--- license: apache-2.0 task_categories: - tabular-classification - tabular-regression tags: - nigeria - banking - churn-prediction - customer-analytics - customer-360 - fintech - customer-segmentation language: - en size_categories: - 1M5/month): 3x risk - **No Direct Deposit**: 3.5x risk ### Protective Factors - **Multi-Product** (3+): 0.2x risk - **High Engagement** (>70 score): 0.3x risk - **Recent Activity** (<7 days): 0.25x risk - **High Balance** (>₦500k): 0.4x risk --- ## Data Distributions ### Demographics | Metric | Value | |--------|-------| | **Avg Age** | 35 years | | **Gender Split** | 52% M / 48% F | | **Urban Rate** | 65% | ### Product Holdings | Product | Prevalence | Avg Balance | |---------|------------|-------------| | Savings Account | 80% | ₦150,000 | | Current Account | 35% | ₦300,000 | | Debit Card | 40% | - | | Digital Wallet | 30% | ₦50,000 | | Loan | 20% | ₦500,000 | | Investment | 12% | ₦1,000,000 | | Credit Card | 8% | - | **Average Products per Customer**: 2.0 ### Balance Distribution - **Distribution**: Lognormal - **Median**: ₦50,000 - **Mean**: ₦160,000 - **Top 10%**: >₦800,000 ### Transaction Activity (30 days) | Metric | Value | |--------|-------| | **Avg Transactions** | 25 | | **Zero Transactions** | 15% | | **High Activity (50+)** | 10% | ### Digital Engagement Score - **Distribution**: Normal (μ=55, σ=20) - **Low (<30)**: 20% - **Medium (30-70)**: 60% - **High (>70)**: 20% --- ## Customer Segments | Segment | Prevalence | Avg Balance | Products | Churn Rate | |---------|------------|-------------|----------|------------| | **Mass Market** | 60% | ₦50k | 1.5 | 8% | | **Emerging Affluent** | 25% | ₦300k | 2.5 | 4% | | **Affluent** | 10% | ₦2M | 3.5 | 2% | | **Private Banking** | 5% | ₦10M | 5.0 | 1% | --- ## KYC Tiers | Tier | Daily Limit | Prevalence | Churn Rate | |------|-------------|------------|------------| | **Tier 1** | ₦300k | 45% | 8% | | **Tier 2** | ₦5M | 45% | 4% | | **Tier 3** | Unlimited | 10% | 2% | --- ## Nigerian Context ### Geographic Distribution **Top 5 States**: 1. Lagos - 25% 2. Abuja (FCT) - 12% 3. Rivers - 8% 4. Kano - 7% 5. Oyo - 5% ### Income Patterns - **Median Income**: ₦120,000/month - **Lagos Multiplier**: 1.5x national average - **Rural Areas**: 0.6-0.7x national average ### Banking Behavior ✅ **Salary Detection**: 55% have direct deposit ✅ **Multi-Banking**: 40% hold accounts at 2+ banks ✅ **Mobile First**: 70% primarily use mobile app ✅ **Dormancy**: 12.5% dormant (90+ days no activity) ### Seasonal Patterns - **Detty December**: +50% balances in December - **January Broke**: -30% balances in January - **Mid-year Lull**: -10% activity in June-July --- ## Files ``` customer_360/ ├── README.md ├── nigerian_customer_360_pilot.parquet (10k, 0.45 MB) ├── nigerian_customer_360.parquet (2M, ~160 MB) - Coming Soon ├── nigerian_customer_360.csv (2M, ~320 MB) - Coming Soon └── customer_360_sample.csv (100 rows) ``` --- ## Usage Example ```python import pandas as pd from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split # Load data df = pd.read_parquet('nigerian_customer_360.parquet') # Feature engineering df['balance_per_product'] = df['total_balance_ngn'] / df['products_count'] df['txn_per_day'] = df['transaction_count_30d'] / 30 df['avg_txn_size'] = df['transaction_volume_ngn_30d'] / df['transaction_count_30d'] # Churn prediction features features = [ 'products_count', 'total_balance_ngn', 'transaction_count_30d', 'days_since_last_transaction', 'digital_engagement_score', 'dormant_flag', 'account_age_days', 'balance_per_product' ] X = df[features].fillna(0) y = df['churn_30d'] # Split and train X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y, random_state=42 ) model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) model.fit(X_train, y_train) # Feature importance importance_df = pd.DataFrame({ 'feature': features, 'importance': model.feature_importances_ }).sort_values('importance', ascending=False) print(importance_df) ``` --- ## Retention Strategies ### High-Risk Segments 1. **Dormant Customers**: Re-engagement campaigns, special offers 2. **Single-Product**: Cross-sell campaigns 3. **Low Balance**: Savings incentives 4. **Low Engagement**: Digital onboarding support ### Recommended Actions - **Churn Score >0.7**: Immediate intervention (personal call) - **Churn Score 0.5-0.7**: Retention offer (fee waiver, bonus) - **Churn Score 0.3-0.5**: Engagement campaign (push notifications) - **Churn Score <0.3**: Monitor only --- ## Limitations 1. **Snapshot Data**: Single point-in-time, not time-series 2. **Simplified Engagement**: Real engagement includes many more touchpoints 3. **External Factors**: Macroeconomic conditions not included 4. **Competitive Actions**: Other banks' offers not modeled --- ## Citation ```bibtex @dataset{nigerian_customer_360_2025, author = {Electric Sheep Africa}, title = {Nigerian Banking Customer 360 Dataset}, year = {2025}, publisher = {Hugging Face} } ``` --- **Last Updated**: 2025-10-19 **Status**: ✅ Pilot Validated