webxos commited on
Commit
af9b2dc
·
verified ·
1 Parent(s): 7841a09

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -43
README.md CHANGED
@@ -93,49 +93,6 @@ for policy optimization.
93
  | Train | 4,000 | 80% |
94
  | Test | 1,000 | 20% |
95
 
96
- ## Usage
97
-
98
- ### Direct Loading
99
-
100
- ```python
101
- from datasets import load_dataset
102
-
103
- dataset = load_dataset("json", data_files={
104
- "train": "data/train-00000-of-00001.jsonl",
105
- "test": "data/test-00000-of-00001.jsonl"
106
- })
107
- ```
108
-
109
- ### Example: Training a Model
110
-
111
- ```python
112
- import numpy as np
113
- from sklearn.ensemble import RandomForestClassifier
114
- from sklearn.metrics import accuracy_score
115
-
116
- # Load dataset
117
- dataset = load_dataset("json", data_files={
118
- "train": "data/train-00000-of-00001.jsonl",
119
- "test": "data/test-00000-of-00001.jsonl"
120
- })
121
-
122
- # Prepare features and labels
123
- X_train = np.array([sample["neural_channels"] for sample in dataset["train"]])
124
- y_train = np.array([sample["movement_intent"] for sample in dataset["train"]])
125
-
126
- X_test = np.array([sample["neural_channels"] for sample in dataset["test"]])
127
- y_test = np.array([sample["movement_intent"] for sample in dataset["test"]])
128
-
129
- # Train model
130
- clf = RandomForestClassifier(n_estimators=100)
131
- clf.fit(X_train, y_train)
132
-
133
- # Evaluate
134
- y_pred = clf.predict(X_test)
135
- accuracy = accuracy_score(y_test, y_pred)
136
- print(f"Accuracy: {accuracy:.4f}")
137
- ```
138
-
139
  ## Citation
140
 
141
  ```bibtex
 
93
  | Train | 4,000 | 80% |
94
  | Test | 1,000 | 20% |
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  ## Citation
97
 
98
  ```bibtex