ernie-m-large-mnli-xnli_finetuned
This model is a fine-tuned version of MoritzLaurer/ernie-m-large-mnli-xnli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0966
- Accuracy: 0.7634
- F1 Macro: 0.7628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|---|---|---|---|---|---|
| 0.8214 | 1.0 | 1120 | 0.8022 | 0.7536 | 0.7531 |
| 0.8792 | 2.0 | 2240 | 1.0966 | 0.7634 | 0.7628 |
| 0.6161 | 3.0 | 3360 | 1.2346 | 0.7589 | 0.7598 |
| 0.4382 | 4.0 | 4480 | 1.5608 | 0.7420 | 0.7432 |
| 0.36 | 5.0 | 5600 | 1.9063 | 0.7188 | 0.7166 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 7
Model tree for giahuythai/ernie-m-large-mnli-xnli_finetuned
Base model
MoritzLaurer/ernie-m-large-mnli-xnli