Adirazgold commited on
Commit
f794b8b
·
verified ·
1 Parent(s): eea7715

Update processing_granite_vision_embedding.py

Browse files
processing_granite_vision_embedding.py CHANGED
@@ -23,7 +23,7 @@ def floor_by_factor(number: float, factor: int) -> int:
23
 
24
  class GraniteVisionEmbProcessor(LlavaNextProcessor):
25
  """
26
- Processor for ColPali.
27
  """
28
 
29
  visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
@@ -300,7 +300,7 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
300
  images: List[Image.Image],
301
  ) -> BatchFeature:
302
  """
303
- Process images for ColPali.
304
  """
305
  # texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
306
  texts_doc = [self.visual_prompt_prefix for _ in images]
@@ -394,7 +394,7 @@ class GraniteVisionEmbProcessor(LlavaNextProcessor):
394
  ) -> torch.Tensor:
395
  """
396
  Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
397
- query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
398
  image of a document page.
399
 
400
  Because the embedding tensors are multi-vector and can thus have different shapes, they
 
23
 
24
  class GraniteVisionEmbProcessor(LlavaNextProcessor):
25
  """
26
+ Processor for GraniteVisionEmb.
27
  """
28
 
29
  visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
 
300
  images: List[Image.Image],
301
  ) -> BatchFeature:
302
  """
303
+ Process images.
304
  """
305
  # texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
306
  texts_doc = [self.visual_prompt_prefix for _ in images]
 
394
  ) -> torch.Tensor:
395
  """
396
  Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
397
+ query embeddings (`qs`) and passage embeddings (`ps`). For us, a passage is the
398
  image of a document page.
399
 
400
  Because the embedding tensors are multi-vector and can thus have different shapes, they