new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 27

S2SNet: A Pretrained Neural Network for Superconductivity Discovery

Superconductivity allows electrical current to flow without any energy loss, and thus making solids superconducting is a grand goal of physics, material science, and electrical engineering. More than 16 Nobel Laureates have been awarded for their contribution to superconductivity research. Superconductors are valuable for sustainable development goals (SDGs), such as climate change mitigation, affordable and clean energy, industry, innovation and infrastructure, and so on. However, a unified physics theory explaining all superconductivity mechanism is still unknown. It is believed that superconductivity is microscopically due to not only molecular compositions but also the geometric crystal structure. Hence a new dataset, S2S, containing both crystal structures and superconducting critical temperature, is built upon SuperCon and Material Project. Based on this new dataset, we propose a novel model, S2SNet, which utilizes the attention mechanism for superconductivity prediction. To overcome the shortage of data, S2SNet is pre-trained on the whole Material Project dataset with Masked-Language Modeling (MLM). S2SNet makes a new state-of-the-art, with out-of-sample accuracy of 92% and Area Under Curve (AUC) of 0.92. To the best of our knowledge, S2SNet is the first work to predict superconductivity with only information of crystal structures. This work is beneficial to superconductivity discovery and further SDGs. Code and datasets are available in https://github.com/zjuKeLiu/S2SNet

  • 4 authors
·
Jun 28, 2023

SparseC-AFM: a deep learning method for fast and accurate characterization of MoS_2 with C-AFM

The increasing use of two-dimensional (2D) materials in nanoelectronics demands robust metrology techniques for electrical characterization, especially for large-scale production. While atomic force microscopy (AFM) techniques like conductive AFM (C-AFM) offer high accuracy, they suffer from slow data acquisition speeds due to the raster scanning process. To address this, we introduce SparseC-AFM, a deep learning model that rapidly and accurately reconstructs conductivity maps of 2D materials like MoS_2 from sparse C-AFM scans. Our approach is robust across various scanning modes, substrates, and experimental conditions. We report a comparison between (a) classic flow implementation, where a high pixel density C-AFM image (e.g., 15 minutes to collect) is manually parsed to extract relevant material parameters, and (b) our SparseC-AFM method, which achieves the same operation using data that requires substantially less acquisition time (e.g., under 5 minutes). SparseC-AFM enables efficient extraction of critical material parameters in MoS_2, including film coverage, defect density, and identification of crystalline island boundaries, edges, and cracks. We achieve over 11x reduction in acquisition time compared to manual extraction from a full-resolution C-AFM image. Moreover, we demonstrate that our model-predicted samples exhibit remarkably similar electrical properties to full-resolution data gathered using classic-flow scanning. This work represents a significant step toward translating AI-assisted 2D material characterization from laboratory research to industrial fabrication. Code and model weights are available at github.com/UNITES-Lab/sparse-cafm.

  • 9 authors
·
Jul 17, 2025

Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing

An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.

  • 6 authors
·
Mar 27, 2023