import json import datasets from datasets import Features, Sequence, Value _CITATION = """@article{srinivasan2021wit, title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning}, author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc}, journal={arXiv preprint arXiv:2103.01913}, year={2021} } """ _DESCRIPTION = """Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal machine learning models. """ _HOMEPAGE = "https://github.com/google-research-datasets/wit" _URL = "https://storage.googleapis.com/huggingface-nlp/datasets/wit/" _URLS = { 'train': [_URL + f"part-{'%05d' % i}-48a6f07e-bb86-4735-aac7-883349f41a28-c000.json.gz" for i in range(400)] } class Wit(datasets.GeneratorBasedBuilder): """WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=Features( { 'b64_bytes': Value('string'), 'embedding': Sequence(Value('float64')), 'image_url': Value('string'), 'metadata_url': Value('string'), 'original_height': Value('int32'), 'original_width': Value('int32'), 'mime_type': Value('string'), 'caption_attribution_description': Value('string'), 'wit_features': Sequence( { "language": Value('string'), "page_url": Value('string'), "attribution_passes_lang_id": Value("string"), "caption_alt_text_description": Value('string'), "caption_reference_description": Value('string'), "caption_title_and_reference_description": Value('string'), "context_page_description": Value('string'), "context_section_description": Value('string'), "hierarchical_section_title": Value('string'), "is_main_image": Value('string'), "page_changed_recently": Value('string'), "page_title": Value('string'), "section_title": Value('string'), } ), } ), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files["train"]}), ] def _generate_examples(self, filepaths): """Yields examples.""" wit_feature_names = self.info.features['wit_features'].feature.keys() for filepath in filepaths: with open(filepath, "rb") as f: for i, line in enumerate(f): line = line.strip() row_data = json.loads(line, encoding='utf-8') for feature in row_data['wit_features']: # If a feature is missing from feature dict, add it as None for fname in wit_feature_names: if fname not in feature: feature[fname] = None # Here we take redundant values from wit_features and add them to row_data to avoid unnecessary duplication extra_wit_feature_keys = [k for k in feature.keys() if k not in wit_feature_names] for k in extra_wit_feature_keys: data = feature.pop(k) if isinstance(data, list): data = data[0] row_data[k] = data # Check row_data now for missing keys, adding None for most, but -1 for int features to avoid failures. missing_keys = [x for x in self.info.features.keys() if x not in row_data] for missing_key in missing_keys: row_data[missing_key] = None if missing_key not in ['original_height', 'original_width'] else -1 yield str(i), row_data