--- license: apache-2.0 base_model: swiss-ai/Apertus-70B-Instruct-2509 pipeline_tag: text-generation library_name: node-llama-cpp tags: - node-llama-cpp - llama.cpp - apertus - multilingual - swiss-ai - compliant - conversational extra_gated_prompt: "### Apertus LLM Acceptable Use Policy \n(1.0 | September 1,\ \ 2025)\n\"Agreement\" The Swiss National AI Institute (SNAI) is a partnership between\ \ the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL. \n\nBy using\ \ the Apertus LLM you agree to indemnify, defend, and hold harmless ETH Zurich and\ \ EPFL against any third-party claims arising from your use of Apertus LLM. \n\n\ The training data and the Apertus LLM may contain or generate information that directly\ \ or indirectly refers to an identifiable individual (Personal Data). You process\ \ Personal Data as independent controller in accordance with applicable data protection\ \ law. SNAI will regularly provide a file with hash values for download which you\ \ can apply as an output filter to your use of our Apertus LLM. The file reflects\ \ data protection deletion requests which have been addressed to SNAI as the developer\ \ of the Apertus LLM. It allows you to remove Personal Data contained in the model\ \ output. We strongly advise downloading and applying this output filter from SNAI\ \ every six months following the release of the model. " extra_gated_fields: Your Name: text Country: country Affiliation: text geo: ip_location By clicking Submit below I accept the terms of use: checkbox extra_gated_button_content: Submit quantized_by: giladgd --- # Apertus-70B-Instruct-2509-GGUF Static quants of [`swiss-ai/Apertus-70B-Instruct-2509`](https://huggingface.co/swiss-ai/Apertus-70B-Instruct-2509). ## Quants | Link | [URI](https://node-llama-cpp.withcat.ai/cli/pull) | Quant | Size | |:-----|:--------------------------------------------------|:------|-----:| | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q2_K.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q2_K` | Q2_K | 27.3GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q3_K_S.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q3_K_S` | Q3_K_S | 30.8GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q3_K_M.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q3_K_M` | Q3_K_M | 35.5GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q3_K_L.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q3_K_L` | Q3_K_L | 39.6GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q4_0.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_0` | Q4_0 | 40.0GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q4_K_S.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_K_S` | Q4_K_S | 40.4GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q4_K_M.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_K_M` | Q4_K_M | 43.7GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q5_0.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q5_0` | Q5_0 | 48.7GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q5_K_S.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q5_K_S` | Q5_K_S | 48.7GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q5_K_M.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q5_K_M` | Q5_K_M | 50.6GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q6_K.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q6_K` | Q6_K | 57.9GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.Q8_0.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q8_0` | Q8_0 | 75.0GB | | [GGUF](https://huggingface.co/giladgd/Apertus-70B-Instruct-2509-GGUF/resolve/main/Apertus-70B-Instruct-2509.F16.gguf) | `hf:giladgd/Apertus-70B-Instruct-2509-GGUF:F16` | F16 | 141.2GB | > [!TIP] > Download a quant using `node-llama-cpp` ([more info](https://node-llama-cpp.withcat.ai/cli/pull)): > ```bash > npx -y node-llama-cpp pull > ``` # Usage ## Use with [`node-llama-cpp`](https://node-llama-cpp.withcat.ai) (recommended) Ensure you have node.js installed: ```bash brew install nodejs ``` ### CLI Chat with the model: ```bash npx -y node-llama-cpp chat hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_K_M ``` ### Code Use it in your project: ```bash npm install node-llama-cpp ``` ```typescript import {getLlama, resolveModelFile, LlamaChatSession} from "node-llama-cpp"; const modelUri = "hf:giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_K_M"; const llama = await getLlama(); const model = await llama.loadModel({ modelPath: await resolveModelFile(modelUri) }); const context = await model.createContext(); const session = new LlamaChatSession({ contextSequence: context.getSequence() }); const q1 = "Hi there, how are you?"; console.log("User: " + q1); const a1 = await session.prompt(q1); console.log("AI: " + a1); ``` > [!TIP] > Read the [getting started guide](https://node-llama-cpp.withcat.ai/guide/) to quickly scaffold a new `node-llama-cpp` project ## Use with [llama.cpp](https://github.com/ggml-org/llama.cpp) Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` ### CLI ```bash llama-cli -hf giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_K_M -p "The meaning to life and the universe is" ``` ### Server ```bash llama-server -hf giladgd/Apertus-70B-Instruct-2509-GGUF:Q4_K_M -c 2048 ```