |