readme update
Browse files
README.md
CHANGED
|
@@ -48,6 +48,7 @@ Average word error rate (WER) over the FLEURS, Mozilla Common Voice and Multilin
|
|
| 48 |
|
| 49 |
The model can be used with the following frameworks;
|
| 50 |
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
|
|
|
|
| 51 |
|
| 52 |
**Notes**:
|
| 53 |
|
|
@@ -235,4 +236,285 @@ req = TranscriptionRequest(model=model, audio=audio, language="en", temperature=
|
|
| 235 |
response = client.audio.transcriptions.create(**req)
|
| 236 |
print(response)
|
| 237 |
```
|
| 238 |
-
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
The model can be used with the following frameworks;
|
| 50 |
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
|
| 51 |
+
- [`Transformers` 🤗](https://github.com/huggingface/transformers): See [here](#transformers)
|
| 52 |
|
| 53 |
**Notes**:
|
| 54 |
|
|
|
|
| 236 |
response = client.audio.transcriptions.create(**req)
|
| 237 |
print(response)
|
| 238 |
```
|
| 239 |
+
</details>
|
| 240 |
+
|
| 241 |
+
### Transformers 🤗
|
| 242 |
+
|
| 243 |
+
Voxtral is supported in Transformers natively!
|
| 244 |
+
|
| 245 |
+
Install Transformers from source:
|
| 246 |
+
```bash
|
| 247 |
+
pip install git+https://github.com/huggingface/transformers
|
| 248 |
+
```
|
| 249 |
+
|
| 250 |
+
#### Audio Instruct
|
| 251 |
+
|
| 252 |
+
<details>
|
| 253 |
+
<summary>➡️ multi-audio + text instruction</summary>
|
| 254 |
+
|
| 255 |
+
```python
|
| 256 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 257 |
+
import torch
|
| 258 |
+
|
| 259 |
+
device = "cuda"
|
| 260 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 261 |
+
|
| 262 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 263 |
+
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
| 264 |
+
|
| 265 |
+
conversation = [
|
| 266 |
+
{
|
| 267 |
+
"role": "user",
|
| 268 |
+
"content": [
|
| 269 |
+
{
|
| 270 |
+
"type": "audio",
|
| 271 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"type": "audio",
|
| 275 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
| 276 |
+
},
|
| 277 |
+
{"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
|
| 278 |
+
],
|
| 279 |
+
}
|
| 280 |
+
]
|
| 281 |
+
|
| 282 |
+
inputs = processor.apply_chat_template(conversation)
|
| 283 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 284 |
+
|
| 285 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 286 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 287 |
+
|
| 288 |
+
print("\nGenerated response:")
|
| 289 |
+
print("=" * 80)
|
| 290 |
+
print(decoded_outputs[0])
|
| 291 |
+
print("=" * 80)
|
| 292 |
+
```
|
| 293 |
+
</details>
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
<details>
|
| 297 |
+
<summary>➡️ multi-turn</summary>
|
| 298 |
+
|
| 299 |
+
```python
|
| 300 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 301 |
+
import torch
|
| 302 |
+
|
| 303 |
+
device = "cuda"
|
| 304 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 305 |
+
|
| 306 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 307 |
+
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
| 308 |
+
|
| 309 |
+
conversation = [
|
| 310 |
+
{
|
| 311 |
+
"role": "user",
|
| 312 |
+
"content": [
|
| 313 |
+
{
|
| 314 |
+
"type": "audio",
|
| 315 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"type": "audio",
|
| 319 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
|
| 320 |
+
},
|
| 321 |
+
{"type": "text", "text": "Describe briefly what you can hear."},
|
| 322 |
+
],
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"role": "assistant",
|
| 326 |
+
"content": "The audio begins with the speaker delivering a farewell address in Chicago, reflecting on his eight years as president and expressing gratitude to the American people. The audio then transitions to a weather report, stating that it was 35 degrees in Barcelona the previous day, but the temperature would drop to minus 20 degrees the following day.",
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"role": "user",
|
| 330 |
+
"content": [
|
| 331 |
+
{
|
| 332 |
+
"type": "audio",
|
| 333 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
| 334 |
+
},
|
| 335 |
+
{"type": "text", "text": "Ok, now compare this new audio with the previous one."},
|
| 336 |
+
],
|
| 337 |
+
},
|
| 338 |
+
]
|
| 339 |
+
|
| 340 |
+
inputs = processor.apply_chat_template(conversation)
|
| 341 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 342 |
+
|
| 343 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 344 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 345 |
+
|
| 346 |
+
print("\nGenerated response:")
|
| 347 |
+
print("=" * 80)
|
| 348 |
+
print(decoded_outputs[0])
|
| 349 |
+
print("=" * 80)
|
| 350 |
+
```
|
| 351 |
+
</details>
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
<details>
|
| 355 |
+
<summary>➡️ text only</summary>
|
| 356 |
+
|
| 357 |
+
```python
|
| 358 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 359 |
+
import torch
|
| 360 |
+
|
| 361 |
+
device = "cuda"
|
| 362 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 363 |
+
|
| 364 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 365 |
+
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
| 366 |
+
|
| 367 |
+
conversation = [
|
| 368 |
+
{
|
| 369 |
+
"role": "user",
|
| 370 |
+
"content": [
|
| 371 |
+
{
|
| 372 |
+
"type": "text",
|
| 373 |
+
"text": "Why should AI models be open-sourced?",
|
| 374 |
+
},
|
| 375 |
+
],
|
| 376 |
+
}
|
| 377 |
+
]
|
| 378 |
+
|
| 379 |
+
inputs = processor.apply_chat_template(conversation)
|
| 380 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 381 |
+
|
| 382 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 383 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 384 |
+
|
| 385 |
+
print("\nGenerated response:")
|
| 386 |
+
print("=" * 80)
|
| 387 |
+
print(decoded_outputs[0])
|
| 388 |
+
print("=" * 80)
|
| 389 |
+
```
|
| 390 |
+
</details>
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
<details>
|
| 394 |
+
<summary>➡️ audio only</summary>
|
| 395 |
+
|
| 396 |
+
```python
|
| 397 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 398 |
+
import torch
|
| 399 |
+
|
| 400 |
+
device = "cuda"
|
| 401 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 402 |
+
|
| 403 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 404 |
+
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
| 405 |
+
|
| 406 |
+
conversation = [
|
| 407 |
+
{
|
| 408 |
+
"role": "user",
|
| 409 |
+
"content": [
|
| 410 |
+
{
|
| 411 |
+
"type": "audio",
|
| 412 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
| 413 |
+
},
|
| 414 |
+
],
|
| 415 |
+
}
|
| 416 |
+
]
|
| 417 |
+
|
| 418 |
+
inputs = processor.apply_chat_template(conversation)
|
| 419 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 420 |
+
|
| 421 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 422 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 423 |
+
|
| 424 |
+
print("\nGenerated response:")
|
| 425 |
+
print("=" * 80)
|
| 426 |
+
print(decoded_outputs[0])
|
| 427 |
+
print("=" * 80)
|
| 428 |
+
```
|
| 429 |
+
</details>
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
<details>
|
| 433 |
+
<summary>➡️ batched inference</summary>
|
| 434 |
+
|
| 435 |
+
```python
|
| 436 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 437 |
+
import torch
|
| 438 |
+
|
| 439 |
+
device = "cuda"
|
| 440 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 441 |
+
|
| 442 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 443 |
+
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
| 444 |
+
|
| 445 |
+
conversations = [
|
| 446 |
+
[
|
| 447 |
+
{
|
| 448 |
+
"role": "user",
|
| 449 |
+
"content": [
|
| 450 |
+
{
|
| 451 |
+
"type": "audio",
|
| 452 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"type": "audio",
|
| 456 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"type": "text",
|
| 460 |
+
"text": "Who's speaking in the speach and what city's weather is being discussed?",
|
| 461 |
+
},
|
| 462 |
+
],
|
| 463 |
+
}
|
| 464 |
+
],
|
| 465 |
+
[
|
| 466 |
+
{
|
| 467 |
+
"role": "user",
|
| 468 |
+
"content": [
|
| 469 |
+
{
|
| 470 |
+
"type": "audio",
|
| 471 |
+
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
| 472 |
+
},
|
| 473 |
+
{"type": "text", "text": "What can you tell me about this audio?"},
|
| 474 |
+
],
|
| 475 |
+
}
|
| 476 |
+
],
|
| 477 |
+
]
|
| 478 |
+
|
| 479 |
+
inputs = processor.apply_chat_template(conversations)
|
| 480 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 481 |
+
|
| 482 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 483 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 484 |
+
|
| 485 |
+
print("\nGenerated responses:")
|
| 486 |
+
print("=" * 80)
|
| 487 |
+
for decoded_output in decoded_outputs:
|
| 488 |
+
print(decoded_output)
|
| 489 |
+
print("=" * 80)
|
| 490 |
+
```
|
| 491 |
+
</details>
|
| 492 |
+
|
| 493 |
+
#### Transcription
|
| 494 |
+
|
| 495 |
+
<details>
|
| 496 |
+
<summary>➡️ transcribe</summary>
|
| 497 |
+
|
| 498 |
+
```python
|
| 499 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 500 |
+
import torch
|
| 501 |
+
|
| 502 |
+
device = "cuda"
|
| 503 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 504 |
+
|
| 505 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 506 |
+
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
| 507 |
+
|
| 508 |
+
inputs = processor.apply_transcrition_request(language="en", audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3", model_id=repo_id)
|
| 509 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 510 |
+
|
| 511 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 512 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 513 |
+
|
| 514 |
+
print("\nGenerated responses:")
|
| 515 |
+
print("=" * 80)
|
| 516 |
+
for decoded_output in decoded_outputs:
|
| 517 |
+
print(decoded_output)
|
| 518 |
+
print("=" * 80)
|
| 519 |
+
```
|
| 520 |
+
</details>
|