Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeProgressive-Hint Prompting Improves Reasoning in Large Language Models
The performance of Large Language Models (LLMs) in reasoning tasks depends heavily on prompt design, with Chain-of-Thought (CoT) and self-consistency being critical methods that enhance this ability. However, these methods do not fully exploit the answers generated by the LLM to guide subsequent responses. This paper proposes a new prompting method, named Progressive-Hint Prompting (PHP), that enables automatic multiple interactions between users and LLMs by using previously generated answers as hints to progressively guide toward the correct answers. PHP is orthogonal to CoT and self-consistency, making it easy to combine with state-of-the-art techniques to further improve performance. We conducted extensive and comprehensive experiments on seven benchmarks. The results show that PHP significantly improves accuracy while remaining highly efficient. For instance, with text-davinci-003, we observed a 4.2% improvement on GSM8K with greedy decoding compared to Complex CoT, and a 46.17% reduction in sample paths with self-consistency. With GPT-4 and PHP, we achieve state-of-the-art performances on SVAMP (89.1% -> 91.9%), GSM8K (92% -> 95.5%), AQuA (76.4% -> 79.9%) and MATH (50.3% -> 53.9%).
Learning gain differences between ChatGPT and human tutor generated algebra hints
Large Language Models (LLMs), such as ChatGPT, are quickly advancing AI to the frontiers of practical consumer use and leading industries to re-evaluate how they allocate resources for content production. Authoring of open educational resources and hint content within adaptive tutoring systems is labor intensive. Should LLMs like ChatGPT produce educational content on par with human-authored content, the implications would be significant for further scaling of computer tutoring system approaches. In this paper, we conduct the first learning gain evaluation of ChatGPT by comparing the efficacy of its hints with hints authored by human tutors with 77 participants across two algebra topic areas, Elementary Algebra and Intermediate Algebra. We find that 70% of hints produced by ChatGPT passed our manual quality checks and that both human and ChatGPT conditions produced positive learning gains. However, gains were only statistically significant for human tutor created hints. Learning gains from human-created hints were substantially and statistically significantly higher than ChatGPT hints in both topic areas, though ChatGPT participants in the Intermediate Algebra experiment were near ceiling and not even with the control at pre-test. We discuss the limitations of our study and suggest several future directions for the field. Problem and hint content used in the experiment is provided for replicability.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models
Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.
Ask Me Anything: A simple strategy for prompting language models
Large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt that demonstrates how to perform the task and no additional training. Prompting is a brittle process wherein small modifications to the prompt can cause large variations in the model predictions, and therefore significant effort is dedicated towards designing a painstakingly "perfect prompt" for a task. To mitigate the high degree of effort involved in prompt-design, we instead ask whether producing multiple effective, yet imperfect, prompts and aggregating them can lead to a high quality prompting strategy. Our observations motivate our proposed prompting method, ASK ME ANYTHING (AMA). We first develop an understanding of the effective prompt formats, finding that question-answering (QA) prompts, which encourage open-ended generation ("Who went to the park?") tend to outperform those that restrict the model outputs ("John went to the park. Output True or False."). Our approach recursively uses the LLM itself to transform task inputs to the effective QA format. We apply the collected prompts to obtain several noisy votes for the input's true label. We find that the prompts can have very different accuracies and complex dependencies and thus propose to use weak supervision, a procedure for combining the noisy predictions, to produce the final predictions for the inputs. We evaluate AMA across open-source model families (e.g., EleutherAI, BLOOM, OPT, and T0) and model sizes (125M-175B parameters), demonstrating an average performance lift of 10.2% over the few-shot baseline. This simple strategy enables the open-source GPT-J-6B model to match and exceed the performance of few-shot GPT3-175B on 15 of 20 popular benchmarks. Averaged across these tasks, the GPT-J-6B model outperforms few-shot GPT3-175B. We release our code here: https://github.com/HazyResearch/ama_prompting
WikiHint: A Human-Annotated Dataset for Hint Ranking and Generation
The use of Large Language Models (LLMs) has increased significantly with users frequently asking questions to chatbots. In the time when information is readily accessible, it is crucial to stimulate and preserve human cognitive abilities and maintain strong reasoning skills. This paper addresses such challenges by promoting the use of hints as an alternative or a supplement to direct answers. We first introduce a manually constructed hint dataset, WikiHint, which is based on Wikipedia and includes 5,000 hints created for 1,000 questions. We then finetune open-source LLMs such as LLaMA-3.1 for hint generation in answer-aware and answeragnostic contexts. We assess the effectiveness of the hints with human participants who answer questions with and without the aid of hints. Additionally, we introduce a lightweight evaluation method, HintRank, to evaluate and rank hints in both answeraware and answer-agnostic settings. Our findings show that (a) the dataset helps generate more effective hints, (b) including answer information along with questions generally improves quality of generated hints, and (c) encoder-based models perform better than decoder-based models in hint ranking.
MathPrompter: Mathematical Reasoning using Large Language Models
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks and often provide incorrect answers. Unlike natural language understanding, math problems typically have a single correct answer, making the task of generating accurate solutions more challenging for LLMs. To the best of our knowledge, we are not aware of any LLMs that indicate their level of confidence in their responses which fuels a trust deficit in these models impeding their adoption. To address this deficiency, we propose `MathPrompter', a technique that improves performance of LLMs on arithmetic problems along with increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways and thereby raise the confidence level in the output results. This is in contrast to other prompt based CoT methods, where there is no check on the validity of the intermediate steps followed. Our technique improves over state-of-the-art on the MultiArith dataset (78.7%rightarrow92.5%) evaluated using 175B parameter GPT-based LLM.
Leveraging Training Data in Few-Shot Prompting for Numerical Reasoning
Chain-of-thought (CoT) prompting with large language models has proven effective in numerous natural language processing tasks, but designing prompts that generalize well to diverse problem types can be challenging, especially in the context of math word problem (MWP) solving. Additionally, it is common to have a large amount of training data that have a better diversity coverage but CoT annotations are not available, which limits the use of supervised learning techniques. To address these issues, we investigate two approaches to leverage the training data in a few-shot prompting scenario: dynamic program prompting and program distillation. Our approach is largely inspired by Gao et al., (2022), where they proposed to replace the CoT with the programs as the intermediate reasoning step. Such a prompting strategy allows us to accurately verify the answer correctness through program execution in MWP solving. Our dynamic program prompting involves annotating the training data by sampling correct programs from a large language model, while program distillation involves adapting a smaller model to the program-annotated training data. Our experiments on three standard MWP datasets demonstrate the effectiveness of these approaches, yielding significant improvements over previous baselines for prompting and fine-tuning. Our results suggest that leveraging a large amount of training data can improve the generalization ability of prompts and boost the performance of fine-tuned small models in MWP solving.
Language Models Benefit from Preparation with Elicited Knowledge
The zero-shot chain of thought (CoT) approach is often used in question answering (QA) by language models (LMs) for tasks that require multiple reasoning steps, typically enhanced by the prompt "Let's think step by step." However, some QA tasks hinge more on accessing relevant knowledge than on chaining reasoning steps. We introduce a simple general prompting technique, called PREP, that involves using two instances of LMs: the first (LM1) generates relevant information, and the second (LM2) answers the question based on this information. PREP is designed to be general and independent of the user's domain knowledge, making it applicable across various QA tasks without the need for specialized prompt engineering. To evaluate the effectiveness of our prompting method, we create a dataset of 100 binary-choice questions, derived from an extensive schematic dataset on artifact parts and material composition. These questions ask which of two artifacts is less likely to share materials with another artifact. Such questions probe the LM's knowledge of shared materials in the part structure of different artifacts. We test our method on our dataset and three published commonsense reasoning datasets. The average accuracy of our method is consistently higher than that of all the other tested methods across all the tested datasets.
EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context Learning
Large language models primarily rely on incontext learning to execute tasks. We introduce EchoPrompt, a simple yet effective approach to prompt the model to rephrase its queries before answering them. EchoPrompt is inspired by self-questioning, a cognitive strategy humans use to vocalize queries before providing answers, thereby reducing misconceptions. Experimental results demonstrate that EchoPrompt leads to substantial improvements in both zero-shot and few-shot in-context learning with standard and chain-of-thought prompting on four families of causal language models. These improvements are observed across various numerical reasoning (GSM8K, SVAMP, MultiArith, SingleOp), reading comprehension (DROP, SQuAD), and logical reasoning (Shuffled Objects, Date Understanding, Coin Flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. We investigate the effectiveness of EchoPrompt through ablation studies, which reveal the significance of both original and rephrased queries for EchoPrompt's efficacy. Our empirical results show that EchoPrompt is an effective technique that can easily augment in-context learning for better performance.
Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection
Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
Efficient Prompting Methods for Large Language Models: A Survey
Prompting is a mainstream paradigm for adapting large language models to specific natural language processing tasks without modifying internal parameters. Therefore, detailed supplementary knowledge needs to be integrated into external prompts, which inevitably brings extra human efforts and computational burdens for practical applications. As an effective solution to mitigate resource consumption, Efficient Prompting Methods have attracted a wide range of attention. We provide mathematical expressions at a high level to deeply discuss Automatic Prompt Engineering for different prompt components and Prompt Compression in continuous and discrete spaces. Finally, we highlight promising future directions to inspire researchers interested in this field.
Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual effort, Zero-shot-CoT concatenates the target problem statement with "Let's think step by step" as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
Debiasing Large Language Models via Adaptive Causal Prompting with Sketch-of-Thought
Despite notable advancements in prompting methods for Large Language Models (LLMs), such as Chain-of-Thought (CoT), existing strategies still suffer from excessive token usage and limited generalisability across diverse reasoning tasks. To address these limitations, we propose an Adaptive Causal Prompting with Sketch-of-Thought (ACPS) framework, which leverages structural causal models to infer the causal effect of a query on its answer and adaptively select an appropriate intervention (i.e., standard front-door and conditional front-door adjustments). This design enables generalisable causal reasoning across heterogeneous tasks without task-specific retraining. By replacing verbose CoT with concise Sketch-of-Thought, ACPS enables efficient reasoning that significantly reduces token usage and inference cost. Extensive experiments on multiple reasoning benchmarks and LLMs demonstrate that ACPS consistently outperforms existing prompting baselines in terms of accuracy, robustness, and computational efficiency.
Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models
We present Multi-expert Prompting, a novel enhancement of ExpertPrompting (Xu et al., 2023), designed to improve the large language model (LLM) generation. Specifically, it guides an LLM to fulfill an input instruction by simulating multiple experts, aggregating their responses, and selecting the best among individual and aggregated responses. This process is performed in a single chain of thoughts through our seven carefully designed subtasks derived from the Nominal Group Technique (Ven and Delbecq, 1974), a well-established decision-making framework. Our evaluations demonstrate that Multi-expert Prompting significantly outperforms ExpertPrompting and comparable baselines in enhancing the truthfulness, factuality, informativeness, and usefulness of responses while reducing toxicity and hurtfulness. It further achieves state-of-the-art truthfulness by outperforming the best baseline by 8.69% with ChatGPT. Multi-expert Prompting is efficient, explainable, and highly adaptable to diverse scenarios, eliminating the need for manual prompt construction.
Get an A in Math: Progressive Rectification Prompting
Chain-of-Thought (CoT) prompting methods have enabled large language models (LLMs) to generate reasoning paths and solve math word problems (MWPs). However, they are sensitive to mistakes in the paths, as any mistake can result in an incorrect answer. We propose a novel method named Progressive Rectification Prompting (PRP) to improve average accuracy on eight MWP datasets from 77.3 to 90.5. Given an initial answer from CoT, PRP iterates a verify-then-rectify process to progressively identify incorrect answers and rectify the reasoning paths. With the most likely correct answer, the LLM predicts a masked numerical value in the question; if the prediction does not match the masked value, the answer is likely incorrect. Then the LLM is prompted to re-generate the reasoning path hinted with a set of incorrect answers to prevent itself from repeating previous mistakes. PRP achieves the best performance compared against the CoT methods. Our implementation is made publicly available at https://wzy6642.github.io/prp.github.io/.
Investigating the Effectiveness of Task-Agnostic Prefix Prompt for Instruction Following
In this paper, we present our finding that prepending a Task-Agnostic Prefix Prompt (TAPP) to the input improves the instruction-following ability of various Large Language Models (LLMs) during inference. TAPP is different from canonical prompts for LLMs in that it is a fixed prompt prepended to the beginning of every input regardless of the target task for zero-shot generalization. We observe that both base LLMs (i.e. not fine-tuned to follow instructions) and instruction-tuned models benefit from TAPP, resulting in 34.58% and 12.26% improvement on average, respectively. This implies that the instruction-following ability of LLMs can be improved during inference time with a fixed prompt constructed with simple heuristics. We hypothesize that TAPP assists language models to better estimate the output distribution by focusing more on the instruction of the target task during inference. In other words, such ability does not seem to be sufficiently activated in not only base LLMs but also many instruction-fine-tuned LLMs. All experiments are reproducible from https://github.com/seonghyeonye/TAPP.
Understanding Before Reasoning: Enhancing Chain-of-Thought with Iterative Summarization Pre-Prompting
Chain-of-Thought (CoT) Prompting is a dominant paradigm in Large Language Models (LLMs) to enhance complex reasoning. It guides LLMs to present multi-step reasoning, rather than generating the final answer directly. However, CoT encounters difficulties when key information required for reasoning is implicit or missing. This occurs because CoT emphasizes the sequence of reasoning steps while overlooking the early extraction of essential information. We propose a pre-prompting method called Iterative Summarization Pre-Prompting (ISP^2) to refine LLM reasoning when key information is not explicitly provided. First, entities and their corresponding descriptions are extracted to form potential key information pairs. Next, we use a reliability rating to assess these pairs, then merge the two lowest-ranked pairs into a new entity description. This process is repeated until a unique key information pair is obtained. Finally, that pair, along with the original question, is fed into LLMs to produce the answer. Extensive experiments demonstrate a 7.1% improvement compared to existing methods. Unlike traditional prompting, ISP^2 adopts an inductive approach with pre-prompting, offering flexible integration into diverse reasoning frameworks. The code is available at https://github.com/zdhgreat/ISP-2.
AdaPrompt: Adaptive Model Training for Prompt-based NLP
Prompt-based learning, with its capability to tackle zero-shot and few-shot NLP tasks, has gained much attention in community. The main idea is to bridge the gap between NLP downstream tasks and language modeling (LM), by mapping these tasks into natural language prompts, which are then filled by pre-trained language models (PLMs). However, for prompt learning, there are still two salient gaps between NLP tasks and pretraining. First, prompt information is not necessarily sufficiently present during LM pretraining. Second, task-specific data are not necessarily well represented during pretraining. We address these two issues by proposing AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs by making use of both task and prompt characteristics. In addition, we make use of knowledge in Natural Language Inference models for deriving adaptive verbalizers. Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings. In addition, in zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35\% relative error reduction.
Gap-Filling Prompting Enhances Code-Assisted Mathematical Reasoning
Despite the strong performance of large language models (LLMs) in tasks like mathematical reasoning, their practical use is limited by high computational demands and proprietary restrictions. Chain-of-thought (CoT) and program-of-thought (PoT) fine-tuning are common methods to transfer LLM knowledge to small language models (SLMs). However, CoT often leads to calculation errors in SLMs, while PoT has shown more promise. While most PoT-based approaches focus on direct problem-to-code conversion or extracting only the key information from questions and then providing code solution for it, this work emphasizes filling the gaps in the question to clearly illustrate the solution path, which can be challenging for an SLM to understand when such information is not explicitly provided. Therefore, this paper introduces Gap-Filling Prompting (GFP), a novel two-step prompting strategy designed to enhance the problem-solving process for SLMs. The first step identifies these gaps and provides hints for filling them, while the second step adds the hints to the question to generate a final code solution. Experimental results on two benchmark datasets demonstrate that GFP significantly improves the mathematical reasoning abilities of SLMs.
Which Prompting Technique Should I Use? An Empirical Investigation of Prompting Techniques for Software Engineering Tasks
A growing variety of prompt engineering techniques has been proposed for Large Language Models (LLMs), yet systematic evaluation of each technique on individual software engineering (SE) tasks remains underexplored. In this study, we present a systematic evaluation of 14 established prompt techniques across 10 SE tasks using four LLM models. As identified in the prior literature, the selected prompting techniques span six core dimensions (Zero-Shot, Few-Shot, Thought Generation, Ensembling, Self-Criticism, and Decomposition). They are evaluated on tasks such as code generation, bug fixing, and code-oriented question answering, to name a few. Our results show which prompting techniques are most effective for SE tasks requiring complex logic and intensive reasoning versus those that rely more on contextual understanding and example-driven scenarios. We also analyze correlations between the linguistic characteristics of prompts and the factors that contribute to the effectiveness of prompting techniques in enhancing performance on SE tasks. Additionally, we report the time and token consumption for each prompting technique when applied to a specific task and model, offering guidance for practitioners in selecting the optimal prompting technique for their use cases.
Large Language Models as Analogical Reasoners
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks, but typically needs labeled exemplars of the reasoning process. In this work, we introduce a new prompting approach, Analogical Prompting, designed to automatically guide the reasoning process of large language models. Inspired by analogical reasoning, a cognitive process in which humans draw from relevant past experiences to tackle new problems, our approach prompts language models to self-generate relevant exemplars or knowledge in the context, before proceeding to solve the given problem. This method presents several advantages: it obviates the need for labeling or retrieving exemplars, offering generality and convenience; it can also tailor the generated exemplars and knowledge to each problem, offering adaptability. Experimental results show that our approach outperforms 0-shot CoT and manual few-shot CoT in a variety of reasoning tasks, including math problem solving in GSM8K and MATH, code generation in Codeforces, and other reasoning tasks in BIG-Bench.
Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement
Prompting methods such as Chain-of-Thought (CoT) have shed new light on enhancing the reasoning capabilities of large language models, and researchers have extensively explored the generation process of rationales and answers. However, they have overlooked the potential challenges posed by the poor quality of reasoning problems, which may influence the reasoning performance significantly. In this work, we propose Self-Polish (SP), a novel method that facilitates the model's problem-solving process by prompting them to progressively refine the given problems to be more comprehensible and solvable. Specifically, the method teaches models to eliminate irrelevant information, rearrange the logic structure and organize local conditions into new ones parallelly. SP is orthogonal to all other prompting methods, making it convenient to integrate with state-of-the-art techniques for further improvement. We conduct thorough experiments on five benchmarks to illustrate the effectiveness of the proposed method. For example, with Text-davinci-003, our method boosts the performance of standard few-shot prompting by 8.0% on GSM8K and 17.8% on MultiArith; it also improves the performance of CoT by 6.0% on GSM8K and 6.0% on MathQA, respectively. Furthermore, our method also showcases impressive performance on robustness evaluation.
Reasoning with Language Model Prompting: A Survey
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).
When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm
With the development of Large Language Models (LLM), numerous prompts have been proposed, each with a rich set of features and their own merits. This paper summarizes the prompt words for large language models (LLMs), categorizing them into stimulating and framework types, and proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts to enhance the problem-solving capabilities of LLMs across multiple domains, then exemplifies it with a framework that adheres to this paradigm. The framework involves automated prompt generation and consideration of emotion-stimulus factors, guiding LLMs in problem abstraction, diversified solutions generation, comprehensive optimization, and self-verification after providing answers, ensuring solution accuracy. Compared to traditional stimuli and framework prompts, this framework integrates the advantages of both by adopting automated approaches inspired by APE work, overcoming the limitations of manually designed prompts. Test results on the ruozhiba and BBH datasets demonstrate that this framework can effectively improve the efficiency and accuracy of LLMs in problem-solving, paving the way for new applications of LLMs.
Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.
Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Perfect Reasoners
Chain of Thought prompting strategy has enhanced the performance of Large Language Models (LLMs) across various NLP tasks. However, it still has shortcomings when dealing with complex reasoning tasks, following~cot_wei, including understanding errors, calculation errors and process errors (e.g. missing-step and hallucinations). Subsequently, Our in-depth analysis of various error types has found that deeply understanding the whole problem is critical in addressing complicated reasoning tasks. In this paper, we proposed a novel prompt strategy called Deeply Understanding the Problems (DUP) prompting, inspired by how humans solve complex reasoning problems, designed to enhance the comprehensive understanding of problems by LLMs. It consists of three stages: 1) extract the core question; 2) find out problem-solving information based on the core question; 3) generate and extract answers by LLMs. We evaluate the performance of DUP prompting on ten diverse reasoning datasets. Experimental results suggest that DUP prompting significantly outperforms Zero-Shot CoT ~kojima2022large across all datasets. Notably, DUP achieves state-of-the-art on SVAMP (90.4\% to 94.2\%) and GSM8K (94.6\% to 97.1\%).
OpenPrompt: An Open-source Framework for Prompt-learning
Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to cloze-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks. However, no standard implementation framework of prompt-learning is proposed yet, and most existing prompt-learning codebases, often unregulated, only provide limited implementations for specific scenarios. Since there are many details such as templating strategy, initializing strategy, and verbalizing strategy, etc. need to be considered in prompt-learning, practitioners face impediments to quickly adapting the desired prompt learning methods to their applications. In this paper, we present {OpenPrompt}, a unified easy-to-use toolkit to conduct prompt-learning over PLMs. OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility, and its combinability allows the freedom to combine different PLMs, task formats, and prompting modules in a unified paradigm. Users could expediently deploy prompt-learning frameworks and evaluate the generalization of them on different NLP tasks without constraints. OpenPrompt is publicly released at { https://github.com/thunlp/OpenPrompt}.
Think Beyond Size: Adaptive Prompting for More Effective Reasoning
Pretrained large language models (LLMs) are increasingly utilized across a wide range of natural language processing (NLP) tasks due to their impressive capabilities as few-shot learners. Recent techniques, such as chain-of-thought (CoT) prompting, have significantly advanced multi-step reasoning by introducing step-by-step decomposition, achieving state-of-the-art results on complex reasoning benchmarks. However, these approaches often rely on static prompting templates that do not adapt to task complexity or errors during the reasoning process. In this work, we introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.Experimental results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArith), logical reasoning and commonsense tasks, achieving substantial accuracy gains compared to static prompting baselines. By integrating guided prompts, intermediate validation, and self-corrective steps, our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency. The framework achieves this without requiring fine-tuning or task-specific training data, highlighting the untapped potential of iterative reasoning methods.
From Medprompt to o1: Exploration of Run-Time Strategies for Medical Challenge Problems and Beyond
Run-time steering strategies like Medprompt are valuable for guiding large language models (LLMs) to top performance on challenging tasks. Medprompt demonstrates that a general LLM can be focused to deliver state-of-the-art performance on specialized domains like medicine by using a prompt to elicit a run-time strategy involving chain of thought reasoning and ensembling. OpenAI's o1-preview model represents a new paradigm, where a model is designed to do run-time reasoning before generating final responses. We seek to understand the behavior of o1-preview on a diverse set of medical challenge problem benchmarks. Following on the Medprompt study with GPT-4, we systematically evaluate the o1-preview model across various medical benchmarks. Notably, even without prompting techniques, o1-preview largely outperforms the GPT-4 series with Medprompt. We further systematically study the efficacy of classic prompt engineering strategies, as represented by Medprompt, within the new paradigm of reasoning models. We found that few-shot prompting hinders o1's performance, suggesting that in-context learning may no longer be an effective steering approach for reasoning-native models. While ensembling remains viable, it is resource-intensive and requires careful cost-performance optimization. Our cost and accuracy analysis across run-time strategies reveals a Pareto frontier, with GPT-4o representing a more affordable option and o1-preview achieving state-of-the-art performance at higher cost. Although o1-preview offers top performance, GPT-4o with steering strategies like Medprompt retains value in specific contexts. Moreover, we note that the o1-preview model has reached near-saturation on many existing medical benchmarks, underscoring the need for new, challenging benchmarks. We close with reflections on general directions for inference-time computation with LLMs.
The Unreasonable Effectiveness of Eccentric Automatic Prompts
Large Language Models (LLMs) have demonstrated remarkable problem-solving and basic mathematics abilities. However, their efficacy is highly contingent on the formulation of the prompt. This study endeavors to quantify the influence of incorporating "positive thinking" into the system message of the prompt, then compare that to systematic prompt optimization. We assess the performance of 60 combinations of system message snippets, tested with and without Chain of Thought prompting, across three models with parameters ranging from 7 to 70 billion on the GSM8K dataset. Our findings reveal that results do not universally generalize across models. In most instances, the inclusion of "positive thinking" prompts positively affected model performance. Notably, however, Llama2-70B exhibited an exception when not utilizing Chain of Thought, as the optimal system message was found to be none at all. Given the combinatorial complexity, and thus computation time, of experimenting with hand-tuning prompts for large black-box models, we then compared the performance of the best "positive thinking" prompt against the output of systematic prompt optimization. We show that employing an automated prompt optimizer emerges as the most effective method for enhancing performance, even when working with smaller open-source models. Additionally, our findings reveal that the highest-scoring, automatically-optimized prompt exhibits a degree of peculiarity far beyond expectations.
Prompt Optimization with Human Feedback
Large language models (LLMs) have demonstrated remarkable performances in various tasks. However, the performance of LLMs heavily depends on the input prompt, which has given rise to a number of recent works on prompt optimization. However, previous works often require the availability of a numeric score to assess the quality of every prompt. Unfortunately, when a human user interacts with a black-box LLM, attaining such a score is often infeasible and unreliable. Instead, it is usually significantly easier and more reliable to obtain preference feedback from a human user, i.e., showing the user the responses generated from a pair of prompts and asking the user which one is preferred. Therefore, in this paper, we study the problem of prompt optimization with human feedback (POHF), in which we aim to optimize the prompt for a black-box LLM using only human preference feedback. Drawing inspiration from dueling bandits, we design a theoretically principled strategy to select a pair of prompts to query for preference feedback in every iteration, and hence introduce our algorithm named automated POHF (APOHF). We apply our APOHF algorithm to various tasks, including optimizing user instructions, prompt optimization for text-to-image generative models, and response optimization with human feedback (i.e., further refining the response using a variant of our APOHF). The results demonstrate that our APOHF can efficiently find a good prompt using a small number of preference feedback instances. Our code can be found at https://github.com/xqlin98/APOHF.
LLM Context Conditioning and PWP Prompting for Multimodal Validation of Chemical Formulas
Identifying subtle technical errors within complex scientific and technical documents, especially those requiring multimodal interpretation (e.g., formulas in images), presents a significant hurdle for Large Language Models (LLMs) whose inherent error-correction tendencies can mask inaccuracies. This exploratory proof-of-concept (PoC) study investigates structured LLM context conditioning, informed by Persistent Workflow Prompting (PWP) principles, as a methodological strategy to modulate this LLM behavior at inference time. The approach is designed to enhance the reliability of readily available, general-purpose LLMs (specifically Gemini 2.5 Pro and ChatGPT Plus o3) for precise validation tasks, crucially relying only on their standard chat interfaces without API access or model modifications. To explore this methodology, we focused on validating chemical formulas within a single, complex test paper with known textual and image-based errors. Several prompting strategies were evaluated: while basic prompts proved unreliable, an approach adapting PWP structures to rigorously condition the LLM's analytical mindset appeared to improve textual error identification with both models. Notably, this method also guided Gemini 2.5 Pro to repeatedly identify a subtle image-based formula error previously overlooked during manual review, a task where ChatGPT Plus o3 failed in our tests. These preliminary findings highlight specific LLM operational modes that impede detail-oriented validation and suggest that PWP-informed context conditioning offers a promising and highly accessible technique for developing more robust LLM-driven analytical workflows, particularly for tasks requiring meticulous error detection in scientific and technical documents. Extensive validation beyond this limited PoC is necessary to ascertain broader applicability.
Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation
Generative AI and large language models hold great promise in enhancing programming education by automatically generating individualized feedback for students. We investigate the role of generative AI models in providing human tutor-style programming hints to help students resolve errors in their buggy programs. Recent works have benchmarked state-of-the-art models for various feedback generation scenarios; however, their overall quality is still inferior to human tutors and not yet ready for real-world deployment. In this paper, we seek to push the limits of generative AI models toward providing high-quality programming hints and develop a novel technique, GPT4Hints-GPT3.5Val. As a first step, our technique leverages GPT-4 as a ``tutor'' model to generate hints -- it boosts the generative quality by using symbolic information of failing test cases and fixes in prompts. As a next step, our technique leverages GPT-3.5, a weaker model, as a ``student'' model to further validate the hint quality -- it performs an automatic quality validation by simulating the potential utility of providing this feedback. We show the efficacy of our technique via extensive evaluation using three real-world datasets of Python programs covering a variety of concepts ranging from basic algorithms to regular expressions and data analysis using pandas library.
HintEval: A Comprehensive Framework for Hint Generation and Evaluation for Questions
Large Language Models (LLMs) are transforming how people find information, and many users turn nowadays to chatbots to obtain answers to their questions. Despite the instant access to abundant information that LLMs offer, it is still important to promote critical thinking and problem-solving skills. Automatic hint generation is a new task that aims to support humans in answering questions by themselves by creating hints that guide users toward answers without directly revealing them. In this context, hint evaluation focuses on measuring the quality of hints, helping to improve the hint generation approaches. However, resources for hint research are currently spanning different formats and datasets, while the evaluation tools are missing or incompatible, making it hard for researchers to compare and test their models. To overcome these challenges, we introduce HintEval, a Python library that makes it easy to access diverse datasets and provides multiple approaches to generate and evaluate hints. HintEval aggregates the scattered resources into a single toolkit that supports a range of research goals and enables a clear, multi-faceted, and reliable evaluation. The proposed library also includes detailed online documentation, helping users quickly explore its features and get started. By reducing barriers to entry and encouraging consistent evaluation practices, HintEval offers a major step forward for facilitating hint generation and analysis research within the NLP/IR community.
Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
Reasoning Models Will Blatantly Lie About Their Reasoning
It has been shown that Large Reasoning Models (LRMs) may not *say what they think*: they do not always volunteer information about how certain parts of the input influence their reasoning. But it is one thing for a model to *omit* such information and another, worse thing to *lie* about it. Here, we extend the work of Chen et al. (2025) to show that LRMs will do just this: they will flatly deny relying on hints provided in the prompt in answering multiple choice questions -- even when directly asked to reflect on unusual (i.e. hinted) prompt content, even when allowed to use hints, and even though experiments *show* them to be using the hints. Our results thus have discouraging implications for CoT monitoring and interpretability.
Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
Assessing the effectiveness of large language models (LLMs) in addressing diverse tasks is essential for comprehending their strengths and weaknesses. Conventional evaluation techniques typically apply a single prompting strategy uniformly across datasets, not considering the varying degrees of task complexity. We introduce the Hierarchical Prompting Taxonomy (HPT), a taxonomy that employs a Hierarchical Prompt Framework (HPF) composed of five unique prompting strategies, arranged from the simplest to the most complex, to assess LLMs more precisely and to offer a clearer perspective. This taxonomy assigns a score, called the Hierarchical Prompting Score (HP-Score), to datasets as well as LLMs based on the rules of the taxonomy, providing a nuanced understanding of their ability to solve diverse tasks and offering a universal measure of task complexity. Additionally, we introduce the Adaptive Hierarchical Prompt framework, which automates the selection of appropriate prompting strategies for each task. This study compares manual and adaptive hierarchical prompt frameworks using four instruction-tuned LLMs, namely Llama 3 8B, Phi 3 3.8B, Mistral 7B, and Gemma 7B, across four datasets: BoolQ, CommonSenseQA (CSQA), IWSLT-2017 en-fr (IWSLT), and SamSum. Experiments demonstrate the effectiveness of HPT, providing a reliable way to compare different tasks and LLM capabilities. This paper leads to the development of a universal evaluation metric that can be used to evaluate both the complexity of the datasets and the capabilities of LLMs. The implementation of both manual HPF and adaptive HPF is publicly available.
Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs' Non-linear Thinking
Chain-of-Thought(CoT) prompting and its variants explore equipping large language models (LLMs) with high-level reasoning abilities by emulating human-like linear cognition and logic. However, the human mind is complicated and mixed with both linear and nonlinear thinking. In this work, we propose Inferential Exclusion Prompting (IEP), a novel prompting that combines the principles of elimination and inference in order to guide LLMs to think non-linearly. IEP guides LLMs to plan and then utilize Natural Language Inference (NLI) to deduce each possible solution's entailment relation with context, commonsense, or facts, therefore yielding a broader perspective by thinking back for inferring. This forward planning and backward eliminating process allows IEP to better simulate the complex human thinking processes compared to other CoT-based methods, which only reflect linear cognitive processes. We conducted a series of empirical studies and have corroborated that IEP consistently outperforms CoT across various tasks. Additionally, we observe that integrating IEP and CoT further improves the LLMs' performance on certain tasks, highlighting the necessity of equipping LLMs with mixed logic processes. Moreover, to better evaluate comprehensive features inherent in human logic, we introduce Mental-Ability Reasoning Benchmark (MARB). The benchmark comprises six novel subtasks with a total of 9,115 questions, among which 1,685 are developed with hand-crafted rationale references. We believe both IEP and MARB can serve as a promising direction for unveiling LLMs' logic and verbal reasoning abilities and drive further advancements. MARB will be available at ~anonymity link soon.
Complexity-Based Prompting for Multi-Step Reasoning
We study the task of prompting large-scale language models to perform multi-step reasoning. Existing work shows that when prompted with a chain of thoughts (CoT), sequences of short sentences describing intermediate reasoning steps towards a final answer, large language models can generate new reasoning chains and predict answers for new inputs. A central question is which reasoning examples make the most effective prompts. In this work, we propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning. We show that prompts with higher reasoning complexity, i.e., chains with more reasoning steps, achieve substantially better performance on multi-step reasoning tasks over strong baselines. We further extend our complexity-based criteria from prompting (selecting inputs) to decoding (selecting outputs), where we sample multiple reasoning chains from the model, then choose the majority of generated answers from complex reasoning chains (over simple chains). When used to prompt GPT-3 and Codex, our approach substantially improves multi-step reasoning accuracy and achieves new state-of-the-art (SOTA) performance on three math benchmarks (GSM8K, MultiArith, and MathQA) and two BigBenchHard tasks (Date Understanding and Penguins), with an average +5.3 and up to +18 accuracy improvements. Compared with existing example selection schemes like manual tuning or retrieval-based selection, selection based on reasoning complexity is intuitive, easy to implement, and annotation-efficient. Further results demonstrate the robustness of performance gains from complex prompts under format perturbation and distribution shift.
Multimodal Procedural Planning via Dual Text-Image Prompting
Embodied agents have achieved prominent performance in following human instructions to complete tasks. However, the potential of providing instructions informed by texts and images to assist humans in completing tasks remains underexplored. To uncover this capability, we present the multimodal procedural planning (MPP) task, in which models are given a high-level goal and generate plans of paired text-image steps, providing more complementary and informative guidance than unimodal plans. The key challenges of MPP are to ensure the informativeness, temporal coherence,and accuracy of plans across modalities. To tackle this, we propose Text-Image Prompting (TIP), a dual-modality prompting method that jointly leverages zero-shot reasoning ability in large language models (LLMs) and compelling text-to-image generation ability from diffusion-based models. TIP improves the interaction in the dual modalities using Text-to-Image Bridge and Image-to-Text Bridge, allowing LLMs to guide the textual-grounded image plan generation and leveraging the descriptions of image plans to ground the textual plan reversely. To address the lack of relevant datasets, we collect WIKIPLAN and RECIPEPLAN as a testbed for MPP. Our results show compelling human preferences and automatic scores against unimodal and multimodal baselines on WIKIPLAN and RECIPEPLAN in terms of informativeness, temporal coherence, and plan accuracy. Our code and data: https://github.com/YujieLu10/MPP.
Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models
Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason from scratch. To address these issues, we propose \textit{Thought Propagation (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.
APIO: Automatic Prompt Induction and Optimization for Grammatical Error Correction and Text Simplification
Recent advancements in large language models (LLMs) have enabled a wide range of natural language processing (NLP) tasks to be performed through simple prompt-based interactions. Consequently, several approaches have been proposed to engineer prompts that most effectively enable LLMs to perform a given task (e.g., chain-of-thought prompting). In settings with a well-defined metric to optimize model performance, automatic prompt optimization (APO) methods have been developed to refine a seed prompt. Advancing this line of research, we propose APIO, a simple but effective prompt induction and optimization approach for the tasks of Grammatical Error Correction (GEC) and Text Simplification, without relying on manually specified seed prompts. APIO achieves a new state-of-the-art performance for purely LLM-based prompting methods on these tasks. We make our data, code, prompts, and outputs publicly available.
Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For Large Language Models
The performance of large language models (LLMs) on existing reasoning benchmarks has significantly improved over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 515 challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT JEE-Advanced exam. Long-horizon reasoning on top of deep in-domain knowledge is essential for solving problems in this benchmark. Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%. The typical failure modes of GPT-4, the best model, are errors in algebraic manipulation, difficulty in grounding abstract concepts into mathematical equations accurately and failure in retrieving relevant domain-specific concepts. We also observe that by mere prompting, GPT-4 is unable to assess risk introduced by negative marking for incorrect answers. For this, we develop a post-hoc confidence-thresholding method over self-consistency, which enables effective response selection. We hope that our challenging benchmark will guide future re-search in problem-solving using LLMs.
Prompting in Autoregressive Large Language Models
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing. Pre-train and prompt paradigm has replaced the conventional approach of pre-training and fine-tuning for many downstream NLP tasks. This shift has been possible largely due to LLMs and innovative prompting techniques. LLMs have shown great promise for a variety of downstream tasks owing to their vast parameters and huge datasets that they are pre-trained on. However, in order to fully realize their potential, their outputs must be guided towards the desired outcomes. Prompting, in which a specific input or instruction is provided to guide the LLMs toward the intended output, has become a tool for achieving this goal. In this paper, we discuss the various prompting techniques that have been applied to fully harness the power of LLMs. We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy. Further, we identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
Plum: Prompt Learning using Metaheuristic
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in https://github.com/research4pan/Plum.
Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks. Recent work shows the effectiveness of prompt design methods in enhancing reasoning capabilities. However, these approaches overlook crucial requirements for prior knowledge of specific concepts, theorems, and tricks to tackle most arithmetic reasoning problems successfully. To address this issue, we propose a novel and effective Teaching-Inspired Integrated Framework, which emulates the instructional process of a teacher guiding students. This method equips LLMs with essential concepts, relevant theorems, and similar problems with analogous solution approaches, facilitating the enhancement of reasoning abilities. Additionally, we introduce two new Chinese datasets, MathMC and MathToF, both with detailed explanations and answers. Experiments are conducted on nine benchmarks which demonstrates that our approach improves the reasoning accuracy of LLMs. With GPT-4 and our framework, we achieve new state-of-the-art performance on four math benchmarks (AddSub, SVAMP, Math23K and AQuA) with accuracies of 98.2% (+3.3%), 93.9% (+0.2%), 94.3% (+7.2%) and 81.1% (+1.2%). Our data and code are available at https://github.com/SallyTan13/Teaching-Inspired-Prompting.
UniAPO: Unified Multimodal Automated Prompt Optimization
Prompting is fundamental to unlocking the full potential of large language models. To automate and enhance this process, automatic prompt optimization (APO) has been developed, demonstrating effectiveness primarily in text-only input scenarios. However, extending existing APO methods to multimodal tasks, such as video-language generation introduces two core challenges: (i) visual token inflation, where long visual token sequences restrict context capacity and result in insufficient feedback signals; (ii) a lack of process-level supervision, as existing methods focus on outcome-level supervision and overlook intermediate supervision, limiting prompt optimization. We present UniAPO: Unified Multimodal Automated Prompt Optimization, the first framework tailored for multimodal APO. UniAPO adopts an EM-inspired optimization process that decouples feedback modeling and prompt refinement, making the optimization more stable and goal-driven. To further address the aforementioned challenges, we introduce a short-long term memory mechanism: historical feedback mitigates context limitations, while historical prompts provide directional guidance for effective prompt optimization. UniAPO achieves consistent gains across text, image, and video benchmarks, establishing a unified framework for efficient and transferable prompt optimization.
Nudging the Boundaries of LLM Reasoning
Current online reinforcement learning (RL) algorithms like GRPO share a key limitation in LLM reasoning: they cannot learn from problems that are "unsolvable" to the model. In other words, they can only improve performance on problems where the model is capable of exploring the correct answer. Consequently, the model's "upper limit" remains unchanged after RL training, even though the likelihood of solving easier, solvable problems may increase. These hard samples cannot contribute to training, as no rollouts yield rewards and thus no gradients are produced. To unlock learning from these hard samples, we propose NuRL, a "nudging" method that aims to push the upper bound of LLM reasoning using self-generated hints, i.e., abstract cues that help reduce the problem difficulty for the model. Given a question and its gold answer, the model generates a CoT and then produces a hint containing the core knowledge needed to solve the problem. During training, we generate G rollouts from the base policy and use the pass rate to decide whether the hint should be injected. For hard samples with a 0% pass rate, we inject the hint and regenerate a new batch of trajectories. This yields two benefits: (1) the hint boosts pass rates (from 0% to non-zero), thereby introducing training signals for previously unsolvable samples, and (2) the hints are self-generated, avoiding distributional shift and do not rely on external models. NuRL achieves consistent improvements across 6 benchmarks and 3 models, while remaining complementary to test-time scaling. Notably, NuRL can raise the model's upper limit, whereas GRPO leaves pass@1024 unchanged from the base model. Furthermore, we present a systematic study of what makes an effective hint and when hints are most useful. Interestingly, the best hints are abstract and high-level, and are most beneficial when applied necessarily and after GRPO has converged.
Instructing Large Language Models to Identify and Ignore Irrelevant Conditions
Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.
Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting
Large Language Models (LLMs) exhibit remarkable proficiency in addressing a diverse array of tasks within the Natural Language Processing (NLP) domain, with various prompt design strategies significantly augmenting their capabilities. However, these prompts, while beneficial, each possess inherent limitations. The primary prompt design methodologies are twofold: The first, exemplified by the Chain of Thought (CoT), involves manually crafting prompts specific to individual datasets, hence termed Expert-Designed Prompts (EDPs). Once these prompts are established, they are unalterable, and their effectiveness is capped by the expertise of the human designers. When applied to LLMs, the static nature of EDPs results in a uniform approach to both simple and complex problems within the same dataset, leading to the inefficient use of tokens for straightforward issues. The second method involves prompts autonomously generated by the LLM, known as LLM-Derived Prompts (LDPs), which provide tailored solutions to specific problems, mitigating the limitations of EDPs. However, LDPs may encounter a decline in performance when tackling complex problems due to the potential for error accumulation during the solution planning process. To address these challenges, we have conceived a novel Prompt Recursive Search (PRS) framework that leverages the LLM to generate solutions specific to the problem, thereby conserving tokens. The framework incorporates an assessment of problem complexity and an adjustable structure, ensuring a reduction in the likelihood of errors. We have substantiated the efficacy of PRS framework through extensive experiments using LLMs with different numbers of parameters across a spectrum of datasets in various domains. Compared to the CoT method, the PRS method has increased the accuracy on the BBH dataset by 8% using Llama3-7B model, achieving a 22% improvement.
Prompt Sketching for Large Language Models
Many recent prompting strategies for large language models (LLMs) query the model multiple times sequentially -- first to produce intermediate results and then the final answer. However, using these methods, both decoder and model are unaware of potential follow-up prompts, leading to disconnected and undesirably wordy intermediate responses. In this work, we address this issue by proposing prompt sketching, a new prompting paradigm in which an LLM does not only respond by completing a prompt, but by predicting values for multiple variables in a template. This way, sketching grants users more control over the generation process, e.g., by providing a reasoning framework via intermediate instructions, leading to better overall results. The key idea enabling sketching with existing, autoregressive models is to adapt the decoding procedure to also score follow-up instructions during text generation, thus optimizing overall template likelihood in inference. Our experiments show that in a zero-shot setting, prompt sketching outperforms existing, sequential prompting schemes such as direct asking or chain-of-thought on 7 out of 8 LLM benchmarking tasks, including state tracking, arithmetic reasoning, and general question answering. To facilitate future use, we release a number of generic, yet effective sketches applicable to many tasks, and an open source library called dclib, powering our sketch-aware decoders.
Survival of the Most Influential Prompts: Efficient Black-Box Prompt Search via Clustering and Pruning
Prompt-based learning has been an effective paradigm for large pretrained language models (LLM), enabling few-shot or even zero-shot learning. Black-box prompt search has received growing interest recently for its distinctive properties of gradient-free optimization, proven particularly useful and powerful for model-as-a-service usage. However, the discrete nature and the complexity of combinatorial optimization hinder the efficiency of modern black-box approaches. Despite extensive research on search algorithms, the crucial aspect of search space design and optimization has been largely overlooked. In this paper, we first conduct a sensitivity analysis by prompting LLM, revealing that only a small number of tokens exert a disproportionate amount of influence on LLM predictions. Leveraging this insight, we propose the Clustering and Pruning for Efficient Black-box Prompt Search (ClaPS), a simple black-box search method that first clusters and prunes the search space to focus exclusively on influential prompt tokens. By employing even simple search methods within the pruned search space, ClaPS achieves state-of-the-art performance across various tasks and LLMs, surpassing the performance of complex approaches while significantly reducing search costs. Our findings underscore the critical role of search space design and optimization in enhancing both the usefulness and the efficiency of black-box prompt-based learning.
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
Prompt Engineering a Prompt Engineer
Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.
Large Language Models can Learn Rules
When prompted with a few examples and intermediate steps, large language models (LLMs) have demonstrated impressive performance in various reasoning tasks. However, prompting methods that rely on implicit knowledge in an LLM often generate incorrect answers when the implicit knowledge is wrong or inconsistent with the task. To tackle this problem, we present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with LLMs. HtT contains two stages, an induction stage and a deduction stage. In the induction stage, an LLM is first asked to generate and verify rules over a set of training examples. Rules that appear and lead to correct answers sufficiently often are collected to form a rule library. In the deduction stage, the LLM is then prompted to employ the learned rule library to perform reasoning to answer test questions. Experiments on relational reasoning, numerical reasoning and concept learning problems show that HtT improves existing prompting methods, with an absolute gain of 10-30% in accuracy. The learned rules are also transferable to different models and to different forms of the same problem.
Prior Prompt Engineering for Reinforcement Fine-Tuning
This paper investigates prior prompt engineering (pPE) in the context of reinforcement fine-tuning (RFT), where language models (LMs) are incentivized to exhibit behaviors that maximize performance through reward signals. While existing RFT research has primarily focused on algorithms, reward shaping, and data curation, the design of the prior prompt--the instructions prepended to queries during training to elicit behaviors such as step-by-step reasoning--remains underexplored. We investigate whether different pPE approaches can guide LMs to internalize distinct behaviors after RFT. Inspired by inference-time prompt engineering (iPE), we translate five representative iPE strategies--reasoning, planning, code-based reasoning, knowledge recall, and null-example utilization--into corresponding pPE approaches. We experiment with Qwen2.5-7B using each of the pPE approaches, then evaluate performance on in-domain and out-of-domain benchmarks (e.g., AIME2024, HumanEval+, and GPQA-Diamond). Our results show that all pPE-trained models surpass their iPE-prompted counterparts, with the null-example pPE approach achieving the largest average performance gain and the highest improvement on AIME2024 and GPQA-Diamond, surpassing the commonly used reasoning approach. Furthermore, by adapting a behavior-classification framework, we demonstrate that different pPE strategies instill distinct behavioral styles in the resulting models. These findings position pPE as a powerful yet understudied axis for RFT.
Metric-Fair Prompting: Treating Similar Samples Similarly
We introduce Metric-Fair Prompting, a fairness-aware prompting framework that guides large language models (LLMs) to make decisions under metric-fairness constraints. In the application of multiple-choice medical question answering, each {(question, option)} pair is treated as a binary instance with label +1 (correct) or -1 (incorrect). To promote {individual fairness}~--~treating similar instances similarly~--~we compute question similarity using NLP embeddings and solve items in joint pairs of similar questions rather than in isolation. The prompt enforces a global decision protocol: extract decisive clinical features, map each \((question, option)\) to a score f(x) that acts as confidence, and impose a Lipschitz-style constraint so that similar inputs receive similar scores and, hence, consistent outputs. Evaluated on the {MedQA (US)} benchmark, Metric-Fair Prompting is shown to improve performance over standard single-item prompting, demonstrating that fairness-guided, confidence-oriented reasoning can enhance LLM accuracy on high-stakes clinical multiple-choice questions.
FOR-Prompting: From Objection to Revision via an Asymmetric Prompting Protocol
Reasoning protocols such as Chain of Thought (CoT) and Tree of Thought (ToT) organize internal deliberation but lack an explicit mechanism for external questioning that elicits self-revision. We present FOR-Prompting (From Objection to Revision Prompting), an asymmetric protocol where a Defender proposes an answer, an Objectioner raises question-style objections with no direct fixes, and a Host enforces consistency and closure. On GSM8K we observe about a 22% point gain over single-prompt and accuracy on par with CoT, with more than 10% higher ratings in reasoning and coherence from a uniform GPT 4.1 judge. FOR-Prompting also corrects mistakes without tools or human supervision on tricky queries, and improves performance for small-scale model (approx. 19% accuracy improved on Llama3.2:1b for GSM8K task), highlighting promise for small models and on personal device use. Beyond factual QA, qualitative analyses on open-ended tasks show enhanced exploration and refinement, with dialogue traces that make assumptions and trade-offs explicit. The protocol is model agnostic and operates purely at the prompt level through role-structured turns, so it works with hosted and local models of different sizes without retraining, and it supports large-scale study of objection-guided reasoning.
Can Prompt Probe Pretrained Language Models? Understanding the Invisible Risks from a Causal View
Prompt-based probing has been widely used in evaluating the abilities of pretrained language models (PLMs). Unfortunately, recent studies have discovered such an evaluation may be inaccurate, inconsistent and unreliable. Furthermore, the lack of understanding its inner workings, combined with its wide applicability, has the potential to lead to unforeseen risks for evaluating and applying PLMs in real-world applications. To discover, understand and quantify the risks, this paper investigates the prompt-based probing from a causal view, highlights three critical biases which could induce biased results and conclusions, and proposes to conduct debiasing via causal intervention. This paper provides valuable insights for the design of unbiased datasets, better probing frameworks and more reliable evaluations of pretrained language models. Furthermore, our conclusions also echo that we need to rethink the criteria for identifying better pretrained language models. We openly released the source code and data at https://github.com/c-box/causalEval.
Solving for X and Beyond: Can Large Language Models Solve Complex Math Problems with More-Than-Two Unknowns?
Large Language Models (LLMs) have demonstrated remarkable performance in solving math problems, a hallmark of human intelligence. Despite high success rates on current benchmarks; however, these often feature simple problems with only one or two unknowns, which do not sufficiently challenge their reasoning capacities. This paper introduces a novel benchmark, BeyondX, designed to address these limitations by incorporating problems with multiple unknowns. Recognizing the challenges in proposing multi-unknown problems from scratch, we developed BeyondX using an innovative automated pipeline that progressively increases complexity by expanding the number of unknowns in simpler problems. Empirical study on BeyondX reveals that the performance of existing LLMs, even those fine-tuned specifically on math tasks, significantly decreases as the number of unknowns increases - with a performance drop of up to 70\% observed in GPT-4. To tackle these challenges, we propose the Formulate-and-Solve strategy, a generalized prompting approach that effectively handles problems with an arbitrary number of unknowns. Our findings reveal that this strategy not only enhances LLM performance on the BeyondX benchmark but also provides deeper insights into the computational limits of LLMs when faced with more complex mathematical challenges.
Teaching LLMs How to Learn with Contextual Fine-Tuning
Prompting Large Language Models (LLMs), or providing context on the expected model of operation, is an effective way to steer the outputs of such models to satisfy human desiderata after they have been trained. But in rapidly evolving domains, there is often need to fine-tune LLMs to improve either the kind of knowledge in their memory or their abilities to perform open ended reasoning in new domains. When human's learn new concepts, we often do so by linking the new material that we are studying to concepts we have already learned before. To that end, we ask, "can prompting help us teach LLMs how to learn". In this work, we study a novel generalization of instruction tuning, called contextual fine-tuning, to fine-tune LLMs. Our method leverages instructional prompts designed to mimic human cognitive strategies in learning and problem-solving to guide the learning process during training, aiming to improve the model's interpretation and understanding of domain-specific knowledge. We empirically demonstrate that this simple yet effective modification improves the ability of LLMs to be fine-tuned rapidly on new datasets both within the medical and financial domains.
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations
Large Language Models prompting, such as using in-context demonstrations, is a mainstream technique for invoking LLMs to perform high-performance and solid complex reasoning (e.g., mathematical reasoning, commonsense reasoning), and has the potential for further human-machine collaborative scientific findings. However, current LLMs are delicate and elusive in prompt words and styles. And there is an unseen gap between LLM understanding and human-written prompts. This paper introduces Alignedcot, an LLM-acquainted prompting technique that includes proficient ``native-speaking'' in in-context learning for the LLMs. Specifically, it achieves consistent and correct step-wise prompts in zero-shot scenarios by progressively probing, refining, and formatting the LLM chain of thoughts so that free from handcrafted few-shot demonstrations while maintaining the prompt quality. We conduct experiments on mathematical reasoning and commonsense reasoning. We find that LLMs with Alignedcot perform significantly superior to them with human-crafted demonstrations. We further apply Alignedcot for rewriting the GSM8K training set, resulting in a GSM8K-Align dataset. We observe its benefits for retrieval augmented generation. The code and data can be found at https://github.com/yangzhch6/AlignedCoT.
Chain of Thoughtlessness: An Analysis of CoT in Planning
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution. Previous work has claimed that this can be mitigated by modifying prompts to include examples with chains of thought--demonstrations of solution procedures--with the intuition that it is possible to in-context teach an LLM an algorithm for solving the problem. This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain, and examine the performance of two state-of-the-art LLMs across two axes: generality of examples given in prompt, and complexity of problems queried with each prompt. While our problems are very simple, we only find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class, and that those improvements quickly deteriorate as the size n of the query-specified stack grows past the size of stacks shown in the examples. Our results hint that, contrary to previous claims in the literature, CoT's performance improvements do not stem from the model learning general algorithmic procedures via demonstrations and depend on carefully engineering highly problem specific prompts. This spotlights drawbacks of chain of thought, especially because of the sharp tradeoff between possible performance gains and the amount of human labor necessary to generate examples with correct reasoning traces.
A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
(Dynamic) Prompting might be all you need to repair Compressed LLMs
Large language models (LLMs), while transformative for NLP, come with significant computational demands, underlining the need for efficient, training-free compression. Notably, the reliability of perplexity as a benchmark for compressed model efficacy is in question, as our tests using LLaMA-7B and OPT-6.7b reveal a significant performance drop in several realistic downstream tasks, underscoring the disparity between perplexity as a performance indicator and real-world performance. Investigation into the trade-off between resource-intensive post-compression re-training highlights the prospect of prompt-driven recovery as a lightweight adaption tool. However, existing studies, confined mainly to perplexity evaluations and simple tasks, fail to offer unequivocal confidence in the scalability and generalizability of prompting. We tackle this uncertainty in two key ways. First, we uncover the vulnerability of naive prompts in LLM compression as an over-reliance on a singular prompt per input. In response, we propose inference-time dynamic prompting (IDP), a mechanism that autonomously chooses from a set of curated prompts based on the context of each individual input. Second, we delve into a scientific understanding of why ``prompting might be all you need post-LLM compression". Our findings suggest that compression doesn't irretrievably erase LLM model knowledge but displace it, necessitating a new inference path. IDP effectively redirects this path, enabling the model to tap into its inherent yet displaced knowledge and thereby recover performance. Empirical tests affirm the value of IDP, demonstrating an average performance improvement of 1.24% across nine varied tasks spanning multiple knowledge domains.
AI-Driven Scholarly Peer Review via Persistent Workflow Prompting, Meta-Prompting, and Meta-Reasoning
Critical peer review of scientific manuscripts presents a significant challenge for Large Language Models (LLMs), partly due to data limitations and the complexity of expert reasoning. This report introduces Persistent Workflow Prompting (PWP), a potentially broadly applicable prompt engineering methodology designed to bridge this gap using standard LLM chat interfaces (zero-code, no APIs). We present a proof-of-concept PWP prompt for the critical analysis of experimental chemistry manuscripts, featuring a hierarchical, modular architecture (structured via Markdown) that defines detailed analysis workflows. We develop this PWP prompt through iterative application of meta-prompting techniques and meta-reasoning aimed at systematically codifying expert review workflows, including tacit knowledge. Submitted once at the start of a session, this PWP prompt equips the LLM with persistent workflows triggered by subsequent queries, guiding modern reasoning LLMs through systematic, multimodal evaluations. Demonstrations show the PWP-guided LLM identifying major methodological flaws in a test case while mitigating LLM input bias and performing complex tasks, including distinguishing claims from evidence, integrating text/photo/figure analysis to infer parameters, executing quantitative feasibility checks, comparing estimates against claims, and assessing a priori plausibility. To ensure transparency and facilitate replication, we provide full prompts, detailed demonstration analyses, and logs of interactive chats as supplementary resources. Beyond the specific application, this work offers insights into the meta-development process itself, highlighting the potential of PWP, informed by detailed workflow formalization, to enable sophisticated analysis using readily available LLMs for complex scientific tasks.
BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.
From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting
This paper investigates the performance of Large Language Models (LLMs) and Tool-augmented LLMs in tackling complex mathematical reasoning tasks. We introduce IMP-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting, a framework that combines the strengths of both LLMs and Tool-augmented LLMs. IMP-TIP follows the ``From Good to Great" concept, collecting multiple potential solutions from both LLMs and their Tool-Augmented counterparts for the same math problem, and then selecting or re-generating the most accurate answer after cross-checking these solutions via tool-augmented interleaf prompting. The framework incorporates two key aspects: self-prompt and tool-augmented interleaf prompting (TIP). The former allows LLMs to autonomously refine and improve an initial prompt related to tool usage, while the latter enables LLMs to derive the final answer by dynamically analyzing the problem, cross-checking potential solutions, and revising previous reasoning hints in an interleaved manner. Experimental analysis shows that IMP-TIP achieves enhanced mathematical capabilities and outperforms traditional LLMs and tool-augmented LLMs in accuracy and reasoning diversity on math reasoning tasks. For instance, IMP-TIP can improve Tool-augmented ChatGPT on GSM8K-Hard from 56.0% to 65.2%.
Large Language Models are Null-Shot Learners
This paper presents null-shot prompting. Null-shot prompting exploits hallucination in large language models (LLMs) by instructing LLMs to utilize information from the "Examples" section that never exists within the provided context to perform a task. While reducing hallucination is crucial and non-negligible for daily and critical uses of LLMs, we propose that in the current landscape in which these LLMs still hallucinate, it is possible, in fact, to exploit hallucination to increase performance in performing tasks compared to standard zero-shot prompting. Experiments with six LLMs show improvements in performance across the majority of eight datasets, including reading comprehension, arithmetic reasoning, and closed-book question answering. The observed inconsistency in increased relative performance across LLMs also potentially indicates a different degree of inherent hallucination in each model. These differences show that it is possible to utilize null-shot prompting as a way to detect degrees of hallucination in LLMs using existing benchmarking datasets. We also perform ablation studies, including experimenting with a modified version of null-shot prompting that incorporates ideas from zero-shot chain-of-thought prompting, which shows different trends of results.
Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models
We consider the problem of eliciting compositional generalization capabilities in large language models (LLMs) with a novel type of prompting strategy. Compositional generalization empowers the LLMs to solve problems that are harder than the ones they have seen (i.e., easy-to-hard generalization), which is a critical reasoning capability of human-like intelligence. However, even the current state-of-the-art LLMs still struggle with this form of reasoning. To bridge this gap, we propose skills-in-context (SKiC) prompting, which instructs LLMs how to compose basic skills to resolve more complex problems. We find that it is crucial to demonstrate both the skills and the compositional examples within the same prompting context. With as few as two examplars, our SKiC prompting initiates strong synergies between skills and their composition capabilities. Notably, it empowers LLMs to solve unseen problems that require innovative skill compositions, achieving near-perfect generalization on a broad range of challenging compositionality tasks. Intriguingly, SKiC prompting unlocks the latent potential of LLMs, enabling them to leverage pre-existing internal skills acquired during earlier pre-training stages, even when these skills are not explicitly presented in the prompting context. This results in the capability of LLMs to solve unseen complex problems by activating and composing internal competencies. With such prominent features, SKiC prompting is able to achieve state-of-the-art performance on challenging mathematical reasoning benchmarks (e.g., MATH).
Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
Large language model (LLM) agents perform well in sequential decision-making tasks, but improving them on unfamiliar domains often requires costly online interactions or fine-tuning on large expert datasets. These strategies are impractical for closed-source models and expensive for open-source ones, with risks of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet demonstration-based methods struggle because raw traces are long, noisy, and tied to specific tasks. We present Just-in-time Episodic Feedback Hinter (JEF Hinter), an agentic system that distills offline traces into compact, context-aware hints. A zooming mechanism highlights decisive steps in long trajectories, capturing both strategies and pitfalls. Unlike prior methods, JEF Hinter leverages both successful and failed trajectories, extracting guidance even when only failure data is available, while supporting parallelized hint generation and benchmark-independent prompting. At inference, a retriever selects relevant hints for the current state, providing targeted guidance with transparency and traceability. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite show that JEF Hinter consistently outperforms strong baselines, including human- and document-based hints.
What Makes Large Language Models Reason in (Multi-Turn) Code Generation?
Prompting techniques such as chain-of-thought have established themselves as a popular vehicle for improving the outputs of large language models (LLMs). For code generation, however, their exact mechanics and efficacy are under-explored. We thus investigate the effects of a wide range of prompting strategies with a focus on automatic re-prompting over multiple turns and computational requirements. After systematically decomposing reasoning, instruction, and execution feedback prompts, we conduct an extensive grid search on the competitive programming benchmarks CodeContests and TACO for multiple LLM families and sizes (Llama 3.0 and 3.1, 8B, 70B, 405B, and GPT-4o). Our study reveals strategies that consistently improve performance across all models with small and large sampling budgets. We then show how finetuning with such an optimal configuration allows models to internalize the induced reasoning process and obtain improvements in performance and scalability for multi-turn code generation.
Iteratively Prompt Pre-trained Language Models for Chain of Thought
While Pre-trained Language Models (PLMs) internalize a great amount of world knowledge, they have been shown incapable of recalling these knowledge to solve tasks requiring complex & multi-step reasoning. Similar to how humans develop a "chain of thought" for these tasks, how can we equip PLMs with such abilities? In this work, we explore an iterative prompting framework, a new prompting paradigm which progressively elicits relevant knowledge from PLMs for multi-step inference. We identify key limitations of existing prompting methods, namely they are either restricted to queries with a single identifiable relation/predicate, or being agnostic to input contexts, which makes it difficult to capture variabilities across different inference steps. We propose an iterative context-aware prompter, which addresses these limitations by learning to dynamically synthesize prompts conditioned on the current step's contexts. Experiments on three datasets involving multi-step reasoning show the effectiveness of the iterative scheme and the context-aware prompter design.
Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting
As large language models (LLMs) are adopted as a fundamental component of language technologies, it is crucial to accurately characterize their performance. Because choices in prompt design can strongly influence model behavior, this design process is critical in effectively using any modern pre-trained generative language model. In this work, we focus on LLM sensitivity to a quintessential class of meaning-preserving design choices: prompt formatting. We find that several widely used open-source LLMs are extremely sensitive to subtle changes in prompt formatting in few-shot settings, with performance differences of up to 76 accuracy points when evaluated using LLaMA-2-13B. Sensitivity remains even when increasing model size, the number of few-shot examples, or performing instruction tuning. Our analysis suggests that work evaluating LLMs with prompting-based methods would benefit from reporting a range of performance across plausible prompt formats, instead of the currently-standard practice of reporting performance on a single format. We also show that format performance only weakly correlates between models, which puts into question the methodological validity of comparing models with an arbitrarily chosen, fixed prompt format. To facilitate systematic analysis we propose FormatSpread, an algorithm that rapidly evaluates a sampled set of plausible prompt formats for a given task, and reports the interval of expected performance without accessing model weights. Furthermore, we present a suite of analyses that characterize the nature of this sensitivity, including exploring the influence of particular atomic perturbations and the internal representation of particular formats.
Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
This paper delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). Prompt engineering is the process of structuring input text for LLMs and is a technique integral to optimizing the efficacy of LLMs. This survey elucidates foundational principles of prompt engineering, such as role-prompting, one-shot, and few-shot prompting, as well as more advanced methodologies such as the chain-of-thought and tree-of-thoughts prompting. The paper sheds light on how external assistance in the form of plugins can assist in this task, and reduce machine hallucination by retrieving external knowledge. We subsequently delineate prospective directions in prompt engineering research, emphasizing the need for a deeper understanding of structures and the role of agents in Artificial Intelligence-Generated Content (AIGC) tools. We discuss how to assess the efficacy of prompt methods from different perspectives and using different methods. Finally, we gather information about the application of prompt engineering in such fields as education and programming, showing its transformative potential. This comprehensive survey aims to serve as a friendly guide for anyone venturing through the big world of LLMs and prompt engineering.
The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning
Does prompting a large language model (LLM) like GPT-3 with explanations improve in-context learning? We study this question on two NLP tasks that involve reasoning over text, namely question answering and natural language inference. We test the performance of four LLMs on three textual reasoning datasets using prompts that include explanations in multiple different styles. For these tasks, we find that including explanations in the prompts for OPT, GPT-3 (davinci), and InstructGPT (text-davinci-001) only yields small to moderate accuracy improvements over standard few-show learning. However, text-davinci-002 is able to benefit more substantially. We further show that explanations generated by the LLMs may not entail the models' predictions nor be factually grounded in the input, even on simple tasks with extractive explanations. However, these flawed explanations can still be useful as a way to verify LLMs' predictions post-hoc. Through analysis in our three settings, we show that explanations judged by humans to be good--logically consistent with the input and the prediction--more likely cooccur with accurate predictions. Following these observations, we train calibrators using automatically extracted scores that assess the reliability of explanations, allowing us to improve performance post-hoc across all of our datasets.
StressPrompt: Does Stress Impact Large Language Models and Human Performance Similarly?
Human beings often experience stress, which can significantly influence their performance. This study explores whether Large Language Models (LLMs) exhibit stress responses similar to those of humans and whether their performance fluctuates under different stress-inducing prompts. To investigate this, we developed a novel set of prompts, termed StressPrompt, designed to induce varying levels of stress. These prompts were derived from established psychological frameworks and carefully calibrated based on ratings from human participants. We then applied these prompts to several LLMs to assess their responses across a range of tasks, including instruction-following, complex reasoning, and emotional intelligence. The findings suggest that LLMs, like humans, perform optimally under moderate stress, consistent with the Yerkes-Dodson law. Notably, their performance declines under both low and high-stress conditions. Our analysis further revealed that these StressPrompts significantly alter the internal states of LLMs, leading to changes in their neural representations that mirror human responses to stress. This research provides critical insights into the operational robustness and flexibility of LLMs, demonstrating the importance of designing AI systems capable of maintaining high performance in real-world scenarios where stress is prevalent, such as in customer service, healthcare, and emergency response contexts. Moreover, this study contributes to the broader AI research community by offering a new perspective on how LLMs handle different scenarios and their similarities to human cognition.
Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models
The recent success of Large Language Models (LLMs) has catalyzed an increasing interest in their self-correction capabilities. This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs, attempting to address the ongoing debate about its feasibility. Our research has identified an important latent factor - the "confidence" of LLMs - during the self-correction process. Overlooking this factor may cause the models to over-criticize themselves, resulting in unreliable conclusions regarding the efficacy of self-correction. We have experimentally observed that LLMs possess the capability to understand the "confidence" in their own responses. It motivates us to develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence", facilitating intrinsic self-corrections. We conduct extensive experiments and demonstrate that our IoE-based Prompt can achieve a consistent improvement regarding the accuracy of self-corrected responses over the initial answers. Our study not only sheds light on the underlying factors affecting self-correction in LLMs, but also introduces a practical framework that utilizes the IoE prompting principle to efficiently improve self-correction capabilities with "confidence". The code is available at https://github.com/MBZUAI-CLeaR/IoE-Prompting.git.
AI-Facilitated Analysis of Abstracts and Conclusions: Flagging Unsubstantiated Claims and Ambiguous Pronouns
We present and evaluate a suite of proof-of-concept (PoC), structured workflow prompts designed to elicit human-like hierarchical reasoning while guiding Large Language Models (LLMs) in the high-level semantic and linguistic analysis of scholarly manuscripts. The prompts target two non-trivial analytical tasks within academic summaries (abstracts and conclusions): identifying unsubstantiated claims (informational integrity) and flagging semantically confusing ambiguous pronoun references (linguistic clarity). We conducted a systematic, multi-run evaluation on two frontier models (Gemini Pro 2.5 Pro and ChatGPT Plus o3) under varied context conditions. Our results for the informational integrity task reveal a significant divergence in model performance: while both models successfully identified an unsubstantiated head of a noun phrase (95% success), ChatGPT consistently failed (0% success) to identify an unsubstantiated adjectival modifier that Gemini correctly flagged (95% success), raising a question regarding the potential influence of the target's syntactic role. For the linguistic analysis task, both models performed well (80-90% success) with full manuscript context. Surprisingly, in a summary-only setting, Gemini's performance was substantially degraded, while ChatGPT achieved a perfect (100%) success rate. Our findings suggest that while structured prompting is a viable methodology for complex textual analysis, prompt performance may be highly dependent on the interplay between the model, task type, and context, highlighting the need for rigorous, model-specific testing.
Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt x, the model samples a compact hint h (e.g., a plan or decomposition) and then generates a solution τ conditioned on (x,h). Crucially, the task reward R(x,τ) is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set h=varnothing and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
Improving Factuality and Reasoning in Language Models through Multiagent Debate
Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding.
Meta Reasoning for Large Language Models
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs) inspired by human meta-reasoning. Traditional in-context learning-based reasoning techniques, such as Tree-of-Thoughts, show promise but lack consistent state-of-the-art performance across diverse tasks due to their specialized nature. MRP addresses this limitation by guiding LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task, optimizing both performance and computational efficiency. With MRP, LLM reasoning operates in two phases. Initially, the LLM identifies the most appropriate reasoning method using task input cues and objective descriptions of available methods. Subsequently, it applies the chosen method to complete the task. This dynamic strategy mirrors human meta-reasoning, allowing the model to excel in a wide range of problem domains. We evaluate the effectiveness of MRP through comprehensive benchmarks. The results demonstrate that MRP achieves or approaches state-of-the-art performance across diverse tasks. MRP represents a significant advancement in enabling LLMs to identify cognitive challenges across problems and leverage benefits across different reasoning approaches, enhancing their ability to handle diverse and complex problem domains efficiently. Every LLM deserves a Meta-Reasoning Prompting to unlock its full potential and ensure adaptability in an ever-evolving landscape of challenges and applications.
Prompting with Pseudo-Code Instructions
Prompting with natural language instructions has recently emerged as a popular method of harnessing the capabilities of large language models. Given the inherent ambiguity present in natural language, it is intuitive to consider the possible advantages of prompting with less ambiguous prompt styles, such as the use of pseudo-code. In this paper we explore if prompting via pseudo-code instructions helps improve the performance of pre-trained language models. We manually create a dataset of pseudo-code prompts for 132 different tasks spanning classification, QA and generative language tasks, sourced from the Super-NaturalInstructions dataset. Using these prompts along with their counterparts in natural language, we study their performance on two LLM families - BLOOM and CodeGen. Our experiments show that using pseudo-code instructions leads to better results, with an average increase (absolute) of 7-16 points in F1 scores for classification tasks and an improvement (relative) of 12-38% in aggregate ROUGE-L scores across all tasks. We include detailed ablation studies which indicate that code comments, docstrings, and the structural clues encoded in pseudo-code all contribute towards the improvement in performance. To the best of our knowledge our work is the first to demonstrate how pseudo-code prompts can be helpful in improving the performance of pre-trained LMs.
Continued Pretraining for Better Zero- and Few-Shot Promptability
Recently introduced language model prompting methods can achieve high accuracy in zero- and few-shot settings while requiring few to no learned task-specific parameters. Nevertheless, these methods still often trail behind full model finetuning. In this work, we investigate if a dedicated continued pretraining stage could improve "promptability", i.e., zero-shot performance with natural language prompts or few-shot performance with prompt tuning. We reveal settings where existing continued pretraining methods lack promptability. We also identify current methodological gaps, which we fill with thorough large-scale experiments. We demonstrate that a simple recipe, continued pretraining that incorporates a trainable prompt during multi-task learning, leads to improved promptability in both zero- and few-shot settings compared to existing methods, up to 31% relative. On the other hand, we find that continued pretraining using MAML-style meta-learning, a method that directly optimizes few-shot promptability, yields subpar performance. We validate our findings with two prompt tuning methods, and, based on our results, we provide concrete recommendations to optimize promptability for different use cases.
Preemptive Answer "Attacks" on Chain-of-Thought Reasoning
Large language models (LLMs) showcase impressive reasoning capabilities when coupled with Chain-of-Thought (CoT) prompting. However, the robustness of this approach warrants further investigation. In this paper, we introduce a novel scenario termed preemptive answers, where the LLM obtains an answer before engaging in reasoning. This situation can arise inadvertently or induced by malicious users by prompt injection attacks. Experiments reveal that preemptive answers significantly impair the model's reasoning capability across various CoT methods and a broad spectrum of datasets. To bolster the robustness of reasoning, we propose two measures aimed at mitigating this issue to some extent.
AMPO: Automatic Multi-Branched Prompt Optimization
Prompt engineering is very important to enhance the performance of large language models (LLMs). When dealing with complex issues, prompt engineers tend to distill multiple patterns from examples and inject relevant solutions to optimize the prompts, achieving satisfying results. However, existing automatic prompt optimization techniques are only limited to producing single flow instructions, struggling with handling diverse patterns. In this paper, we present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback. Our goal is to explore a novel way of structuring prompts with multi-branches to better handle multiple patterns in complex tasks, for which we introduce three modules: Pattern Recognition, Branch Adjustment, and Branch Pruning. In experiments across five tasks, AMPO consistently achieves the best results. Additionally, our approach demonstrates significant optimization efficiency due to our adoption of a minimal search strategy.
Contrastive Language Prompting to Ease False Positives in Medical Anomaly Detection
A pre-trained visual-language model, contrastive language-image pre-training (CLIP), successfully accomplishes various downstream tasks with text prompts, such as finding images or localizing regions within the image. Despite CLIP's strong multi-modal data capabilities, it remains limited in specialized environments, such as medical applications. For this purpose, many CLIP variants-i.e., BioMedCLIP, and MedCLIP-SAMv2-have emerged, but false positives related to normal regions persist. Thus, we aim to present a simple yet important goal of reducing false positives in medical anomaly detection. We introduce a Contrastive LAnguage Prompting (CLAP) method that leverages both positive and negative text prompts. This straightforward approach identifies potential lesion regions by visual attention to the positive prompts in the given image. To reduce false positives, we attenuate attention on normal regions using negative prompts. Extensive experiments with the BMAD dataset, including six biomedical benchmarks, demonstrate that CLAP method enhances anomaly detection performance. Our future plans include developing an automated fine prompting method for more practical usage.
Hint Marginalization for Improved Reasoning in Large Language Models
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
Investigating Prompting Techniques for Zero- and Few-Shot Visual Question Answering
Visual question answering (VQA) is a challenging task that requires the ability to comprehend and reason with visual information. While recent vision-language models have made strides, they continue to struggle with zero-shot VQA, particularly in handling complex compositional questions and adapting to new domains i.e. knowledge-based reasoning. This paper explores the use of various prompting strategies, focusing on the BLIP2 model, to enhance zero-shot VQA performance. We conduct a comprehensive investigation across several VQA datasets, examining the effectiveness of different question templates, the role of few-shot exemplars, the impact of chain-of-thought (CoT) reasoning, and the benefits of incorporating image captions as additional visual cues. Despite the varied outcomes, our findings demonstrate that carefully designed question templates and the integration of additional visual cues, like image captions, can contribute to improved VQA performance, especially when used in conjunction with few-shot examples. However, we also identify a limitation in the use of chain-of-thought rationalization, which negatively affects VQA accuracy. Our study thus provides critical insights into the potential of prompting for improving zero-shot VQA performance.
DAPrompt: Deterministic Assumption Prompt Learning for Event Causality Identification
Event Causality Identification (ECI) aims at determining whether there is a causal relation between two event mentions. Conventional prompt learning designs a prompt template to first predict an answer word and then maps it to the final decision. Unlike conventional prompts, we argue that predicting an answer word may not be a necessary prerequisite for the ECI task. Instead, we can first make a deterministic assumption on the existence of causal relation between two events and then evaluate its rationality to either accept or reject the assumption. The design motivation is to try the most utilization of the encyclopedia-like knowledge embedded in a pre-trained language model. In light of such considerations, we propose a deterministic assumption prompt learning model, called DAPrompt, for the ECI task. In particular, we design a simple deterministic assumption template concatenating with the input event pair, which includes two masks as predicted events' tokens. We use the probabilities of predicted events to evaluate the assumption rationality for the final event causality decision. Experiments on the EventStoryLine corpus and Causal-TimeBank corpus validate our design objective in terms of significant performance improvements over the state-of-the-art algorithms.
FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering
Large Language Models (LLMs) with chain-of-thought (COT) prompting have demonstrated impressive abilities on simple nature language inference tasks. However, they tend to perform poorly on Multi-hop Question Answering (MHQA) tasks due to several challenges, including hallucination, error propagation and limited context length. We propose a prompting method, Finite State Machine (FSM) to enhance the reasoning capabilities of LLM for complex tasks in addition to improved effectiveness and trustworthiness. Different from COT methods, FSM addresses MHQA by iteratively decomposing a question into multi-turn sub-questions, and self-correcting in time, improving the accuracy of answers in each step. Specifically, FSM addresses one sub-question at a time and decides on the next step based on its current result and state, in an automaton-like format. Experiments on benchmarks show the effectiveness of our method. Although our method performs on par with the baseline on relatively simpler datasets, it excels on challenging datasets like Musique. Moreover, this approach mitigates the hallucination phenomenon, wherein the correct final answer can be recovered despite errors in intermediate reasoning. Furthermore, our method improves LLMs' ability to follow specified output format requirements, significantly reducing the difficulty of answer interpretation and the need for reformatting.
Can LLMs Solve longer Math Word Problems Better?
Math Word Problems (MWPs) play a vital role in assessing the capabilities of Large Language Models (LLMs), yet current research primarily focuses on questions with concise contexts. The impact of longer contexts on mathematical reasoning remains under-explored. This study pioneers the investigation of Context Length Generalizability (CoLeG), which refers to the ability of LLMs to solve MWPs with extended narratives. We introduce Extended Grade-School Math (E-GSM), a collection of MWPs featuring lengthy narratives, and propose two novel metrics to evaluate the efficacy and resilience of LLMs in tackling these problems. Our analysis of existing zero-shot prompting techniques with proprietary LLMs along with open-source LLMs reveals a general deficiency in CoLeG. To alleviate these issues, we propose tailored approaches for different categories of LLMs. For proprietary LLMs, we introduce a new instructional prompt designed to mitigate the impact of long contexts. For open-source LLMs, we develop a novel auxiliary task for fine-tuning to enhance CoLeG. Our comprehensive results demonstrate the effectiveness of our proposed methods, showing improved performance on E-GSM. Additionally, we conduct an in-depth analysis to differentiate the effects of semantic understanding and reasoning efficacy, showing that our methods improves the latter. We also establish the generalizability of our methods across several other MWP benchmarks. Our findings highlight the limitations of current LLMs and offer practical solutions correspondingly, paving the way for further exploration of model generalizability and training methodologies.
Code Prompting: a Neural Symbolic Method for Complex Reasoning in Large Language Models
Large language models (LLMs) have scaled up to unlock a wide range of complex reasoning tasks with the aid of various prompting methods. However, current prompting methods generate natural language intermediate steps to help reasoning, which can cause imperfect task reduction and confusion. To mitigate such limitations, we explore code prompting, a neural symbolic prompting method with both zero-shot and few-shot versions which triggers code as intermediate steps. We conduct experiments on 7 widely-used benchmarks involving symbolic reasoning and arithmetic reasoning. Code prompting generally outperforms chain-of-thought (CoT) prompting. To further understand the performance and limitations of code prompting, we perform extensive ablation studies and error analyses, and identify several exclusive advantages of using symbolic promptings compared to natural language. We also consider the ensemble of code prompting and CoT prompting to combine the strengths of both. Finally, we show through experiments how code annotations and their locations affect code prompting.
PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
Prompting language models (LMs) is the main interface for applying them to new tasks. However, for smaller LMs, prompting provides low accuracy compared to gradient-based finetuning. Tree Prompting is an approach to prompting which builds a decision tree of prompts, linking multiple LM calls together to solve a task. At inference time, each call to the LM is determined by efficiently routing the outcome of the previous call using the tree. Experiments on classification datasets show that Tree Prompting improves accuracy over competing methods and is competitive with fine-tuning. We also show that variants of Tree Prompting allow inspection of a model's decision-making process.
Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Reasoning is a fundamental component for achieving language understanding. Among the multiple types of reasoning, conditional reasoning, the ability to draw different conclusions depending on some condition, has been understudied in large language models (LLMs). Recent prompting methods, such as chain of thought, have significantly improved LLMs on reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs. We hypothesize that code prompts can trigger conditional reasoning in LLMs trained on text and code. We propose a chain of prompts that transforms a natural language problem into code and prompts the LLM with the generated code. Our experiments find that code prompts exhibit a performance boost between 2.6 and 7.7 points on GPT 3.5 across multiple datasets requiring conditional reasoning. We then conduct experiments to discover how code prompts elicit conditional reasoning abilities and through which features. We observe that prompts need to contain natural language text accompanied by high-quality code that closely represents the semantics of the instance text. Furthermore, we show that code prompts are more efficient, requiring fewer demonstrations, and that they trigger superior state tracking of variables or key entities.
Universal Self-Adaptive Prompting
A hallmark of modern large language models (LLMs) is their impressive general zero-shot and few-shot abilities, often elicited through in-context learning (ICL) via prompting. However, while highly coveted and being the most general, zero-shot performances in LLMs are still typically weaker due to the lack of guidance and the difficulty of applying existing automatic prompt design methods in general tasks when ground-truth labels are unavailable. In this study, we address this by presenting Universal Self-Adaptive Prompting (USP), an automatic prompt design approach specifically tailored for zero-shot learning (while compatible with few-shot). Requiring only a small amount of unlabeled data and an inference-only LLM, USP is highly versatile: to achieve universal prompting, USP categorizes a possible NLP task into one of the three possible task types and then uses a corresponding selector to select the most suitable queries and zero-shot model-generated responses as pseudo-demonstrations, thereby generalizing ICL to the zero-shot setup in a fully automated way. We evaluate USP with PaLM and PaLM 2 models and demonstrate performances that are considerably stronger than standard zero-shot baselines and often comparable to or even superior to few-shot baselines across more than 40 natural language understanding, natural language generation, and reasoning tasks.
RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning
The advent of the "pre-train, prompt" paradigm has recently extended its generalization ability and data efficiency to graph representation learning, following its achievements in Natural Language Processing (NLP). Initial graph prompt tuning approaches tailored specialized prompting functions for Graph Neural Network (GNN) models pre-trained with specific strategies, such as edge prediction, thus limiting their applicability. In contrast, another pioneering line of research has explored universal prompting via adding prompts to the input graph's feature space, thereby removing the reliance on specific pre-training strategies. However, the necessity to add feature prompts to all nodes remains an open question. Motivated by findings from prompt tuning research in the NLP domain, which suggest that highly capable pre-trained models need less conditioning signal to achieve desired behaviors, we advocate for strategically incorporating necessary and lightweight feature prompts to certain graph nodes to enhance downstream task performance. This introduces a combinatorial optimization problem, requiring a policy to decide 1) which nodes to prompt and 2) what specific feature prompts to attach. We then address the problem by framing the prompt incorporation process as a sequential decision-making problem and propose our method, RELIEF, which employs Reinforcement Learning (RL) to optimize it. At each step, the RL agent selects a node (discrete action) and determines the prompt content (continuous action), aiming to maximize cumulative performance gain. Extensive experiments on graph and node-level tasks with various pre-training strategies in few-shot scenarios demonstrate that our RELIEF outperforms fine-tuning and other prompt-based approaches in classification performance and data efficiency.
LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning
Chain-of-thought (CoT) prompting is a popular in-context learning (ICL) approach for large language models (LLMs), especially when tackling complex reasoning tasks. Traditional ICL approaches construct prompts using examples that contain questions similar to the input question. However, CoT prompting, which includes crucial intermediate reasoning steps (rationales) within its examples, necessitates selecting examples based on these rationales rather than the questions themselves. Existing methods require human experts or pre-trained LLMs to describe the skill, a high-level abstraction of rationales, to guide the selection. These methods, however, are often costly and difficult to scale. Instead, this paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales, with a latent variable called a reasoning skill. Concurrently, LaRS learns a reasoning policy to determine the required reasoning skill for a given question. Then the ICL examples are selected by aligning the reasoning skills between past examples and the question. This approach is theoretically grounded and compute-efficient, eliminating the need for auxiliary LLM inference or manual prompt design. Empirical results demonstrate that LaRS consistently outperforms SOTA skill-based selection methods, processing example banks four times faster, reducing LLM inferences during the selection stage by half, and showing greater robustness to sub-optimal example banks.
Holy Grail 2.0: From Natural Language to Constraint Models
Twenty-seven years ago, E. Freuder highlighted that "Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it". Nowadays, CP users have great modeling tools available (like Minizinc and CPMpy), allowing them to formulate the problem and then let a solver do the rest of the job, getting closer to the stated goal. However, this still requires the CP user to know the formalism and respect it. Another significant challenge lies in the expertise required to effectively model combinatorial problems. All this limits the wider adoption of CP. In this position paper, we investigate a possible approach to leverage pre-trained Large Language Models to extract models from textual problem descriptions. More specifically, we take inspiration from the Natural Language Processing for Optimization (NL4OPT) challenge and present early results with a decomposition-based prompting approach to GPT Models.
SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models
Recent advances in large language models (LLMs) have demonstrated notable progress on many mathematical benchmarks. However, most of these benchmarks only feature problems grounded in junior and senior high school subjects, contain only multiple-choice questions, and are confined to a limited scope of elementary arithmetic operations. To address these issues, this paper introduces an expansive benchmark suite SciBench that aims to systematically examine the reasoning capabilities required for complex scientific problem solving. SciBench contains two carefully curated datasets: an open set featuring a range of collegiate-level scientific problems drawn from mathematics, chemistry, and physics textbooks, and a closed set comprising problems from undergraduate-level exams in computer science and mathematics. Based on the two datasets, we conduct an in-depth benchmark study of two representative LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with an overall score of merely 35.80%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms others and some strategies that demonstrate improvements in certain problem-solving skills result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
R^3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context
With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R^3 prompting, for CoT reasoning under noisy context. Specifically, R^3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R^3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R^3 prompting method in solving reasoning tasks in LLMs under noisy context.
Reasoning Riddles: How Explainability Reveals Cognitive Limits in Vision-Language Models
Vision-Language Models (VLMs) excel at many multimodal tasks, yet their cognitive processes remain opaque on complex lateral thinking challenges like rebus puzzles. While recent work has demonstrated these models struggle significantly with rebus puzzle solving, the underlying reasoning processes and failure patterns remain largely unexplored. We address this gap through a comprehensive explainability analysis that moves beyond performance metrics to understand how VLMs approach these complex lateral thinking challenges. Our study contributes a systematically annotated dataset of 221 rebus puzzles across six cognitive categories, paired with an evaluation framework that separates reasoning quality from answer correctness. We investigate three prompting strategies designed to elicit different types of explanatory processes and reveal critical insights into VLM cognitive processes. Our findings demonstrate that reasoning quality varies dramatically across puzzle categories, with models showing systematic strengths in visual composition while exhibiting fundamental limitations in absence interpretation and cultural symbolism. We also discover that prompting strategy substantially influences both cognitive approach and problem-solving effectiveness, establishing explainability as an integral component of model performance rather than a post-hoc consideration.
Large Language Model Prompt Chaining for Long Legal Document Classification
Prompting is used to guide or steer a language model in generating an appropriate response that is consistent with the desired outcome. Chaining is a strategy used to decompose complex tasks into smaller, manageable components. In this study, we utilize prompt chaining for extensive legal document classification tasks, which present difficulties due to their intricate domain-specific language and considerable length. Our approach begins with the creation of a concise summary of the original document, followed by a semantic search for related exemplar texts and their corresponding annotations from a training corpus. Finally, we prompt for a label - based on the task - to assign, by leveraging the in-context learning from the few-shot prompt. We demonstrate that through prompt chaining, we can not only enhance the performance over zero-shot, but also surpass the micro-F1 score achieved by larger models, such as ChatGPT zero-shot, using smaller models.
Decomposed Prompting: A Modular Approach for Solving Complex Tasks
Few-shot prompting is a surprisingly powerful way to use Large Language Models (LLMs) to solve various tasks. However, this approach struggles as the task complexity increases or when the individual reasoning steps of the task themselves are hard to learn, especially when embedded in more complex tasks. To address this, we propose Decomposed Prompting, a new approach to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks that can be delegated to a library of prompting-based LLMs dedicated to these sub-tasks. This modular structure allows each prompt to be optimized for its specific sub-task, further decomposed if necessary, and even easily replaced with more effective prompts, trained models, or symbolic functions if desired. We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting using GPT3. On symbolic reasoning tasks, we can further decompose sub-tasks that are hard for LLMs into even simpler solvable sub-tasks. When the complexity comes from the input length, we can recursively decompose the task into the same task but with smaller inputs. We also evaluate our approach on textual multi-step reasoning tasks: on long-context multi-hop QA task, we can more effectively teach the sub-tasks via our separate sub-tasks prompts; and on open-domain multi-hop QA, we can incorporate a symbolic information retrieval within our decomposition framework, leading to improved performance on both tasks. Datasets, Code and Prompts available at https://github.com/allenai/DecomP.
STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering
Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting. In this paper, we propose STOC-TOT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing STOC-TOT with two MHQA datasets and five large language models showed that our framework outperforms other reasoning prompts by a significant margin.
Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains. Math Word Problems (MWPs) serve as a crucial benchmark for evaluating LLMs' reasoning abilities. While most research primarily focuses on improving accuracy, it often neglects understanding and addressing the underlying patterns of errors. Current error classification methods rely on static and predefined categories, which limit their ability to capture the full spectrum of error patterns in mathematical reasoning. To enable systematic error analysis, we collect error samples from 15 different LLMs of varying sizes across four distinct MWP datasets using multiple sampling strategies. Based on this extensive collection, we introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples that cover diverse error patterns and reasoning paths. To reduce human bias and enable fine-grained analysis of error patterns, we propose a novel framework for automated dynamic error classification in mathematical reasoning. Experimental results demonstrate that dataset characteristics significantly shape error patterns, which evolve from basic to complex manifestations as model capabilities increase. With deeper insights into error patterns, we propose error-aware prompting that incorporates common error patterns as explicit guidance, leading to significant improvements in mathematical reasoning performance.
Echoes as Anchors: Probabilistic Costs and Attention Refocusing in LLM Reasoning
Test-time compute allocation in large reasoning models (LRMs) is widely used and has applications in mathematical problem solving, code synthesis, and planning. Recent work has addressed this problem by scaling self-consistency and parallel thinking, adding generic ``thinking tokens'' and prompting models to re-read the question before answering. Unfortunately, these approaches either inject task-agnostic tokens or mandate heuristics that do not explain -- and often ignore -- the spontaneous repetition that many LRMs exhibit at the head of their internal chains. In contrast, we analyze and harness the model's tendency to restate the question, which we term the Echo of Prompt (EOP), as a front-loaded, compute-shaping mechanism. We formalize its probabilistic cost by casting echo removal as rejection-based conditioning and defining the Echo Likelihood Gap ΔL as a computable proxy. This provides the missing theoretical link that links early repetition to likelihood gains and downstream accuracy. However, it does not by itself specify how to exploit EOP. Consequently, we develop Echo-Distilled SFT (ED-SFT) to instill an ``echo-then-reason'' pattern through supervised finetuning, and Echoic Prompting (EP) to re-ground the model mid-trace without training. While promising, quantifying benefits beyond verbosity is non-trivial. Therefore, we conduct length and suffix-controlled likelihood analyses together with layer-wise attention studies, showing that EOP increases answer to answer-prefix attention in middle layers, consistent with an attention refocusing mechanism. We evaluate on GSM8K, MathQA, Hendrycks-MATH, AIME24, and MATH-500 under identical decoding settings and budgets, and find consistent gains over baselines. Code is available at https://github.com/hhh2210/echoes-as-anchors.
Re-Reading Improves Reasoning in Language Models
Reasoning presents a significant and challenging issue for Large Language Models (LLMs). The predominant focus of research has revolved around developing diverse prompting strategies to guide and structure the reasoning processes of LLMs. However, these approaches based on decoder-only causal language models often operate the input question in a single forward pass, potentially missing the rich, back-and-forth interactions inherent in human reasoning. Scant attention has been paid to a critical dimension, i.e., the input question itself embedded within the prompts. In response, we introduce a deceptively simple yet highly effective prompting strategy, termed question "re-reading". Drawing inspiration from human learning and problem-solving, re-reading entails revisiting the question information embedded within input prompts. This approach aligns seamlessly with the cognitive principle of reinforcement, enabling LLMs to extract deeper insights, identify intricate patterns, establish more nuanced connections, and ultimately enhance their reasoning capabilities across various tasks. Experiments conducted on a series of reasoning benchmarks serve to underscore the effectiveness and generality of our method. Moreover, our findings demonstrate that our approach seamlessly integrates with various language models, though-eliciting prompting methods, and ensemble techniques, further underscoring its versatility and compatibility in the realm of LLMs.
Meaning Typed Prompting: A Technique for Efficient, Reliable Structured Output Generation
Extending Large Language Models (LLMs) to advanced applications requires reliable structured output generation. Existing methods which often rely on rigid JSON schemas, can lead to unreliable outputs, diminished reasoning capabilities, and increased computational overhead, limiting LLMs' adaptability for complex tasks. We introduce Meaning Typed Prompting (MTP), a technique for efficient structured output generation that integrates types, meanings, and abstractions, such as variables and classes, into the prompting process. By utilizing expressive type definitions, MTP enhances output clarity and reduces dependence on complex abstractions, simplifying development, and improving implementation efficiency. This enables LLMs to understand relationships and generate structured data more effectively. Empirical evaluations on multiple benchmarks demonstrate that MTP outperforms existing frameworks in accuracy, reliability, consistency, and token efficiency. We present Semantix, a framework that implements MTP, providing practical insights into its application.
Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.
MSP: Multi-Stage Prompting for Making Pre-trained Language Models Better Translators
Prompting has recently been shown as a promising approach for applying pre-trained language models to perform downstream tasks. We present Multi-Stage Prompting (MSP), a simple and automatic approach for leveraging pre-trained language models to translation tasks. To better mitigate the discrepancy between pre-training and translation, MSP divides the translation process via pre-trained language models into multiple separate stages: the encoding stage, the re-encoding stage, and the decoding stage. During each stage, we independently apply different continuous prompts for allowing pre-trained language models better shift to translation tasks. We conduct extensive experiments on three translation tasks. Experiments show that our method can significantly improve the translation performance of pre-trained language models.
Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs
The formalization of existing mathematical proofs is a notoriously difficult process. Despite decades of research on automation and proof assistants, writing formal proofs remains arduous and only accessible to a few experts. While previous studies to automate formalization focused on powerful search algorithms, no attempts were made to take advantage of available informal proofs. In this work, we introduce Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof sketches, and uses the sketches to guide an automated prover by directing its search to easier sub-problems. We investigate two relevant setups where informal proofs are either written by humans or generated by a language model. Our experiments and ablation studies show that large language models are able to produce well-structured formal sketches that follow the same reasoning steps as the informal proofs. Guiding an automated prover with these sketches enhances its performance from 20.9% to 39.3% on a collection of mathematical competition problems.
What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs
Prompting ChatGPT to achieve complex goals (e.g., creating a customer support chatbot) often demands meticulous prompt engineering, including aspects like fluent writing and chain-of-thought techniques. While emerging prompt optimizers can automatically refine many of these aspects, we argue that clearly conveying customized requirements (e.g., how to handle diverse inputs) remains a human-centric challenge. In this work, we introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting. We implement ROPE through an assessment and training suite that provides deliberate practice with LLM-generated feedback. In a study with 30 novices, we show that requirement-focused training doubles novices' prompting performance, significantly outperforming conventional prompt engineering training and prompt optimization. We also demonstrate that high-quality LLM outputs are directly tied to the quality of input requirements. Our work paves the way for more effective task delegation in human-LLM collaborative prompting.
Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
We present Step-Back Prompting, a simple prompting technique that enables LLMs to do abstractions to derive high-level concepts and first principles from instances containing specific details. Using the concepts and principles to guide the reasoning steps, LLMs significantly improve their abilities in following a correct reasoning path towards the solution. We conduct experiments of Step-Back Prompting with PaLM-2L models and observe substantial performance gains on a wide range of challenging reasoning-intensive tasks including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back Prompting improves PaLM-2L performance on MMLU Physics and Chemistry by 7% and 11%, TimeQA by 27%, and MuSiQue by 7%.
Large Language Models Are Human-Level Prompt Engineers
By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.
