SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NomicBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'search_query: quality inspection rejected but material received',
    'search_document: [FIELD] quality_inspection | [TABLE] tabPurchase Receipt Item',
    'search_document: [FIELD] delivery_date | [TABLE] tabSales Order',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7248, 0.0996],
#         [0.7248, 1.0000, 0.2103],
#         [0.0996, 0.2103, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5228
cosine_accuracy@5 0.7842
cosine_accuracy@12 0.8759
cosine_precision@12 0.1248
cosine_recall@12 0.8324
cosine_ndcg@10 0.6569
cosine_mrr@10 0.6305
cosine_map@10 0.5873
cosine_map@12 0.5905

Training Details

Training Dataset

Unnamed Dataset

  • Size: 128,055 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 9 tokens
    • mean: 15.81 tokens
    • max: 34 tokens
    • min: 11 tokens
    • mean: 19.35 tokens
    • max: 49 tokens
  • Samples:
    sentence_0 sentence_1
    search_query: where's the list of folks on leave? search_document: [FIELD] status | [TABLE] tabLeave Application
    search_query: 2 barcodes same search_document: [FIELD] barcode | [TABLE] tabItem Barcode
    search_query: customers who havenโ€™t bought last 12 mo search_document: [FIELD] posting_date | [TABLE] tabSales Invoice
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 40.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • num_train_epochs: 4
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss erp-val_cosine_ndcg@10
-1 -1 - 0.4109
0.0562 150 - 0.5393
0.1124 300 - 0.5979
0.1687 450 - 0.6070
0.1874 500 2.226 -
0.2249 600 - 0.6149
0.2811 750 - 0.6232
0.3373 900 - 0.6207
0.3748 1000 1.557 -
0.3936 1050 - 0.6333
0.4498 1200 - 0.6410
0.5060 1350 - 0.6392
0.5622 1500 1.3475 0.6439
0.6184 1650 - 0.6402
0.6747 1800 - 0.6405
0.7309 1950 - 0.6465
0.7496 2000 1.249 -
0.7871 2100 - 0.6439
0.8433 2250 - 0.6465
0.8996 2400 - 0.6377
0.9370 2500 1.1999 -
0.9558 2550 - 0.6418
1.0 2668 - 0.6400
1.0120 2700 - 0.6414
1.0682 2850 - 0.6565
1.1244 3000 1.1002 0.6475
1.1807 3150 - 0.6440
1.2369 3300 - 0.6449
1.2931 3450 - 0.6540
1.3118 3500 1.0786 -
1.3493 3600 - 0.6492
1.4055 3750 - 0.6521
1.4618 3900 - 0.6511
1.4993 4000 1.0513 -
1.5180 4050 - 0.6595
1.5742 4200 - 0.6512
1.6304 4350 - 0.6456
1.6867 4500 1.0218 0.6508
1.7429 4650 - 0.6500
1.7991 4800 - 0.6405
1.8553 4950 - 0.6612
1.8741 5000 1.0101 -
1.9115 5100 - 0.6462
1.9678 5250 - 0.6571
2.0 5336 - 0.6616
2.0240 5400 - 0.6654
2.0615 5500 0.977 -
2.0802 5550 - 0.6554
2.1364 5700 - 0.6536
2.1927 5850 - 0.6614
2.2489 6000 0.9208 0.6629
2.3051 6150 - 0.6576
2.3613 6300 - 0.6503
2.4175 6450 - 0.6630
2.4363 6500 0.935 -
2.4738 6600 - 0.6509
2.5300 6750 - 0.6570
2.5862 6900 - 0.6485
2.6237 7000 0.9224 -
2.6424 7050 - 0.6508
2.6987 7200 - 0.6587
2.7549 7350 - 0.6578
2.8111 7500 0.9068 0.6563
2.8673 7650 - 0.6565
2.9235 7800 - 0.6612
2.9798 7950 - 0.6608
2.9985 8000 0.9139 -
3.0 8004 - 0.6588
3.0360 8100 - 0.6579
3.0922 8250 - 0.6526
3.1484 8400 - 0.6567
3.1859 8500 0.8468 -
3.2046 8550 - 0.6553
3.2609 8700 - 0.6562
3.3171 8850 - 0.6570
3.3733 9000 0.8638 0.6551
3.4295 9150 - 0.6551
3.4858 9300 - 0.6551
3.5420 9450 - 0.6564
3.5607 9500 0.8388 -
3.5982 9600 - 0.6563
3.6544 9750 - 0.6568
3.7106 9900 - 0.6564
3.7481 10000 0.8544 -
3.7669 10050 - 0.6568
3.8231 10200 - 0.6561
3.8793 10350 - 0.6567
3.9355 10500 0.8349 0.6569

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.2
  • PyTorch: 2.9.0+cu126
  • Accelerate: 1.12.0
  • Datasets: 4.0.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
732
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hyrinmansoor/changAI-nomic-embed-text-v1.5-finetuned

Finetuned
(24)
this model

Evaluation results