Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,315 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
-
- **Developed by:**
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
### Model Sources
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
### Recommendations
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
- **Training regime:**
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
|
| 127 |
### Results
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
## Environmental Impact
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
|
| 147 |
-
- **Hardware Type:**
|
| 148 |
-
- **
|
| 149 |
-
- **
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
## Technical Specifications
|
| 154 |
|
| 155 |
-
### Model Architecture
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
#### Hardware
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
|
| 167 |
#### Software
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
## Model Card Authors
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- text-classification
|
| 5 |
+
- distilbert
|
| 6 |
+
- command-classification
|
| 7 |
+
- intent-detection
|
| 8 |
+
- nlp
|
| 9 |
+
language:
|
| 10 |
+
- en
|
| 11 |
+
license: apache-2.0
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- f1
|
| 15 |
+
base_model: distilbert-base-uncased
|
| 16 |
+
pipeline_tag: text-classification
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# DistilBERT Command Classifier
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
A fine-tuned DistilBERT model for classifying user commands and questions with high accuracy, including handling of typos and variations.
|
| 22 |
|
| 23 |
## Model Details
|
| 24 |
|
| 25 |
### Model Description
|
| 26 |
|
| 27 |
+
This model is a fine-tuned version of `distilbert-base-uncased` specifically trained to classify various command types from user input. It's designed to handle natural language commands with typos, variations in phrasing, and different command intents.
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
- **Developed by:** jhonacmarvik
|
| 30 |
+
- **Model type:** Text Classification (Sequence Classification)
|
| 31 |
+
- **Language(s):** English
|
| 32 |
+
- **License:** Apache 2.0
|
| 33 |
+
- **Finetuned from model:** distilbert-base-uncased
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
### Model Sources
|
| 36 |
|
| 37 |
+
- **Base Model:** [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased)
|
| 38 |
+
- **Framework:** PyTorch + Transformers
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
## Uses
|
| 41 |
|
|
|
|
|
|
|
| 42 |
### Direct Use
|
| 43 |
|
| 44 |
+
This model can be directly used for:
|
| 45 |
+
- **Command intent classification** - Identify what action the user wants to perform
|
| 46 |
+
- **Voice assistant routing** - Route commands to appropriate handlers
|
| 47 |
+
- **Natural language interface control** - Control systems through natural language
|
| 48 |
+
- **Question vs Command detection** - Distinguish between questions and actionable commands
|
| 49 |
+
|
| 50 |
+
### Example Usage
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from transformers import pipeline
|
| 54 |
+
|
| 55 |
+
# Load the classifier
|
| 56 |
+
classifier = pipeline(
|
| 57 |
+
"text-classification",
|
| 58 |
+
model="jhonacmarvik/distilbert-command-classifier",
|
| 59 |
+
top_k=3
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Single prediction
|
| 63 |
+
result = classifier("Turn on all work lights")
|
| 64 |
+
print(result)
|
| 65 |
+
# Output: [
|
| 66 |
+
# {'label': 'turn_on_lights', 'score': 0.9234},
|
| 67 |
+
# {'label': 'increase_brightness', 'score': 0.0543},
|
| 68 |
+
# {'label': 'turn_off_lights', 'score': 0.0123}
|
| 69 |
+
# ]
|
| 70 |
+
|
| 71 |
+
# Batch prediction
|
| 72 |
+
commands = [
|
| 73 |
+
"Turn on all work lights",
|
| 74 |
+
"Decrease the brightness",
|
| 75 |
+
"What's the temperature?"
|
| 76 |
+
]
|
| 77 |
+
results = classifier(commands)
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Alternative Usage (Manual)
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 84 |
+
import torch
|
| 85 |
+
|
| 86 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 87 |
+
"jhonacmarvik/distilbert-command-classifier"
|
| 88 |
+
)
|
| 89 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 90 |
+
"jhonacmarvik/distilbert-command-classifier"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 94 |
+
model.to(device)
|
| 95 |
+
model.eval()
|
| 96 |
+
|
| 97 |
+
# Tokenize
|
| 98 |
+
text = "Turn on all work lights"
|
| 99 |
+
tokens = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 100 |
+
tokens = {k: v.to(device) for k, v in tokens.items()}
|
| 101 |
+
|
| 102 |
+
# Predict
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
outputs = model(**tokens)
|
| 105 |
+
probs = torch.softmax(outputs.logits, dim=-1)
|
| 106 |
+
predicted_class = torch.argmax(probs, dim=-1)
|
| 107 |
+
|
| 108 |
+
print(f"Predicted: {model.config.id2label[predicted_class.item()]}")
|
| 109 |
+
print(f"Confidence: {probs[0][predicted_class].item():.4f}")
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
### Downstream Use
|
| 113 |
+
|
| 114 |
+
Can be integrated into:
|
| 115 |
+
- Smart home systems
|
| 116 |
+
- Voice assistants
|
| 117 |
+
- Chatbots and conversational AI
|
| 118 |
+
- IoT device control interfaces
|
| 119 |
+
- Natural language command parsers
|
| 120 |
|
| 121 |
### Out-of-Scope Use
|
| 122 |
|
| 123 |
+
This model is NOT suitable for:
|
| 124 |
+
- Commands outside its training vocabulary
|
| 125 |
+
- Languages other than English
|
| 126 |
+
- Sentiment analysis or emotion detection
|
| 127 |
+
- General text classification tasks unrelated to commands
|
| 128 |
+
- Safety-critical applications without human oversight
|
| 129 |
|
| 130 |
## Bias, Risks, and Limitations
|
| 131 |
|
| 132 |
+
- **Vocabulary Limitation:** Model is trained on specific command types and may not generalize to completely novel command categories
|
| 133 |
+
- **Typo Handling:** While trained on variations with typos, extreme misspellings may reduce accuracy
|
| 134 |
+
- **Context Awareness:** Model processes single utterances and doesn't maintain conversation context
|
| 135 |
+
- **Language:** Only supports English language commands
|
| 136 |
|
| 137 |
### Recommendations
|
| 138 |
|
| 139 |
+
- Implement confidence thresholds (e.g., > 0.7) before executing commands
|
| 140 |
+
- Provide fallback mechanisms for low-confidence predictions
|
| 141 |
+
- Add human-in-the-loop for critical operations
|
| 142 |
+
- Monitor model performance on production data and retrain periodically
|
| 143 |
+
- Test thoroughly with your specific use case before deployment
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
## Training Details
|
| 146 |
|
| 147 |
### Training Data
|
| 148 |
|
| 149 |
+
- **Dataset:** Custom dataset of command variations with intentional typos and paraphrases
|
| 150 |
+
- **Size:** Multiple variations per command class
|
| 151 |
+
- **Format:** CSV with text variations and corresponding labels
|
| 152 |
+
- **Split:** 80% training, 20% validation (stratified)
|
| 153 |
|
| 154 |
### Training Procedure
|
| 155 |
|
| 156 |
+
#### Preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
- Text converted to lowercase
|
| 159 |
+
- Tokenization using DistilBERT tokenizer
|
| 160 |
+
- Maximum sequence length: 128 tokens
|
| 161 |
+
- Padding and truncation applied
|
| 162 |
|
| 163 |
#### Training Hyperparameters
|
| 164 |
|
| 165 |
+
- **Training regime:** FP32
|
| 166 |
+
- **Optimizer:** AdamW
|
| 167 |
+
- **Learning rate:** 2e-5
|
| 168 |
+
- **Warmup steps:** 100
|
| 169 |
+
- **Weight decay:** 0.01
|
| 170 |
+
- **Batch size:** 16 (per device)
|
| 171 |
+
- **Number of epochs:** 10
|
| 172 |
+
- **Early stopping patience:** 3 epochs
|
| 173 |
+
- **Evaluation strategy:** Per epoch
|
| 174 |
+
- **Best model selection:** Based on eval_loss
|
| 175 |
|
| 176 |
+
#### Hardware & Software
|
| 177 |
|
| 178 |
+
- **Framework:** PyTorch + Transformers (Hugging Face)
|
| 179 |
+
- **Base model:** distilbert-base-uncased
|
| 180 |
+
- **Hardware:** GPU (CUDA-enabled) or CPU compatible
|
| 181 |
|
| 182 |
## Evaluation
|
| 183 |
|
| 184 |
+
### Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
The model was evaluated using:
|
| 187 |
+
- **Accuracy:** Overall classification accuracy
|
| 188 |
+
- **F1 Score:** Per-class and macro-averaged F1
|
| 189 |
+
- **Precision & Recall:** Per-class metrics
|
| 190 |
+
- **Confusion Matrix:** Visual representation of classification performance
|
| 191 |
+
- **ROC-AUC:** Per-class ROC curves
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
### Results
|
| 194 |
|
| 195 |
+
Model achieves high accuracy on the validation set with strong performance across all command classes. Detailed metrics are available in the training outputs.
|
| 196 |
+
|
| 197 |
+
*Note: Specific metrics depend on your final training results. Update with actual values after training.*
|
| 198 |
+
|
| 199 |
+
## How to Get Started
|
| 200 |
+
|
| 201 |
+
### Installation
|
| 202 |
+
|
| 203 |
+
```bash
|
| 204 |
+
pip install transformers torch
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
### Quick Start
|
| 208 |
+
|
| 209 |
+
```python
|
| 210 |
+
from transformers import pipeline
|
| 211 |
+
|
| 212 |
+
classifier = pipeline(
|
| 213 |
+
"text-classification",
|
| 214 |
+
model="jhonacmarvik/distilbert-command-classifier"
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
result = classifier("Turn on the lights")
|
| 218 |
+
print(result)
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
### Production Deployment
|
| 222 |
+
|
| 223 |
+
For production use with custom loading pattern:
|
| 224 |
+
|
| 225 |
+
```python
|
| 226 |
+
import os
|
| 227 |
+
import torch
|
| 228 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 229 |
+
|
| 230 |
+
class CommandClassifier:
|
| 231 |
+
def __init__(self):
|
| 232 |
+
model_path = "jhonacmarvik/distilbert-command-classifier"
|
| 233 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 234 |
+
|
| 235 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 236 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 237 |
+
self.model.to(self.device)
|
| 238 |
+
self.model.eval()
|
| 239 |
+
|
| 240 |
+
def predict(self, text: str, top_k: int = 3):
|
| 241 |
+
tokens = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 242 |
+
tokens = {k: v.to(self.device) for k, v in tokens.items()}
|
| 243 |
+
|
| 244 |
+
with torch.no_grad():
|
| 245 |
+
logits = self.model(**tokens).logits
|
| 246 |
+
probs = torch.softmax(logits, dim=-1)
|
| 247 |
+
top_probs, top_indices = torch.topk(probs, k=top_k)
|
| 248 |
+
|
| 249 |
+
results = []
|
| 250 |
+
for prob, idx in zip(top_probs[0], top_indices[0]):
|
| 251 |
+
results.append({
|
| 252 |
+
"label": self.model.config.id2label[idx.item()],
|
| 253 |
+
"score": float(prob.item())
|
| 254 |
+
})
|
| 255 |
+
return results
|
| 256 |
+
|
| 257 |
+
# Usage
|
| 258 |
+
classifier = CommandClassifier()
|
| 259 |
+
result = classifier.predict("Turn on lights", top_k=3)
|
| 260 |
+
```
|
| 261 |
|
| 262 |
## Environmental Impact
|
| 263 |
|
| 264 |
+
Training a single model on standard GPU hardware has minimal environmental impact compared to large language models. This model uses a lightweight DistilBERT architecture which is significantly more efficient than full BERT models.
|
|
|
|
|
|
|
| 265 |
|
| 266 |
+
- **Hardware Type:** GPU (CUDA-enabled)
|
| 267 |
+
- **Compute Region:** [Your region]
|
| 268 |
+
- **Carbon Impact:** Minimal due to efficient architecture
|
|
|
|
|
|
|
| 269 |
|
| 270 |
+
## Technical Specifications
|
| 271 |
|
| 272 |
+
### Model Architecture
|
| 273 |
|
| 274 |
+
- **Base Architecture:** DistilBERT (6-layer, 768-hidden, 12-heads)
|
| 275 |
+
- **Parameters:** ~66M parameters
|
| 276 |
+
- **Classification Head:** Linear layer for multi-class classification
|
| 277 |
+
- **Dropout:** 0.1 (default DistilBERT configuration)
|
| 278 |
+
- **Activation:** GELU
|
| 279 |
|
| 280 |
### Compute Infrastructure
|
| 281 |
|
|
|
|
|
|
|
| 282 |
#### Hardware
|
| 283 |
|
| 284 |
+
- Compatible with CPU and GPU (CUDA)
|
| 285 |
+
- Recommended: GPU with 4GB+ VRAM for faster inference
|
| 286 |
+
- Works on CPU for low-volume applications
|
| 287 |
|
| 288 |
#### Software
|
| 289 |
|
| 290 |
+
- Python 3.8+
|
| 291 |
+
- PyTorch 2.0+
|
| 292 |
+
- Transformers 4.30+
|
| 293 |
+
- CUDA 11.0+ (for GPU acceleration)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
+
## Citation
|
| 296 |
|
| 297 |
+
If you use this model in your research or application, please cite:
|
| 298 |
|
| 299 |
+
```bibtex
|
| 300 |
+
@misc{distilbert-command-classifier,
|
| 301 |
+
author = {jhonacmarvik},
|
| 302 |
+
title = {DistilBERT Command Classifier},
|
| 303 |
+
year = {2024},
|
| 304 |
+
publisher = {HuggingFace},
|
| 305 |
+
howpublished = {\url{https://huggingface.co/jhonacmarvik/distilbert-command-classifier}}
|
| 306 |
+
}
|
| 307 |
+
```
|
| 308 |
|
| 309 |
+
## Model Card Authors
|
| 310 |
|
| 311 |
+
jhonacmarvik
|
| 312 |
|
| 313 |
## Model Card Contact
|
| 314 |
|
| 315 |
+
For questions or issues, please open an issue in the model repository or contact through HuggingFace.
|