Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeIOLBENCH: Benchmarking LLMs on Linguistic Reasoning
Despite the remarkable advancements and widespread applications of deep neural networks, their ability to perform reasoning tasks remains limited, particularly in domains requiring structured, abstract thought. In this paper, we investigate the linguistic reasoning capabilities of state-of-the-art large language models (LLMs) by introducing IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems. This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics, all carefully designed to be self-contained and independent of external knowledge. These tasks challenge models to engage in metacognitive linguistic reasoning, requiring the deduction of linguistic rules and patterns from minimal examples. Through extensive benchmarking of leading LLMs, we find that even the most advanced models struggle to handle the intricacies of linguistic complexity, particularly in areas demanding compositional generalization and rule abstraction. Our analysis highlights both the strengths and persistent limitations of current models in linguistic problem-solving, offering valuable insights into their reasoning capabilities. By introducing IOLBENCH, we aim to foster further research into developing models capable of human-like reasoning, with broader implications for the fields of computational linguistics and artificial intelligence.
Winning Gold at IMO 2025 with a Model-Agnostic Verification-and-Refinement Pipeline
The International Mathematical Olympiad (IMO) is widely regarded as the world championship of high-school mathematics. IMO problems are renowned for their difficulty and novelty, demanding deep insight, creativity, and rigor. Although large language models perform well on many mathematical benchmarks, they often struggle with Olympiad-level problems. Using carefully designed prompts, we construct a model-agnostic, verification-and-refinement pipeline. We demonstrate its effectiveness on the recent IMO 2025, avoiding data contamination for models released before the competition. Equipped with any of the three leading models -- Gemini 2.5 Pro, Grok-4, or GPT-5 -- our pipeline correctly solved 5 out of the 6 problems (approx85.7% accuracy). This is in sharp contrast to their baseline accuracies: 31.6% (Gemini 2.5 Pro), 21.4% (Grok-4), and 38.1% (GPT-5), obtained by selecting the best of 32 candidate solutions. The substantial improvement underscores that the path to advanced AI reasoning requires not only developing more powerful base models but also designing effective methodologies to harness their full potential for complex tasks.
LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages
In this paper, we present the LingOly benchmark, a novel benchmark for advanced reasoning abilities in large language models. Using challenging Linguistic Olympiad puzzles, we evaluate (i) capabilities for in-context identification and generalisation of linguistic patterns in very low-resource or extinct languages, and (ii) abilities to follow complex task instructions. The LingOly benchmark covers more than 90 mostly low-resource languages, minimising issues of data contamination, and contains 1,133 problems across 6 formats and 5 levels of human difficulty. We assess performance with both direct accuracy and comparison to a no-context baseline to penalise memorisation. Scores from 11 state-of-the-art LLMs demonstrate the benchmark to be challenging, and models perform poorly on the higher difficulty problems. On harder problems, even the top model only achieved 35.3% accuracy, 21.7% improvement over the no-context baseline. Large closed models typically outperform open models, and in general, the higher resource the language, the better the scores. These results indicate, in absence of memorisation, true multi-step out-of-domain reasoning remains a challenge for current language models.
Can Language Models Solve Olympiad Programming?
Computing olympiads contain some of the most challenging problems for humans, requiring complex algorithmic reasoning, puzzle solving, in addition to generating efficient code. However, it has been understudied as a domain to evaluate language models (LMs). In this paper, we introduce the USACO benchmark with 307 problems from the USA Computing Olympiad, along with high-quality unit tests, reference code, and official analyses for each problem. These resources enable us to construct and test a range of LM inference methods for competitive programming for the first time. We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting, and our best inference method improves it to 20.2% using a combination of self-reflection and retrieval over episodic knowledge. However, this is far from solving the benchmark. To better understand the remaining challenges, we design a novel human-in-the-loop study and surprisingly find that a small number of targeted hints enable GPT-4 to solve 13 out of 15 problems previously unsolvable by any model and method. Our benchmark, baseline methods, quantitative results, and qualitative analysis serve as an initial step toward LMs with grounded, creative, and algorithmic reasoning.
OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems
Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at https://github.com/OpenBMB/OlympiadBench
RIMO: An Easy-to-Evaluate, Hard-to-Solve Olympiad Benchmark for Advanced Mathematical Reasoning
As large language models (LLMs) reach high scores on established mathematical benchmarks, such as GSM8K and MATH, the research community has turned to International Mathematical Olympiad (IMO) problems to push the evaluation frontier. However, existing Olympiad-level benchmarks suffer from practical constraints that introduce grading noise and potential bias, such as heterogeneous answer formats requiring model-based judges and a reliance on potentially flawed solutions. We introduce RIMO, a two-track benchmark designed to preserve peak Olympiad difficulty while eliminating this evaluation noise. The first track, RIMO-N, rewrites 335 IMO problems to admit a single, unique integer answer, allowing for deterministic correctness checking. The second track, RIMO-P, features 456 proof problems with expert-checked solutions, which are decomposed into a sequence of sub-problems to evaluate the step-by-step reasoning process via an automated grading system. Our benchmarking of ten frontier LLMs, including GPT-4o and Gemini 2.5 Flash, reveals that while these systems excel on older benchmarks, their performance drops sharply on RIMO. These results highlight a substantial gap between current LLM capabilities and actual Olympiad-level reasoning. By providing a challenging yet easy-to-evaluate suite, RIMO offers a high-resolution yardstick for future research, presenting a clear target for closing the profound reasoning gap our findings expose.
Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI
The evolution of Artificial Intelligence (AI) has been significantly accelerated by advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), gradually showcasing potential cognitive reasoning abilities in problem-solving and scientific discovery (i.e., AI4Science) once exclusive to human intellect. To comprehensively evaluate current models' performance in cognitive reasoning abilities, we introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities. These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage. We argue that the challenges in Olympic competition problems are ideal for evaluating AI's cognitive reasoning due to their complexity and interdisciplinary nature, which are essential for tackling complex scientific challenges and facilitating discoveries. Beyond evaluating performance across various disciplines using answer-only criteria, we conduct detailed experiments and analyses from multiple perspectives. We delve into the models' cognitive reasoning abilities, their performance across different modalities, and their outcomes in process-level evaluations, which are vital for tasks requiring complex reasoning with lengthy solutions. Our extensive evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration. Through the OlympicArena, we aim to advance AI towards superintelligence, equipping it to address more complex challenges in science and beyond. We also provide a comprehensive set of resources to support AI research, including a benchmark dataset, an open-source annotation platform, a detailed evaluation tool, and a leaderboard with automatic submission features.
PhysicsMinions: Winning Gold Medals in the Latest Physics Olympiads with a Coevolutionary Multimodal Multi-Agent System
Physics is central to understanding and shaping the real world, and the ability to solve physics problems is a key indicator of real-world physical intelligence. Physics Olympiads, renowned as the crown of competitive physics, provide a rigorous testbed requiring complex reasoning and deep multimodal understanding, yet they remain largely underexplored in AI research. Existing approaches are predominantly single-model based, and open-source MLLMs rarely reach gold-medal-level performance. To address this gap, we propose PhysicsMinions, a coevolutionary multi-agent system for Physics Olympiad. Its architecture features three synergistic studios: a Visual Studio to interpret diagrams, a Logic Studio to formulate solutions, and a Review Studio to perform dual-stage verification. The system coevolves through an iterative refinement loop where feedback from the Review Studio continuously guides the Logic Studio, enabling the system to self-correct and converge towards the ground truth. Evaluated on the HiPhO benchmark spanning 7 latest physics Olympiads, PhysicsMinions delivers three major breakthroughs: (i) Strong generalization: it consistently improves both open-source and closed-source models of different sizes, delivering clear benefits over their single-model baselines; (ii) Historic breakthroughs: it elevates open-source models from only 1-2 to 6 gold medals across 7 Olympiads, achieving the first-ever open-source gold medal in the latest International Physics Olympiad (IPhO) under the average-score metric; and (iii) Scaling to human expert: it further advances the open-source Pass@32 score to 26.8/30 points on the latest IPhO, ranking 4th of 406 contestants and far surpassing the top single-model score of 22.7 (ranked 22nd). Generally, PhysicsMinions offers a generalizable framework for Olympiad-level problem solving, with the potential to extend across disciplines.
The 2021 Tokyo Olympics Multilingual News Article Dataset
In this paper, we introduce a dataset of multilingual news articles covering the 2021 Tokyo Olympics. A total of 10,940 news articles were gathered from 1,918 different publishers, covering 1,350 sub-events of the 2021 Olympics, and published between July 1, 2021, and August 14, 2021. These articles are written in nine languages from different language families and in different scripts. To create the dataset, the raw news articles were first retrieved via a service that collects and analyzes news articles. Then, the articles were grouped using an online clustering algorithm, with each group containing articles reporting on the same sub-event. Finally, the groups were manually annotated and evaluated. The development of this dataset aims to provide a resource for evaluating the performance of multilingual news clustering algorithms, for which limited datasets are available. It can also be used to analyze the dynamics and events of the 2021 Tokyo Olympics from different perspectives. The dataset is available in CSV format and can be accessed from the CLARIN.SI repository.
Evaluating the Performance of Large Language Models in Competitive Programming: A Multi-Year, Multi-Grade Analysis
This study explores the performance of large language models (LLMs) in solving competitive programming problems from the Romanian Informatics Olympiad at the county level. Romania, a leading nation in computer science competitions, provides an ideal environment for evaluating LLM capabilities due to its rich history and stringent competition standards. We collected and analyzed a dataset comprising 304 challenges from 2002 to 2023, focusing on solutions written by LLMs in C++ and Python for these problems. Our primary goal is to understand why LLMs perform well or poorly on different tasks. We evaluated various models, including closed-source models like GPT-4 and open-weight models such as CodeLlama and RoMistral, using a standardized process involving multiple attempts and feedback rounds. The analysis revealed significant variations in LLM performance across different grades and problem types. Notably, GPT-4 showed strong performance, indicating its potential use as an educational tool for middle school students. We also observed differences in code quality and style across various LLMs
End-to-End Bangla AI for Solving Math Olympiad Problem Benchmark: Leveraging Large Language Model Using Integrated Approach
This work introduces systematic approach for enhancing large language models (LLMs) to address Bangla AI mathematical challenges. Through the assessment of diverse LLM configurations, fine-tuning with specific datasets, and the implementation of Retrieval-Augmented Generation (RAG), we enhanced the model's reasoning precision in a multilingual setting. Crucial discoveries indicate that customized prompting, dataset augmentation, and iterative reasoning improve the model's efficiency regarding Olympiad-level mathematical challenges.
AMO-Bench: Large Language Models Still Struggle in High School Math Competitions
We present AMO-Bench, an Advanced Mathematical reasoning benchmark with Olympiad level or even higher difficulty, comprising 50 human-crafted problems. Existing benchmarks have widely leveraged high school math competitions for evaluating mathematical reasoning capabilities of large language models (LLMs). However, many existing math competitions are becoming less effective for assessing top-tier LLMs due to performance saturation (e.g., AIME24/25). To address this, AMO-Bench introduces more rigorous challenges by ensuring all 50 problems are (1) cross-validated by experts to meet at least the International Mathematical Olympiad (IMO) difficulty standards, and (2) entirely original problems to prevent potential performance leakages from data memorization. Moreover, each problem in AMO-Bench requires only a final answer rather than a proof, enabling automatic and robust grading for evaluation. Experimental results across 26 LLMs on AMO-Bench show that even the best-performing model achieves only 52.4% accuracy on AMO-Bench, with most LLMs scoring below 40%. Beyond these poor performances, our further analysis reveals a promising scaling trend with increasing test-time compute on AMO-Bench. These results highlight the significant room for improving the mathematical reasoning in current LLMs. We release AMO-Bench to facilitate further research into advancing the reasoning abilities of language models. https://amo-bench.github.io/
Clue-Instruct: Text-Based Clue Generation for Educational Crossword Puzzles
Crossword puzzles are popular linguistic games often used as tools to engage students in learning. Educational crosswords are characterized by less cryptic and more factual clues that distinguish them from traditional crossword puzzles. Despite there exist several publicly available clue-answer pair databases for traditional crosswords, educational clue-answer pairs datasets are missing. In this article, we propose a methodology to build educational clue generation datasets that can be used to instruct Large Language Models (LLMs). By gathering from Wikipedia pages informative content associated with relevant keywords, we use Large Language Models to automatically generate pedagogical clues related to the given input keyword and its context. With such an approach, we created clue-instruct, a dataset containing 44,075 unique examples with text-keyword pairs associated with three distinct crossword clues. We used clue-instruct to instruct different LLMs to generate educational clues from a given input content and keyword. Both human and automatic evaluations confirmed the quality of the generated clues, thus validating the effectiveness of our approach.
MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.
LiveCodeBench Pro: How Do Olympiad Medalists Judge LLMs in Competitive Programming?
Recent reports claim that large language models (LLMs) now outperform elite humans in competitive programming. Drawing on knowledge from a group of medalists in international algorithmic contests, we revisit this claim, examining how LLMs differ from human experts and where limitations still remain. We introduce LiveCodeBench Pro, a benchmark composed of problems from Codeforces, ICPC, and IOI that are continuously updated to reduce the likelihood of data contamination. A team of Olympiad medalists annotates every problem for algorithmic categories and conducts a line-by-line analysis of failed model-generated submissions. Using this new data and benchmark, we find that frontier models still have significant limitations: without external tools, the best model achieves only 53% pass@1 on medium-difficulty problems and 0% on hard problems, domains where expert humans still excel. We also find that LLMs succeed at implementation-heavy problems but struggle with nuanced algorithmic reasoning and complex case analysis, often generating confidently incorrect justifications. High performance appears largely driven by implementation precision and tool augmentation, not superior reasoning. LiveCodeBench Pro thus highlights the significant gap to human grandmaster levels, while offering fine-grained diagnostics to steer future improvements in code-centric LLM reasoning.
Competitive Programming with Large Reasoning Models
We show that reinforcement learning applied to large language models (LLMs) significantly boosts performance on complex coding and reasoning tasks. Additionally, we compare two general-purpose reasoning models - OpenAI o1 and an early checkpoint of o3 - with a domain-specific system, o1-ioi, which uses hand-engineered inference strategies designed for competing in the 2024 International Olympiad in Informatics (IOI). We competed live at IOI 2024 with o1-ioi and, using hand-crafted test-time strategies, placed in the 49th percentile. Under relaxed competition constraints, o1-ioi achieved a gold medal. However, when evaluating later models such as o3, we find that o3 achieves gold without hand-crafted domain-specific strategies or relaxed constraints. Our findings show that although specialized pipelines such as o1-ioi yield solid improvements, the scaled-up, general-purpose o3 model surpasses those results without relying on hand-crafted inference heuristics. Notably, o3 achieves a gold medal at the 2024 IOI and obtains a Codeforces rating on par with elite human competitors. Overall, these results indicate that scaling general-purpose reinforcement learning, rather than relying on domain-specific techniques, offers a robust path toward state-of-the-art AI in reasoning domains, such as competitive programming.
Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
IndoNLI: A Natural Language Inference Dataset for Indonesian
We present IndoNLI, the first human-elicited NLI dataset for Indonesian. We adapt the data collection protocol for MNLI and collect nearly 18K sentence pairs annotated by crowd workers and experts. The expert-annotated data is used exclusively as a test set. It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. Experiment results show that XLM-R outperforms other pre-trained models in our data. The best performance on the expert-annotated data is still far below human performance (13.4% accuracy gap), suggesting that this test set is especially challenging. Furthermore, our analysis shows that our expert-annotated data is more diverse and contains fewer annotation artifacts than the crowd-annotated data. We hope this dataset can help accelerate progress in Indonesian NLP research.
LLMs for Extremely Low-Resource Finno-Ugric Languages
The advancement of large language models (LLMs) has predominantly focused on high-resource languages, leaving low-resource languages, such as those in the Finno-Ugric family, significantly underrepresented. This paper addresses this gap by focusing on V\~oro, Livonian, and Komi. We cover almost the entire cycle of LLM creation, from data collection to instruction tuning and evaluation. Our contributions include developing multilingual base and instruction-tuned models; creating evaluation benchmarks, including the smugri-MT-bench multi-turn conversational benchmark; and conducting human evaluation. We intend for this work to promote linguistic diversity, ensuring that lesser-resourced languages can benefit from advancements in NLP.
NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions
The Natural Language for Optimization (NL4Opt) Competition was created to investigate methods of extracting the meaning and formulation of an optimization problem based on its text description. Specifically, the goal of the competition is to increase the accessibility and usability of optimization solvers by allowing non-experts to interface with them using natural language. We separate this challenging goal into two sub-tasks: (1) recognize and label the semantic entities that correspond to the components of the optimization problem; (2) generate a meaning representation (i.e., a logical form) of the problem from its detected problem entities. The first task aims to reduce ambiguity by detecting and tagging the entities of the optimization problems. The second task creates an intermediate representation of the linear programming (LP) problem that is converted into a format that can be used by commercial solvers. In this report, we present the LP word problem dataset and shared tasks for the NeurIPS 2022 competition. Furthermore, we investigate and compare the performance of the ChatGPT large language model against the winning solutions. Through this competition, we hope to bring interest towards the development of novel machine learning applications and datasets for optimization modeling.
Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance
The integration of pretrained language models (PLMs) like BERT and GPT has revolutionized NLP, particularly for English, but it has also created linguistic imbalances. This paper strategically identifies the need for linguistic equity by examining several knowledge editing techniques in multilingual contexts. We evaluate the performance of models such as Mistral, TowerInstruct, OpenHathi, Tamil-Llama, and Kan-Llama across languages including English, German, French, Italian, Spanish, Hindi, Tamil, and Kannada. Our research identifies significant discrepancies in normal and merged models concerning cross-lingual consistency. We employ strategies like 'each language for itself' (ELFI) and 'each language for others' (ELFO) to stress-test these models. Our findings demonstrate the potential for LLMs to overcome linguistic barriers, laying the groundwork for future research in achieving linguistic inclusivity in AI technologies.
OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
In this report, we pose the following question: Who is the most intelligent AI model to date, as measured by the OlympicArena (an Olympic-level, multi-discipline, multi-modal benchmark for superintelligent AI)? We specifically focus on the most recently released models: Claude-3.5-Sonnet, Gemini-1.5-Pro, and GPT-4o. For the first time, we propose using an Olympic medal Table approach to rank AI models based on their comprehensive performance across various disciplines. Empirical results reveal: (1) Claude-3.5-Sonnet shows highly competitive overall performance over GPT-4o, even surpassing GPT-4o on a few subjects (i.e., Physics, Chemistry, and Biology). (2) Gemini-1.5-Pro and GPT-4V are ranked consecutively just behind GPT-4o and Claude-3.5-Sonnet, but with a clear performance gap between them. (3) The performance of AI models from the open-source community significantly lags behind these proprietary models. (4) The performance of these models on this benchmark has been less than satisfactory, indicating that we still have a long way to go before achieving superintelligence. We remain committed to continuously tracking and evaluating the performance of the latest powerful models on this benchmark (available at https://github.com/GAIR-NLP/OlympicArena).
From Arabic Text to Puzzles: LLM-Driven Development of Arabic Educational Crosswords
We present an Arabic crossword puzzle generator from a given text that utilizes advanced language models such as GPT-4-Turbo, GPT-3.5-Turbo and Llama3-8B-Instruct, specifically developed for educational purposes, this innovative generator leverages a meticulously compiled dataset named Arabic-Clue-Instruct with over 50,000 entries encompassing text, answers, clues, and categories. This dataset is intricately designed to aid in the generation of pertinent clues linked to specific texts and keywords within defined categories. This project addresses the scarcity of advanced educational tools tailored for the Arabic language, promoting enhanced language learning and cognitive development. By providing a culturally and linguistically relevant tool, our objective is to make learning more engaging and effective through gamification and interactivity. Integrating state-of-the-art artificial intelligence with contemporary learning methodologies, this tool can generate crossword puzzles from any given educational text, thereby facilitating an interactive and enjoyable learning experience. This tool not only advances educational paradigms but also sets a new standard in interactive and cognitive learning technologies. The model and dataset are publicly available.
P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
Harnessing LLMs for Educational Content-Driven Italian Crossword Generation
In this work, we unveil a novel tool for generating Italian crossword puzzles from text, utilizing advanced language models such as GPT-4o, Mistral-7B-Instruct-v0.3, and Llama3-8b-Instruct. Crafted specifically for educational applications, this cutting-edge generator makes use of the comprehensive Italian-Clue-Instruct dataset, which comprises over 30,000 entries including diverse text, solutions, and types of clues. This carefully assembled dataset is designed to facilitate the creation of contextually relevant clues in various styles associated with specific texts and keywords. The study delves into four distinctive styles of crossword clues: those without format constraints, those formed as definite determiner phrases, copular sentences, and bare noun phrases. Each style introduces unique linguistic structures to diversify clue presentation. Given the lack of sophisticated educational tools tailored to the Italian language, this project seeks to enhance learning experiences and cognitive development through an engaging, interactive platform. By meshing state-of-the-art AI with contemporary educational strategies, our tool can dynamically generate crossword puzzles from Italian educational materials, thereby providing an enjoyable and interactive learning environment. This technological advancement not only redefines educational paradigms but also sets a new benchmark for interactive and cognitive language learning solutions.
Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.
Are BabyLMs Second Language Learners?
This paper describes a linguistically-motivated approach to the 2024 edition of the BabyLM Challenge (Warstadt et al. 2023). Rather than pursuing a first language learning (L1) paradigm, we approach the challenge from a second language (L2) learning perspective. In L2 learning, there is a stronger focus on learning explicit linguistic information, such as grammatical notions, definitions of words or different ways of expressing a meaning. This makes L2 learning potentially more efficient and concise. We approximate this using data from Wiktionary, grammar examples either generated by an LLM or sourced from grammar books, and paraphrase data. We find that explicit information about word meaning (in our case, Wiktionary) does not boost model performance, while grammatical information can give a small improvement. The most impactful data ingredient is sentence paraphrases, with our two best models being trained on 1) a mix of paraphrase data and data from the BabyLM pretraining dataset, and 2) exclusively paraphrase data.
Can Language Models Rival Mathematics Students? Evaluating Mathematical Reasoning through Textual Manipulation and Human Experiments
In this paper we look at the ability of recent large language models (LLMs) at solving mathematical problems in combinatorics. We compare models LLaMA-2, LLaMA-3.1, GPT-4, and Mixtral against each other and against human pupils and undergraduates with prior experience in mathematical olympiads. To facilitate these comparisons we introduce the Combi-Puzzles dataset, which contains 125 problem variants based on 25 combinatorial reasoning problems. Each problem is presented in one of five distinct forms, created by systematically manipulating the problem statements through adversarial additions, numeric parameter changes, and linguistic obfuscation. Our variations preserve the mathematical core and are designed to measure the generalisability of LLM problem-solving abilities, while also increasing confidence that problems are submitted to LLMs in forms that have not been seen as training instances. We found that a model based on GPT-4 outperformed all other models in producing correct responses, and performed significantly better in the mathematical variation of the problems than humans. We also found that modifications to problem statements significantly impact the LLM's performance, while human performance remains unaffected.
From Bytes to Borsch: Fine-Tuning Gemma and Mistral for the Ukrainian Language Representation
In the rapidly advancing field of AI and NLP, generative large language models (LLMs) stand at the forefront of innovation, showcasing unparalleled abilities in text understanding and generation. However, the limited representation of low-resource languages like Ukrainian poses a notable challenge, restricting the reach and relevance of this technology. Our paper addresses this by fine-tuning the open-source Gemma and Mistral LLMs with Ukrainian datasets, aiming to improve their linguistic proficiency and benchmarking them against other existing models capable of processing Ukrainian language. This endeavor not only aims to mitigate language bias in technology but also promotes inclusivity in the digital realm. Our transparent and reproducible approach encourages further NLP research and development. Additionally, we present the Ukrainian Knowledge and Instruction Dataset (UKID) to aid future efforts in language model fine-tuning. Our research not only advances the field of NLP but also highlights the importance of linguistic diversity in AI, which is crucial for cultural preservation, education, and expanding AI's global utility. Ultimately, we advocate for a future where technology is inclusive, enabling AI to communicate effectively across all languages, especially those currently underrepresented.
Brilla AI: AI Contestant for the National Science and Maths Quiz
The African continent lacks enough qualified teachers which hampers the provision of adequate learning support. An AI could potentially augment the efforts of the limited number of teachers, leading to better learning outcomes. Towards that end, this work describes and evaluates the first key output for the NSMQ AI Grand Challenge, which proposes a robust, real-world benchmark for such an AI: "Build an AI to compete live in Ghana's National Science and Maths Quiz (NSMQ) competition and win - performing better than the best contestants in all rounds and stages of the competition". The NSMQ is an annual live science and mathematics competition for senior secondary school students in Ghana in which 3 teams of 2 students compete by answering questions across biology, chemistry, physics, and math in 5 rounds over 5 progressive stages until a winning team is crowned for that year. In this work, we built Brilla AI, an AI contestant that we deployed to unofficially compete remotely and live in the Riddles round of the 2023 NSMQ Grand Finale, the first of its kind in the 30-year history of the competition. Brilla AI is currently available as a web app that livestreams the Riddles round of the contest, and runs 4 machine learning systems: (1) speech to text (2) question extraction (3) question answering and (4) text to speech that work together in real-time to quickly and accurately provide an answer, and then say it with a Ghanaian accent. In its debut, our AI answered one of the 4 riddles ahead of the 3 human contesting teams, unofficially placing second (tied). Improvements and extensions of this AI could potentially be deployed to offer science tutoring to students and eventually enable millions across Africa to have one-on-one learning interactions, democratizing science education.
iSign: A Benchmark for Indian Sign Language Processing
Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose iSign: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than 118K video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the workings of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks, and models via the following website: https://exploration-lab.github.io/iSign/
LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning
Large Language Models (LLMs) have shown remarkable performance in various natural language processing tasks but face challenges in mathematical reasoning, where complex problem-solving requires both linguistic understanding and mathematical reasoning skills. Existing approaches to address this challenge often rely on ensemble methods and suffer from the problem of data scarcity in target domains. In this work, we present a novel method to enhance LLMs' capabilities in mathematical reasoning tasks. Motivated by the need to bridge this gap, our approach incorporates a question paraphrase strategy, which aims at diversifying the linguistic forms of mathematical questions to improve generalization. Additionally, specialized training objectives are employed to guide the model's learning process, focusing on enhancing its understanding of mathematical concepts and reasoning processes. We conduct experiments on four datasets using different LLMs, and demonstrate the effectiveness of our approach in improving LLMs' performance on mathematical reasoning tasks. Our findings underscore the significance of our methodology in the advancement of large language models and its potential implications for real-world applications that require mathematical reasoning abilities.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
Integrating gender inclusivity into large language models via instruction tuning
Imagine a language with masculine, feminine, and neuter grammatical genders, yet, due to historical and political conventions, masculine forms are predominantly used to refer to men, women and mixed-gender groups. This is the reality of contemporary Polish. A social consequence of this unfair linguistic system is that large language models (LLMs) trained on Polish texts inherit and reinforce this masculine bias, generating gender-imbalanced outputs. This study addresses this issue by tuning LLMs using the IPIS dataset, a collection of human-crafted gender-inclusive proofreading in Polish and Polish-to-English translation instructions. Grounded in a theoretical linguistic framework, we design a system prompt with explicit gender-inclusive guidelines for Polish. In our experiments, we IPIS-tune multilingual LLMs (Llama-8B, Mistral-7B and Mistral-Nemo) and Polish-specific LLMs (Bielik and PLLuM). Our approach aims to integrate gender inclusivity as an inherent feature of these models, offering a systematic solution to mitigate gender bias in Polish language generation.
SeaLLMs 3: Open Foundation and Chat Multilingual Large Language Models for Southeast Asian Languages
Large Language Models (LLMs) have shown remarkable abilities across various tasks, yet their development has predominantly centered on high-resource languages like English and Chinese, leaving low-resource languages underserved. To address this disparity, we present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages. This region, characterized by its rich linguistic diversity, has lacked adequate language technology support. SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese. Leveraging efficient language enhancement techniques and a specially constructed instruction tuning dataset, SeaLLMs 3 significantly reduces training costs while maintaining high performance and versatility. Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models. Additionally, we prioritized safety and reliability by addressing both general and culture-specific considerations and incorporated mechanisms to reduce hallucinations. This work underscores the importance of inclusive AI, showing that advanced LLM capabilities can benefit underserved linguistic and cultural communities.
Dataset and Lessons Learned from the 2024 SaTML LLM Capture-the-Flag Competition
Large language model systems face important security risks from maliciously crafted messages that aim to overwrite the system's original instructions or leak private data. To study this problem, we organized a capture-the-flag competition at IEEE SaTML 2024, where the flag is a secret string in the LLM system prompt. The competition was organized in two phases. In the first phase, teams developed defenses to prevent the model from leaking the secret. During the second phase, teams were challenged to extract the secrets hidden for defenses proposed by the other teams. This report summarizes the main insights from the competition. Notably, we found that all defenses were bypassed at least once, highlighting the difficulty of designing a successful defense and the necessity for additional research to protect LLM systems. To foster future research in this direction, we compiled a dataset with over 137k multi-turn attack chats and open-sourced the platform.
Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.
HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with occasional golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight a substantial performance gap between open-source models and top students, the strong physical reasoning capabilities of closed-source reasoning models, and the fact that there is still significant room for improvement. HiPhO, as a rigorous, human-aligned, and Olympiad-focused benchmark for advancing multimodal physical reasoning, is open-source and available at https://github.com/SciYu/HiPhO.
BLUEX: A benchmark based on Brazilian Leading Universities Entrance eXams
One common trend in recent studies of language models (LMs) is the use of standardized tests for evaluation. However, despite being the fifth most spoken language worldwide, few such evaluations have been conducted in Portuguese. This is mainly due to the lack of high-quality datasets available to the community for carrying out evaluations in Portuguese. To address this gap, we introduce the Brazilian Leading Universities Entrance eXams (BLUEX), a dataset of entrance exams from the two leading universities in Brazil: UNICAMP and USP. The dataset includes annotated metadata for evaluating the performance of NLP models on a variety of subjects. Furthermore, BLUEX includes a collection of recently administered exams that are unlikely to be included in the training data of many popular LMs as of 2023. The dataset is also annotated to indicate the position of images in each question, providing a valuable resource for advancing the state-of-the-art in multimodal language understanding and reasoning. We describe the creation and characteristics of BLUEX and establish a benchmark through experiments with state-of-the-art LMs, demonstrating its potential for advancing the state-of-the-art in natural language understanding and reasoning in Portuguese. The data and relevant code can be found at https://github.com/Portuguese-Benchmark-Datasets/BLUEX
Decoding the Diversity: A Review of the Indic AI Research Landscape
This review paper provides a comprehensive overview of large language model (LLM) research directions within Indic languages. Indic languages are those spoken in the Indian subcontinent, including India, Pakistan, Bangladesh, Sri Lanka, Nepal, and Bhutan, among others. These languages have a rich cultural and linguistic heritage and are spoken by over 1.5 billion people worldwide. With the tremendous market potential and growing demand for natural language processing (NLP) based applications in diverse languages, generative applications for Indic languages pose unique challenges and opportunities for research. Our paper deep dives into the recent advancements in Indic generative modeling, contributing with a taxonomy of research directions, tabulating 84 recent publications. Research directions surveyed in this paper include LLM development, fine-tuning existing LLMs, development of corpora, benchmarking and evaluation, as well as publications around specific techniques, tools, and applications. We found that researchers across the publications emphasize the challenges associated with limited data availability, lack of standardization, and the peculiar linguistic complexities of Indic languages. This work aims to serve as a valuable resource for researchers and practitioners working in the field of NLP, particularly those focused on Indic languages, and contributes to the development of more accurate and efficient LLM applications for these languages.
Gold-medalist Performance in Solving Olympiad Geometry with AlphaGeometry2
We present AlphaGeometry2, a significantly improved version of AlphaGeometry introduced in Trinh et al. (2024), which has now surpassed an average gold medalist in solving Olympiad geometry problems. To achieve this, we first extend the original AlphaGeometry language to tackle harder problems involving movements of objects, and problems containing linear equations of angles, ratios, and distances. This, together with other additions, has markedly improved the coverage rate of the AlphaGeometry language on International Math Olympiads (IMO) 2000-2024 geometry problems from 66% to 88%. The search process of AlphaGeometry2 has also been greatly improved through the use of Gemini architecture for better language modeling, and a novel knowledge-sharing mechanism that combines multiple search trees. Together with further enhancements to the symbolic engine and synthetic data generation, we have significantly boosted the overall solving rate of AlphaGeometry2 to 84% for all geometry problems over the last 25 years, compared to 54% previously. AlphaGeometry2 was also part of the system that achieved silver-medal standard at IMO 2024 https://dpmd.ai/imo-silver. Last but not least, we report progress towards using AlphaGeometry2 as a part of a fully automated system that reliably solves geometry problems directly from natural language input.
La Leaderboard: A Large Language Model Leaderboard for Spanish Varieties and Languages of Spain and Latin America
Leaderboards showcase the current capabilities and limitations of Large Language Models (LLMs). To motivate the development of LLMs that represent the linguistic and cultural diversity of the Spanish-speaking community, we present La Leaderboard, the first open-source leaderboard to evaluate generative LLMs in languages and language varieties of Spain and Latin America. La Leaderboard is a community-driven project that aims to establish an evaluation standard for everyone interested in developing LLMs for the Spanish-speaking community. This initial version combines 66 datasets in Basque, Catalan, Galician, and different Spanish varieties, showcasing the evaluation results of 50 models. To encourage community-driven development of leaderboards in other languages, we explain our methodology, including guidance on selecting the most suitable evaluation setup for each downstream task. In particular, we provide a rationale for using fewer few-shot examples than typically found in the literature, aiming to reduce environmental impact and facilitate access to reproducible results for a broader research community.
Polishing Every Facet of the GEM: Testing Linguistic Competence of LLMs and Humans in Korean
We introduce the Korean Grammar Evaluation BenchMark (KoGEM), designed to assess the linguistic competence of LLMs and humans in Korean. KoGEM consists of 1.5k multiple-choice QA pairs covering five main categories and 16 subcategories. The zero-shot evaluation of 27 LLMs of various sizes and types reveals that while LLMs perform remarkably well on straightforward tasks requiring primarily definitional knowledge, they struggle with tasks that demand the integration of real-world experiential knowledge, such as phonological rules and pronunciation. Furthermore, our in-depth analysis suggests that incorporating such experiential knowledge could enhance the linguistic competence of LLMs. With KoGEM, we not only highlight the limitations of current LLMs in linguistic competence but also uncover hidden facets of LLMs in linguistic competence, paving the way for enhancing comprehensive language understanding. Our code and dataset are available at: https://github.com/SungHo3268/KoGEM.
Interpreting User Requests in the Context of Natural Language Standing Instructions
Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.
Komodo: A Linguistic Expedition into Indonesia's Regional Languages
The recent breakthroughs in Large Language Models (LLMs) have mostly focused on languages with easily available and sufficient resources, such as English. However, there remains a significant gap for languages that lack sufficient linguistic resources in the public domain. Our work introduces Komodo-7B, 7-billion-parameter Large Language Models designed to address this gap by seamlessly operating across Indonesian, English, and 11 regional languages in Indonesia. Komodo-7B is a family of LLMs that consist of Komodo-7B-Base and Komodo-7B-Instruct. Komodo-7B-Instruct stands out by achieving state-of-the-art performance in various tasks and languages, outperforming the benchmarks set by OpenAI's GPT-3.5, Cohere's Aya-101, Llama-2-Chat-13B, Mixtral-8x7B-Instruct-v0.1, Gemma-7B-it , and many more. This model not only demonstrates superior performance in both language-specific and overall assessments but also highlights its capability to excel in linguistic diversity. Our commitment to advancing language models extends beyond well-resourced languages, aiming to bridge the gap for those with limited linguistic assets. Additionally, Komodo-7B-Instruct's better cross-language understanding contributes to addressing educational disparities in Indonesia, offering direct translations from English to 11 regional languages, a significant improvement compared to existing language translation services. Komodo-7B represents a crucial step towards inclusivity and effectiveness in language models, providing to the linguistic needs of diverse communities.
Visualizing Linguistic Diversity of Text Datasets Synthesized by Large Language Models
Large language models (LLMs) can be used to generate smaller, more refined datasets via few-shot prompting for benchmarking, fine-tuning or other use cases. However, understanding and evaluating these datasets is difficult, and the failure modes of LLM-generated data are still not well understood. Specifically, the data can be repetitive in surprising ways, not only semantically but also syntactically and lexically. We present LinguisticLens, a novel inter-active visualization tool for making sense of and analyzing syntactic diversity of LLM-generated datasets. LinguisticLens clusters text along syntactic, lexical, and semantic axes. It supports hierarchical visualization of a text dataset, allowing users to quickly scan for an overview and inspect individual examples. The live demo is available at shorturl.at/zHOUV.
Gender inference: can chatGPT outperform common commercial tools?
An increasing number of studies use gender information to understand phenomena such as gender bias, inequity in access and participation, or the impact of the Covid pandemic response. Unfortunately, most datasets do not include self-reported gender information, making it necessary for researchers to infer gender from other information, such as names or names and country information. An important limitation of these tools is that they fail to appropriately capture the fact that gender exists on a non-binary scale, however, it remains important to evaluate and compare how well these tools perform in a variety of contexts. In this paper, we compare the performance of a generative Artificial Intelligence (AI) tool ChatGPT with three commercially available list-based and machine learning-based gender inference tools (Namsor, Gender-API, and genderize.io) on a unique dataset. Specifically, we use a large Olympic athlete dataset and report how variations in the input (e.g., first name and first and last name, with and without country information) impact the accuracy of their predictions. We report results for the full set, as well as for the subsets: medal versus non-medal winners, athletes from the largest English-speaking countries, and athletes from East Asia. On these sets, we find that Namsor is the best traditional commercially available tool. However, ChatGPT performs at least as well as Namsor and often outperforms it, especially for the female sample when country and/or last name information is available. All tools perform better on medalists versus non-medalists and on names from English-speaking countries. Although not designed for this purpose, ChatGPT may be a cost-effective tool for gender prediction. In the future, it might even be possible for ChatGPT or other large scale language models to better identify self-reported gender rather than report gender on a binary scale.
Xolver: Multi-Agent Reasoning with Holistic Experience Learning Just Like an Olympiad Team
Despite impressive progress on complex reasoning, current large language models (LLMs) typically operate in isolation - treating each problem as an independent attempt, without accumulating or integrating experiential knowledge. In contrast, expert problem solvers - such as Olympiad or programming contest teams - leverage a rich tapestry of experiences: absorbing mentorship from coaches, developing intuition from past problems, leveraging knowledge of tool usage and library functionality, adapting strategies based on the expertise and experiences of peers, continuously refining their reasoning through trial and error, and learning from other related problems even during competition. We introduce Xolver, a training-free multi-agent reasoning framework that equips a black-box LLM with a persistent, evolving memory of holistic experience. Xolver integrates diverse experience modalities, including external and self-retrieval, tool use, collaborative interactions, agent-driven evaluation, and iterative refinement. By learning from relevant strategies, code fragments, and abstract reasoning patterns at inference time, Xolver avoids generating solutions from scratch - marking a transition from isolated inference toward experience-aware language agents. Built on both open-weight and proprietary models, Xolver consistently outperforms specialized reasoning agents. Even with lightweight backbones (e.g., QWQ-32B), it often surpasses advanced models including Qwen3-235B, Gemini 2.5 Pro, o3, and o4-mini-high. With o3-mini-high, it achieves new best results on GSM8K (98.1%), AIME'24 (94.4%), AIME'25 (93.7%), Math-500 (99.8%), and LiveCodeBench-V5 (91.6%) - highlighting holistic experience learning as a key step toward generalist agents capable of expert-level reasoning. Code and data are available at https://kagnlp.github.io/xolver.github.io/.
LOLA -- An Open-Source Massively Multilingual Large Language Model
This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages.
PLLuM: A Family of Polish Large Language Models
Large Language Models (LLMs) play a central role in modern artificial intelligence, yet their development has been primarily focused on English, resulting in limited support for other languages. We present PLLuM (Polish Large Language Model), the largest open-source family of foundation models tailored specifically for the Polish language. Developed by a consortium of major Polish research institutions, PLLuM addresses the need for high-quality, transparent, and culturally relevant language models beyond the English-centric commercial landscape. We describe the development process, including the construction of a new 140-billion-token Polish text corpus for pre-training, a 77k custom instructions dataset, and a 100k preference optimization dataset. A key component is a Responsible AI framework that incorporates strict data governance and a hybrid module for output correction and safety filtering. We detail the models' architecture, training procedures, and alignment techniques for both base and instruction-tuned variants, and demonstrate their utility in a downstream task within public administration. By releasing these models publicly, PLLuM aims to foster open research and strengthen sovereign AI technologies in Poland.
MEXA: Multilingual Evaluation of English-Centric LLMs via Cross-Lingual Alignment
English-centric large language models (LLMs) often show strong multilingual capabilities. However, the multilingual performance of these models remains unclear and is not thoroughly evaluated for many languages. Most benchmarks for multilinguality focus on classic NLP tasks, or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages the fact that English-centric LLMs use English as a kind of pivot language in their intermediate layers. It computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in other languages. We conduct studies using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves a statistically significant average Pearson correlation of 0.90 with three established downstream tasks across nine models and two parallel datasets. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://huggingface.co/spaces/cis-lmu/Mexa, Code: https://github.com/cisnlp/Mexa.
The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP
Although the Indonesian language is spoken by almost 200 million people and the 10th most spoken language in the world, it is under-represented in NLP research. Previous work on Indonesian has been hampered by a lack of annotated datasets, a sparsity of language resources, and a lack of resource standardization. In this work, we release the IndoLEM dataset comprising seven tasks for the Indonesian language, spanning morpho-syntax, semantics, and discourse. We additionally release IndoBERT, a new pre-trained language model for Indonesian, and evaluate it over IndoLEM, in addition to benchmarking it against existing resources. Our experiments show that IndoBERT achieves state-of-the-art performance over most of the tasks in IndoLEM.
M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models
Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at https://github.com/DAMO-NLP-SG/M3Exam.
IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages
As large language models (LLMs) see increasing adoption across the globe, it is imperative for LLMs to be representative of the linguistic diversity of the world. India is a linguistically diverse country of 1.4 Billion people. To facilitate research on multilingual LLM evaluation, we release IndicGenBench - the largest benchmark for evaluating LLMs on user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families. IndicGenBench is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering. IndicGenBench extends existing benchmarks to many Indic languages through human curation providing multi-way parallel evaluation data for many under-represented Indic languages for the first time. We evaluate a wide range of proprietary and open-source LLMs including GPT-3.5, GPT-4, PaLM-2, mT5, Gemma, BLOOM and LLaMA on IndicGenBench in a variety of settings. The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English showing that further research is needed for the development of more inclusive multilingual language models. IndicGenBench is released at www.github.com/google-research-datasets/indic-gen-bench
Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages
Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at https://github.com/AI4Bharat/IndicBERT.
Progress Report: Towards European LLMs
We present preliminary results of the project OpenGPT-X. At present, the project has developed two multilingual LLMs designed to embrace Europe's linguistic diversity by supporting all 24 official languages of the European Union. Trained on a dataset comprising around 60% non-English data and utilizing a custom multilingual tokenizer, our models address the limitations of existing LLMs that predominantly focus on English or a few high-resource languages. We detail the models' development principles, data processing techniques, tokenizer optimization, and training methodologies. The models demonstrate competitive performance across multilingual benchmarks, as evidenced by its performance on European versions of ARC, HellaSwag, MMLU, and TruthfulQA.
Elo Uncovered: Robustness and Best Practices in Language Model Evaluation
In Natural Language Processing (NLP), the Elo rating system, originally designed for ranking players in dynamic games such as chess, is increasingly being used to evaluate Large Language Models (LLMs) through "A vs B" paired comparisons. However, while popular, the system's suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. We study two fundamental axioms that evaluation methods should adhere to: reliability and transitivity. We conduct extensive evaluation of Elo behaviour, illustrating that individual Elo computations exhibit volatility and delving into the impact of varying the Elo rating system's hyperparameters. We show that these axioms are not always satisfied raising questions about the reliability of current comparative evaluations of LLMs. If the current use of Elo scores is intended to substitute the costly head-to-head comparison of LLMs, it is crucial to ensure the ranking is as robust as possible. Guided by the axioms, our findings offer concrete guidelines for enhancing the reliability of LLM evaluation methods, suggesting a need for reassessment of existing comparative approaches.
Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following
Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.
The State and Fate of Linguistic Diversity and Inclusion in the NLP World
Language technologies contribute to promoting multilingualism and linguistic diversity around the world. However, only a very small number of the over 7000 languages of the world are represented in the rapidly evolving language technologies and applications. In this paper we look at the relation between the types of languages, resources, and their representation in NLP conferences to understand the trajectory that different languages have followed over time. Our quantitative investigation underlines the disparity between languages, especially in terms of their resources, and calls into question the "language agnostic" status of current models and systems. Through this paper, we attempt to convince the ACL community to prioritise the resolution of the predicaments highlighted here, so that no language is left behind.
The #Somos600M Project: Generating NLP resources that represent the diversity of the languages from LATAM, the Caribbean, and Spain
We are 600 million Spanish speakers. We launched the #Somos600M Project because the diversity of the languages from LATAM, the Caribbean and Spain needs to be represented in Artificial Intelligence (AI) systems. Despite being the 7.5% of the world population, there is no open dataset to instruction-tune large language models (LLMs), nor a leaderboard to evaluate and compare them. In this paper, we present how we have created as an international open-source community the first versions of the instruction and evaluation datasets, indispensable resources for the advancement of Natural Language Processing (NLP) in our languages.
Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models
The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.
Proving Olympiad Algebraic Inequalities without Human Demonstrations
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city 2024 Mathematical Olympiad.
Language Imbalance Driven Rewarding for Multilingual Self-improving
Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks. However, these advancements have predominantly benefited "first-class" languages such as English and Chinese, leaving many other languages underrepresented. This imbalance, while limiting broader applications, generates a natural preference ranking between languages, offering an opportunity to bootstrap the multilingual capabilities of LLM in a self-improving manner. Thus, we propose Language Imbalance Driven Rewarding, where the inherent imbalance between dominant and non-dominant languages within LLMs is leveraged as a reward signal. Iterative DPO training demonstrates that this approach not only enhances LLM performance in non-dominant languages but also improves the dominant language's capacity, thereby yielding an iterative reward signal. Fine-tuning Meta-Llama-3-8B-Instruct over two iterations of this approach results in continuous improvements in multilingual performance across instruction-following and arithmetic reasoning tasks, evidenced by an average improvement of 7.46% win rate on the X-AlpacaEval leaderboard and 13.9% accuracy on the MGSM benchmark. This work serves as an initial exploration, paving the way for multilingual self-improvement of LLMs.
Comparative Study of Multilingual Idioms and Similes in Large Language Models
This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations.
Memorization or Reasoning? Exploring the Idiom Understanding of LLMs
Idioms have long posed a challenge due to their unique linguistic properties, which set them apart from other common expressions. While recent studies have leveraged large language models (LLMs) to handle idioms across various tasks, e.g., idiom-containing sentence generation and idiomatic machine translation, little is known about the underlying mechanisms of idiom processing in LLMs, particularly in multilingual settings. To this end, we introduce MIDAS, a new large-scale dataset of idioms in six languages, each paired with its corresponding meaning. Leveraging this resource, we conduct a comprehensive evaluation of LLMs' idiom processing ability, identifying key factors that influence their performance. Our findings suggest that LLMs rely not only on memorization, but also adopt a hybrid approach that integrates contextual cues and reasoning, especially when processing compositional idioms. This implies that idiom understanding in LLMs emerges from an interplay between internal knowledge retrieval and reasoning-based inference.
IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding
Known by more than 1.5 billion people in the Indian subcontinent, Indic languages present unique challenges and opportunities for natural language processing (NLP) research due to their rich cultural heritage, linguistic diversity, and complex structures. IndicMMLU-Pro is a comprehensive benchmark designed to evaluate Large Language Models (LLMs) across Indic languages, building upon the MMLU Pro (Massive Multitask Language Understanding) framework. Covering major languages such as Hindi, Bengali, Gujarati, Marathi, Kannada, Punjabi, Tamil, Telugu, and Urdu, our benchmark addresses the unique challenges and opportunities presented by the linguistic diversity of the Indian subcontinent. This benchmark encompasses a wide range of tasks in language comprehension, reasoning, and generation, meticulously crafted to capture the intricacies of Indian languages. IndicMMLU-Pro provides a standardized evaluation framework to push the research boundaries in Indic language AI, facilitating the development of more accurate, efficient, and culturally sensitive models. This paper outlines the benchmarks' design principles, task taxonomy, and data collection methodology, and presents baseline results from state-of-the-art multilingual models.
GFG -- Gender-Fair Generation: A CALAMITA Challenge
Gender-fair language aims at promoting gender equality by using terms and expressions that include all identities and avoid reinforcing gender stereotypes. Implementing gender-fair strategies is particularly challenging in heavily gender-marked languages, such as Italian. To address this, the Gender-Fair Generation challenge intends to help shift toward gender-fair language in written communication. The challenge, designed to assess and monitor the recognition and generation of gender-fair language in both mono- and cross-lingual scenarios, includes three tasks: (1) the detection of gendered expressions in Italian sentences, (2) the reformulation of gendered expressions into gender-fair alternatives, and (3) the generation of gender-fair language in automatic translation from English to Italian. The challenge relies on three different annotated datasets: the GFL-it corpus, which contains Italian texts extracted from administrative documents provided by the University of Brescia; GeNTE, a bilingual test set for gender-neutral rewriting and translation built upon a subset of the Europarl dataset; and Neo-GATE, a bilingual test set designed to assess the use of non-binary neomorphemes in Italian for both fair formulation and translation tasks. Finally, each task is evaluated with specific metrics: average of F1-score obtained by means of BERTScore computed on each entry of the datasets for task 1, an accuracy measured with a gender-neutral classifier, and a coverage-weighted accuracy for tasks 2 and 3.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
Building a Llama2-finetuned LLM for Odia Language Utilizing Domain Knowledge Instruction Set
Building LLMs for languages other than English is in great demand due to the unavailability and performance of multilingual LLMs, such as understanding the local context. The problem is critical for low-resource languages due to the need for instruction sets. In a multilingual country like India, there is a need for LLMs supporting Indic languages to provide generative AI and LLM-based technologies and services to its citizens. This paper presents our approach of i) generating a large Odia instruction set, including domain knowledge data suitable for LLM fine-tuning, and ii) building a Llama2-finetuned model tailored for enhanced performance in the Odia domain. The proposed work will help researchers build an instruction set and LLM, particularly for Indic languages. We will release the model and instruction set for the public for research and noncommercial purposes.
Open Ko-LLM Leaderboard2: Bridging Foundational and Practical Evaluation for Korean LLMs
The Open Ko-LLM Leaderboard has been instrumental in benchmarking Korean Large Language Models (LLMs), yet it has certain limitations. Notably, the disconnect between quantitative improvements on the overly academic leaderboard benchmarks and the qualitative impact of the models should be addressed. Furthermore, the benchmark suite is largely composed of translated versions of their English counterparts, which may not fully capture the intricacies of the Korean language. To address these issues, we propose Open Ko-LLM Leaderboard2, an improved version of the earlier Open Ko-LLM Leaderboard. The original benchmarks are entirely replaced with new tasks that are more closely aligned with real-world capabilities. Additionally, four new native Korean benchmarks are introduced to better reflect the distinct characteristics of the Korean language. Through these refinements, Open Ko-LLM Leaderboard2 seeks to provide a more meaningful evaluation for advancing Korean LLMs.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
PARIKSHA : A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
CLSE: Corpus of Linguistically Significant Entities
One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach.
Large Language Models Only Pass Primary School Exams in Indonesia: A Comprehensive Test on IndoMMLU
Large language models have made significant advancements in natural language processing (NLP), exhibiting human performance across various classic NLP tasks. These tasks, however, focus on structure and semantics, and few are designed to assess reasoning abilities and real-world knowledge, which are increasingly vital given that these models are trained on extensive textual data and information. While prior research primarily focuses on English, in this work, we gather a collection of exam problems from primary school to university entrance tests in Indonesia, and evaluate whether large language models can pass the exams. We obtain 14,906 questions across 63 tasks and levels, with 46\% of the questions focusing on assessing proficiency in the Indonesian language and knowledge of nine local languages and cultures in Indonesia. Our empirical evaluations show that GPT-3.5 only manages to pass the Indonesian primary school level, with limited knowledge of the Indonesian local languages and cultures. Other smaller models such as BLOOMZ and Falcon fail the exams.
Double Jeopardy and Climate Impact in the Use of Large Language Models: Socio-economic Disparities and Reduced Utility for Non-English Speakers
Artificial Intelligence (AI), particularly large language models (LLMs), holds the potential to bridge language and information gaps, which can benefit the economies of developing nations. However, our analysis of FLORES-200, FLORES+, Ethnologue, and World Development Indicators data reveals that these benefits largely favor English speakers. Speakers of languages in low-income and lower-middle-income countries face higher costs when using OpenAI's GPT models via APIs because of how the system processes the input -- tokenization. Around 1.5 billion people, speaking languages primarily from lower-middle-income countries, could incur costs that are 4 to 6 times higher than those faced by English speakers. Disparities in LLM performance are significant, and tokenization in models priced per token amplifies inequalities in access, cost, and utility. Moreover, using the quality of translation tasks as a proxy measure, we show that LLMs perform poorly in low-resource languages, presenting a ``double jeopardy" of higher costs and poor performance for these users. We also discuss the direct impact of fragmentation in tokenizing low-resource languages on climate. This underscores the need for fairer algorithm development to benefit all linguistic groups.
PARAM-1 BharatGen 2.9B Model
Large Language Models (LLMs) have emerged as powerful general-purpose reasoning systems, yet their development remains dominated by English-centric data, architectures, and optimization paradigms. This exclusionary design results in structural under-representation of linguistically diverse regions such as India, where over 20 official languages and 100+ dialects coexist alongside phenomena like code-switching and diglossia. We introduce PARAM-1, a 2.9B parameter decoder-only, text-only language model trained from scratch with an explicit architectural and linguistic focus on Indian diversity. PARAM-1 is trained on a bilingual dataset consisting of only Hindi and English, constructed with a strong focus on fact-rich, high-quality content. It is guided by three core principles: equitable representation of Indic languages through a 25% corpus allocation; tokenization fairness via a SentencePiece tokenizer adapted to Indian morphological structures; and culturally aligned evaluation benchmarks across IndicQA, code-mixed reasoning, and socio-linguistic robustness tasks. By embedding diversity at the pretraining level-rather than deferring it to post-hoc alignment-PARAM-1 offers a design-first blueprint for equitable foundation modeling. Our results demonstrate that it serves as both a competent general-purpose model and a robust baseline for India-centric applications.
Marco-Bench-MIF: On Multilingual Instruction-Following Capability of Large Language Models
Instruction-following capability has become a major ability to be evaluated for Large Language Models (LLMs). However, existing datasets, such as IFEval, are either predominantly monolingual and centered on English or simply machine translated to other languages, limiting their applicability in multilingual contexts. In this paper, we present an carefully-curated extension of IFEval to a localized multilingual version named Marco-Bench-MIF, covering 30 languages with varying levels of localization. Our benchmark addresses linguistic constraints (e.g., modifying capitalization requirements for Chinese) and cultural references (e.g., substituting region-specific company names in prompts) via a hybrid pipeline combining translation with verification. Through comprehensive evaluation of 20+ LLMs on our Marco-Bench-MIF, we found that: (1) 25-35% accuracy gap between high/low-resource languages, (2) model scales largely impact performance by 45-60% yet persists script-specific challenges, and (3) machine-translated data underestimates accuracy by7-22% versus localized data. Our analysis identifies challenges in multilingual instruction following, including keyword consistency preservation and compositional constraint adherence across languages. Our Marco-Bench-MIF is available at https://github.com/AIDC-AI/Marco-Bench-MIF.
LLMs in Education: Novel Perspectives, Challenges, and Opportunities
The role of large language models (LLMs) in education is an increasing area of interest today, considering the new opportunities they offer for teaching, learning, and assessment. This cutting-edge tutorial provides an overview of the educational applications of NLP and the impact that the recent advances in LLMs have had on this field. We will discuss the key challenges and opportunities presented by LLMs, grounding them in the context of four major educational applications: reading, writing, and speaking skills, and intelligent tutoring systems (ITS). This COLING 2025 tutorial is designed for researchers and practitioners interested in the educational applications of NLP and the role LLMs have to play in this area. It is the first of its kind to address this timely topic.
IberBench: LLM Evaluation on Iberian Languages
Large Language Models (LLMs) remain difficult to evaluate comprehensively, particularly for languages other than English, where high-quality data is often limited. Existing benchmarks and leaderboards are predominantly English-centric, with only a few addressing other languages. These benchmarks fall short in several key areas: they overlook the diversity of language varieties, prioritize fundamental Natural Language Processing (NLP) capabilities over tasks of industrial relevance, and are static. With these aspects in mind, we present IberBench, a comprehensive and extensible benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks, in languages spoken across the Iberian Peninsula and Ibero-America. IberBench integrates 101 datasets from evaluation campaigns and recent benchmarks, covering 22 task categories such as sentiment and emotion analysis, toxicity detection, and summarization. The benchmark addresses key limitations in current evaluation practices, such as the lack of linguistic diversity and static evaluation setups by enabling continual updates and community-driven model and dataset submissions moderated by a committee of experts. We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations. Our findings indicate that (i) LLMs perform worse on industry-relevant tasks than in fundamental ones, (ii) performance is on average lower for Galician and Basque, (iii) some tasks show results close to random, and (iv) in other tasks LLMs perform above random but below shared task systems. IberBench offers open-source implementations for the entire evaluation pipeline, including dataset normalization and hosting, incremental evaluation of LLMs, and a publicly accessible leaderboard.
Yunshan Cup 2020: Overview of the Part-of-Speech Tagging Task for Low-resourced Languages
The Yunshan Cup 2020 track focused on creating a framework for evaluating different methods of part-of-speech (POS). There were two tasks for this track: (1) POS tagging for the Indonesian language, and (2) POS tagging for the Lao tagging. The Indonesian dataset is comprised of 10000 sentences from Indonesian news within 29 tags. And the Lao dataset consists of 8000 sentences within 27 tags. 25 teams registered for the task. The methods of participants ranged from feature-based to neural networks using either classical machine learning techniques or ensemble methods. The best performing results achieve an accuracy of 95.82% for Indonesian and 93.03%, showing that neural sequence labeling models significantly outperform classic feature-based methods and rule-based methods.
Opportunities and Risks of LLMs for Scalable Deliberation with Polis
Polis is a platform that leverages machine intelligence to scale up deliberative processes. In this paper, we explore the opportunities and risks associated with applying Large Language Models (LLMs) towards challenges with facilitating, moderating and summarizing the results of Polis engagements. In particular, we demonstrate with pilot experiments using Anthropic's Claude that LLMs can indeed augment human intelligence to help more efficiently run Polis conversations. In particular, we find that summarization capabilities enable categorically new methods with immense promise to empower the public in collective meaning-making exercises. And notably, LLM context limitations have a significant impact on insight and quality of these results. However, these opportunities come with risks. We discuss some of these risks, as well as principles and techniques for characterizing and mitigating them, and the implications for other deliberative or political systems that may employ LLMs. Finally, we conclude with several open future research directions for augmenting tools like Polis with LLMs.
A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing, attracting global attention in both academia and industry. To mitigate potential discrimination and enhance the overall usability and accessibility for diverse language user groups, it is important for the development of language-fair technology. Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient, where a comprehensive survey to summarize recent approaches, developments, limitations, and potential solutions is desirable. To this end, we provide a survey with multiple perspectives on the utilization of LLMs in the multilingual scenario. We first rethink the transitions between previous and current research on pre-trained language models. Then we introduce several perspectives on the multilingualism of LLMs, including training and inference methods, model security, multi-domain with language culture, and usage of datasets. We also discuss the major challenges that arise in these aspects, along with possible solutions. Besides, we highlight future research directions that aim at further enhancing LLMs with multilingualism. The survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
Efficient Strategy for Improving Large Language Model (LLM) Capabilities
Large Language Models (LLMs) have become a milestone in the field of artificial intelligence and natural language processing. However, their large-scale deployment remains constrained by the need for significant computational resources. This work proposes starting from a base model to explore and combine data processing and careful data selection techniques, training strategies, and architectural adjustments to improve the efficiency of LLMs in resource-constrained environments and within a delimited knowledge base. The methodological approach included defining criteria for building reliable datasets, conducting controlled experiments with different configurations, and systematically evaluating the resulting variants in terms of capability, versatility, response time, and safety. Finally, comparative tests were conducted to measure the performance of the developed variants and to validate the effectiveness of the proposed strategies. This work is based on the master's thesis in Systems and Computer Engineering titled "Efficient Strategy for Improving the Capabilities of Large Language Models (LLMs)".
The Design and Organization of Educational Competitions with Anonymous and Real-Time Leaderboards in Academic and Industrial Settings
The goal of this paper is to share our experience in designing and organizing educational competitions with anonymous and (near) real-time leaderboards in both academic and industrial settings. While such competitions serve as a great educational tool and provide participants with hands-on experience, they require significant planning, technical setup, and administration from organizers. In this paper, we first outline several important areas including team registration, data access, submission systems, rules and conditions that organizers should consider when planning such events. We then present a high-level system design that can support (near) real-time evaluation of submissions to power anonymous leaderboards and provide immediate feedback for participants. Finally, we share our experience applying this abstract system in academic and industrial settings. We hope the set of guidelines and the high-level system design proposed here help others in their organization of similar educational events.
Language Model Council: Benchmarking Foundation Models on Highly Subjective Tasks by Consensus
The rapid advancement of Large Language Models (LLMs) necessitates robust and challenging benchmarks. Leaderboards like Chatbot Arena rank LLMs based on how well their responses align with human preferences. However, many tasks such as those related to emotional intelligence, creative writing, or persuasiveness, are highly subjective and often lack majoritarian human agreement. Judges may have irreconcilable disagreements about what constitutes a better response. To address the challenge of ranking LLMs on highly subjective tasks, we propose a novel benchmarking framework, the Language Model Council (LMC). The LMC operates through a democratic process to: 1) formulate a test set through equal participation, 2) administer the test among council members, and 3) evaluate responses as a collective jury. We deploy a council of 20 newest LLMs on an open-ended emotional intelligence task: responding to interpersonal dilemmas. Our results show that the LMC produces rankings that are more separable, robust, and less biased than those from any individual LLM judge, and is more consistent with a human-established leaderboard compared to other benchmarks.
Summary on The Multilingual Conversational Speech Language Model Challenge: Datasets, Tasks, Baselines, and Methods
This paper summarizes the Interspeech2025 Multilingual Conversational Speech Language Model (MLC-SLM) challenge, which aims to advance the exploration of building effective multilingual conversational speech LLMs (SLLMs). We provide a detailed description of the task settings for the MLC-SLM challenge, the released real-world multilingual conversational speech dataset totaling approximately 1,604 hours, and the baseline systems for participants. The MLC-SLM challenge attracts 78 teams from 13 countries to participate, with 489 valid leaderboard results and 14 technical reports for the two tasks. We distill valuable insights on building multilingual conversational SLLMs based on submissions from participants, aiming to contribute to the advancement of the community.
How Far Can Cantonese NLP Go? Benchmarking Cantonese Capabilities of Large Language Models
The rapid evolution of large language models (LLMs) has transformed the competitive landscape in natural language processing (NLP), particularly for English and other data-rich languages. However, underrepresented languages like Cantonese, spoken by over 85 million people, face significant development gaps, which is particularly concerning given the economic significance of the Guangdong-Hong Kong-Macau Greater Bay Area, and in substantial Cantonese-speaking populations in places like Singapore and North America. Despite its wide use, Cantonese has scant representation in NLP research, especially compared to other languages from similarly developed regions. To bridge these gaps, we outline current Cantonese NLP methods and introduce new benchmarks designed to evaluate LLM performance in factual generation, mathematical logic, complex reasoning, and general knowledge in Cantonese, which aim to advance open-source Cantonese LLM technology. We also propose future research directions and recommended models to enhance Cantonese LLM development.
PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.
Large Language Models Might Not Care What You Are Saying: Prompt Format Beats Descriptions
With the help of in-context learning (ICL), large language models (LLMs) have achieved impressive performance across various tasks. However, the function of descriptive instructions during ICL remains under-explored. In this work, we propose an ensemble prompt framework to describe the selection criteria of multiple in-context examples, and preliminary experiments on machine translation (MT) across six translation directions confirm that this framework boosts ICL perfromance. But to our surprise, LLMs might not necessarily care what the descriptions actually say, and the performance gain is primarily caused by the ensemble format, since the framework could lead to improvement even with random descriptive nouns. We further apply this new ensemble prompt on a range of commonsense, math, logical reasoning and hallucination tasks with three LLMs and achieve promising results, suggesting again that designing a proper prompt format would be much more effective and efficient than paying effort into specific descriptions. Our code will be publicly available once this paper is published.
Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean
Large language models (LLMs) use pretraining to predict the subsequent word; however, their expansion requires significant computing resources. Numerous big tech companies and research institutes have developed multilingual LLMs (MLLMs) to meet current demands, overlooking less-resourced languages (LRLs). This study proposed three strategies to enhance the performance of LRLs based on the publicly available MLLMs. First, the MLLM vocabularies of LRLs were expanded to enhance expressiveness. Second, bilingual data were used for pretraining to align the high- and less-resourced languages. Third, a high-quality small-scale instruction dataset was constructed and instruction-tuning was performed to augment the LRL. The experiments employed the Llama2 model and Korean was used as the LRL, which was quantitatively evaluated against other developed LLMs across eight tasks. Furthermore, a qualitative assessment was performed based on human evaluation and GPT4. Experimental results showed that our proposed Bllossom model exhibited superior performance in qualitative analyses compared to previously proposed Korean monolingual models.
A Comparative Study of Code Generation using ChatGPT 3.5 across 10 Programming Languages
Large Language Models (LLMs) are advanced Artificial Intelligence (AI) systems that have undergone extensive training using large datasets in order to understand and produce language that closely resembles that of humans. These models have reached a level of proficiency where they are capable of successfully completing university exams across several disciplines and generating functional code to handle novel problems. This research investigates the coding proficiency of ChatGPT 3.5, a LLM released by OpenAI in November 2022, which has gained significant recognition for its impressive text generating and code creation capabilities. The skill of the model in creating code snippets is evaluated across 10 various programming languages and 4 different software domains. Based on the findings derived from this research, major unexpected behaviors and limitations of the model have been identified. This study aims to identify potential areas for development and examine the ramifications of automated code generation on the evolution of programming languages and on the tech industry.
Probing LLMs for Joint Encoding of Linguistic Categories
Large Language Models (LLMs) exhibit impressive performance on a range of NLP tasks, due to the general-purpose linguistic knowledge acquired during pretraining. Existing model interpretability research (Tenney et al., 2019) suggests that a linguistic hierarchy emerges in the LLM layers, with lower layers better suited to solving syntactic tasks and higher layers employed for semantic processing. Yet, little is known about how encodings of different linguistic phenomena interact within the models and to what extent processing of linguistically-related categories relies on the same, shared model representations. In this paper, we propose a framework for testing the joint encoding of linguistic categories in LLMs. Focusing on syntax, we find evidence of joint encoding both at the same (related part-of-speech (POS) classes) and different (POS classes and related syntactic dependency relations) levels of linguistic hierarchy. Our cross-lingual experiments show that the same patterns hold across languages in multilingual LLMs.
Icelandic Parallel Abstracts Corpus
We present a new Icelandic-English parallel corpus, the Icelandic Parallel Abstracts Corpus (IPAC), composed of abstracts from student theses and dissertations. The texts were collected from the Skemman repository which keeps records of all theses, dissertations and final projects from students at Icelandic universities. The corpus was aligned based on sentence-level BLEU scores, in both translation directions, from NMT models using Bleualign. The result is a corpus of 64k sentence pairs from over 6 thousand parallel abstracts.
On the application of Large Language Models for language teaching and assessment technology
The recent release of very large language models such as PaLM and GPT-4 has made an unprecedented impact in the popular media and public consciousness, giving rise to a mixture of excitement and fear as to their capabilities and potential uses, and shining a light on natural language processing research which had not previously received so much attention. The developments offer great promise for education technology, and in this paper we look specifically at the potential for incorporating large language models in AI-driven language teaching and assessment systems. We consider several research areas and also discuss the risks and ethical considerations surrounding generative AI in education technology for language learners. Overall we find that larger language models offer improvements over previous models in text generation, opening up routes toward content generation which had not previously been plausible. For text generation they must be prompted carefully and their outputs may need to be reshaped before they are ready for use. For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results according to standard evaluation metrics. For grading it appears that linguistic features established in the literature should still be used for best performance, and for error correction it may be that the models can offer alternative feedback styles which are not measured sensitively with existing methods. In all cases, there is work to be done to experiment with the inclusion of large language models in education technology for language learners, in order to properly understand and report on their capacities and limitations, and to ensure that foreseeable risks such as misinformation and harmful bias are mitigated.
Language Models are Crossword Solvers
Crosswords are a form of word puzzle that require a solver to demonstrate a high degree of proficiency in natural language understanding, wordplay, reasoning, and world knowledge, along with adherence to character and length constraints. In this paper we tackle the challenge of solving crosswords with Large Language Models (LLMs). We demonstrate that the current generation of state-of-the art (SoTA) language models show significant competence at deciphering cryptic crossword clues, and outperform previously reported SoTA results by a factor of 2-3 in relevant benchmarks. We also develop a search algorithm that builds off this performance to tackle the problem of solving full crossword grids with LLMs for the very first time, achieving an accuracy of 93\% on New York Times crossword puzzles. Contrary to previous work in this area which concluded that LLMs lag human expert performance significantly, our research suggests this gap is a lot narrower.
TextClass Benchmark: A Continuous Elo Rating of LLMs in Social Sciences
The TextClass Benchmark project is an ongoing, continuous benchmarking process that aims to provide a comprehensive, fair, and dynamic evaluation of LLMs and transformers for text classification tasks. This evaluation spans various domains and languages in social sciences disciplines engaged in NLP and text-as-data approach. The leaderboards present performance metrics and relative ranking using a tailored Elo rating system. With each leaderboard cycle, novel models are added, fixed test sets can be replaced for unseen, equivalent data to test generalisation power, ratings are updated, and a Meta-Elo leaderboard combines and weights domain-specific leaderboards. This article presents the rationale and motivation behind the project, explains the Elo rating system in detail, and estimates Meta-Elo across different classification tasks in social science disciplines. We also present a snapshot of the first cycle of classification tasks on incivility data in Chinese, English, German and Russian. This ongoing benchmarking process includes not only additional languages such as Arabic, Hindi, and Spanish but also a classification of policy agenda topics, misinformation, among others.
BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models
The rapid development of Large Language Models (LLMs) and the emergence of novel abilities with scale have necessitated the construction of holistic, diverse and challenging benchmarks such as HELM and BIG-bench. However, at the moment, most of these benchmarks focus only on performance in English and evaluations that include Southeast Asian (SEA) languages are few in number. We therefore propose BHASA, a holistic linguistic and cultural evaluation suite for LLMs in SEA languages. It comprises three components: (1) a NLP benchmark covering eight tasks across Natural Language Understanding (NLU), Generation (NLG) and Reasoning (NLR) tasks, (2) LINDSEA, a linguistic diagnostic toolkit that spans the gamut of linguistic phenomena including syntax, semantics and pragmatics, and (3) a cultural diagnostics dataset that probes for both cultural representation and sensitivity. For this preliminary effort, we implement the NLP benchmark only for Indonesian, Vietnamese, Thai and Tamil, and we only include Indonesian and Tamil for LINDSEA and the cultural diagnostics dataset. As GPT-4 is purportedly one of the best-performing multilingual LLMs at the moment, we use it as a yardstick to gauge the capabilities of LLMs in the context of SEA languages. Our initial experiments on GPT-4 with BHASA find it lacking in various aspects of linguistic capabilities, cultural representation and sensitivity in the targeted SEA languages. BHASA is a work in progress and will continue to be improved and expanded in the future. The repository for this paper can be found at: https://github.com/aisingapore/BHASA
M3GIA: A Cognition Inspired Multilingual and Multimodal General Intelligence Ability Benchmark
As recent multi-modality large language models (MLLMs) have shown formidable proficiency on various complex tasks, there has been increasing attention on debating whether these models could eventually mirror human intelligence. However, existing benchmarks mainly focus on evaluating solely on task performance, such as the accuracy of identifying the attribute of an object. Combining well-developed cognitive science to understand the intelligence of MLLMs beyond superficial achievements remains largely unexplored. To this end, we introduce the first cognitive-driven multi-lingual and multi-modal benchmark to evaluate the general intelligence ability of MLLMs, dubbed M3GIA. Specifically, we identify five key cognitive factors based on the well-recognized Cattell-Horn-Carrol (CHC) model of intelligence and propose a novel evaluation metric. In addition, since most MLLMs are trained to perform in different languages, a natural question arises: is language a key factor influencing the cognitive ability of MLLMs? As such, we go beyond English to encompass other languages based on their popularity, including Chinese, French, Spanish, Portuguese and Korean, to construct our M3GIA. We make sure all the data relevant to the cultural backgrounds are collected from their native context to avoid English-centric bias. We collected a significant corpus of data from human participants, revealing that the most advanced MLLM reaches the lower boundary of human intelligence in English. Yet, there remains a pronounced disparity in the other five languages assessed. We also reveals an interesting winner takes all phenomenon that are aligned with the discovery in cognitive studies. Our benchmark will be open-sourced, with the aspiration of facilitating the enhancement of cognitive capabilities in MLLMs.
SciEx: Benchmarking Large Language Models on Scientific Exams with Human Expert Grading and Automatic Grading
With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4\% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.
HuSpaCy: an industrial-strength Hungarian natural language processing toolkit
Although there are a couple of open-source language processing pipelines available for Hungarian, none of them satisfies the requirements of today's NLP applications. A language processing pipeline should consist of close to state-of-the-art lemmatization, morphosyntactic analysis, entity recognition and word embeddings. Industrial text processing applications have to satisfy non-functional software quality requirements, what is more, frameworks supporting multiple languages are more and more favored. This paper introduces HuSpaCy, an industry-ready Hungarian language processing toolkit. The presented tool provides components for the most important basic linguistic analysis tasks. It is open-source and is available under a permissive license. Our system is built upon spaCy's NLP components resulting in an easily usable, fast yet accurate application. Experiments confirm that HuSpaCy has high accuracy while maintaining resource-efficient prediction capabilities.
Towards Open Foundation Language Model and Corpus for Macedonian: A Low-Resource Language
The increase in technological adoption worldwide comes with demands for novel tools to be used by the general population. Large Language Models (LLMs) provide a great opportunity in this respect, but their capabilities remain limited for low-resource languages, restricting applications in countries where such languages are spoken. We create several resources to facilitate the adoption of LLMs and to support research advancements for Macedonian. We collect the largest Macedonian corpus to date, consisting of 40GB of textual data and totaling 3.5B words. To support conversational applications, we collect a 106k-instance instruction dataset, carefully built to be culturally grounded. For evaluation, we construct a Macedonian evaluation suite covering seven benchmarks. Finally, we train domestic-yak, a state-of-the-art 8B-parameter model, on our curated datasets and evaluate it against eight baseline models using the newly constructed benchmark suite. Our model outperforms all existing models in the 8B parameter range across all benchmarks, and achieves performance comparable to models up to 10x larger. Furthermore, a qualitative analysis with native speakers reveals that our model is preferred over larger counterparts, receiving higher ratings for grammatical correctness and cultural appropriateness. All datasets, code, and model weights are openly released, setting a foundation for advancing LLMs in similarly underrepresented languages. These resources are publicly available at github.com/LVSTCK for source code, and at huggingface.co/LVSTCK for pretrained model weights and data.
UA-Code-Bench: A Competitive Programming Benchmark for Evaluating LLM Code Generation in Ukrainian
Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models, such as OpenAI o3 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation and reasoning-enhanced models. The benchmark, data parsing, preparation, code generation, and evaluation scripts are available at https://huggingface.co/datasets/NLPForUA/ua-code-bench.
R-Bench: Graduate-level Multi-disciplinary Benchmarks for LLM & MLLM Complex Reasoning Evaluation
Reasoning stands as a cornerstone of intelligence, enabling the synthesis of existing knowledge to solve complex problems. Despite remarkable progress, existing reasoning benchmarks often fail to rigorously evaluate the nuanced reasoning capabilities required for complex, real-world problemsolving, particularly in multi-disciplinary and multimodal contexts. In this paper, we introduce a graduate-level, multi-disciplinary, EnglishChinese benchmark, dubbed as Reasoning Bench (R-Bench), for assessing the reasoning capability of both language and multimodal models. RBench spans 1,094 questions across 108 subjects for language model evaluation and 665 questions across 83 subjects for multimodal model testing in both English and Chinese. These questions are meticulously curated to ensure rigorous difficulty calibration, subject balance, and crosslinguistic alignment, enabling the assessment to be an Olympiad-level multi-disciplinary benchmark. We evaluate widely used models, including OpenAI o1, GPT-4o, DeepSeek-R1, etc. Experimental results indicate that advanced models perform poorly on complex reasoning, especially multimodal reasoning. Even the top-performing model OpenAI o1 achieves only 53.2% accuracy on our multimodal evaluation. Data and code are made publicly available at here.
A Network Analysis Approach to Conlang Research Literature
The field of conlang has evidenced an important growth in the last decades. This has been the product of a wide interest in the use and study of conlangs for artistic purposes. However, one important question is what it is happening with conlang in the academic world. This paper aims to have an overall understanding of the literature on conlang research. With this we aim to give a realistic picture of the field in present days. We have implemented a computational linguistic approach, combining bibliometrics and network analysis to examine all publications available in the Scopus database. Analysing over 2300 academic publications since 1927 until 2022, we have found that Esperanto is by far the most documented conlang. Three main authors have contributed to this: Garv\'ia R., Fiedler S., and Blanke D. The 1970s and 1980s have been the decades where the foundations of current research have been built. In terms of methodologies, language learning and experimental linguistics are the ones contributing to most to the preferred approaches of study in the field. We present the results and discuss our limitations and future work.
NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models
Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.
Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation
Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach. All datasets, models, and code are publicly available at: https://github.com/traversaal-ai/alif-urdu-llm.
ChiKhaPo: A Large-Scale Multilingual Benchmark for Evaluating Lexical Comprehension and Generation in Large Language Models
Existing benchmarks for large language models (LLMs) are largely restricted to high- or mid-resource languages, and often evaluate performance on higher-order tasks in reasoning and generation. However, plenty of evidence points to the fact that LLMs lack basic linguistic competence in the vast majority of the world's 3800+ written languages. We introduce ChiKhaPo, consisting of 8 subtasks of varying difficulty designed to evaluate the lexical comprehension and generation abilities of generative models. ChiKhaPo draws on existing lexicons, monolingual data, and bitext, and provides coverage for 2700+ languages for 2 subtasks, surpassing any existing benchmark in terms of language coverage. We further show that 6 SOTA models struggle on our benchmark, and discuss the factors contributing to performance scores, including language family, language resourcedness, task, and comprehension versus generation directions. With ChiKhaPo, we hope to enable and encourage the massively multilingual benchmarking of LLMs.
ChID: A Large-scale Chinese IDiom Dataset for Cloze Test
Cloze-style reading comprehension in Chinese is still limited due to the lack of various corpora. In this paper we propose a large-scale Chinese cloze test dataset ChID, which studies the comprehension of idiom, a unique language phenomenon in Chinese. In this corpus, the idioms in a passage are replaced by blank symbols and the correct answer needs to be chosen from well-designed candidate idioms. We carefully study how the design of candidate idioms and the representation of idioms affect the performance of state-of-the-art models. Results show that the machine accuracy is substantially worse than that of human, indicating a large space for further research.
Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams
The present study aims to explore the capabilities of Language Models (LMs) in tackling high-stakes multiple-choice tests, represented here by the Exame Nacional do Ensino M\'edio (ENEM), a multidisciplinary entrance examination widely adopted by Brazilian universities. This exam poses challenging tasks for LMs, since its questions may span into multiple fields of knowledge, requiring understanding of information from diverse domains. For instance, a question may require comprehension of both statistics and biology to be solved. This work analyzed responses generated by GPT-3.5 and GPT-4 models for questions presented in the 2009-2017 exams, as well as for questions of the 2022 exam, which were made public after the training of the models was completed. Furthermore, different prompt strategies were tested, including the use of Chain-of-Thought (CoT) prompts to generate explanations for answers. On the 2022 edition, the best-performing model, GPT-4 with CoT, achieved an accuracy of 87%, largely surpassing GPT-3.5 by 11 points. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.
Wav2Gloss: Generating Interlinear Glossed Text from Speech
Thousands of the world's languages are in danger of extinction--a tremendous threat to cultural identities and human language diversity. Interlinear Glossed Text (IGT) is a form of linguistic annotation that can support documentation and resource creation for these languages' communities. IGT typically consists of (1) transcriptions, (2) morphological segmentation, (3) glosses, and (4) free translations to a majority language. We propose Wav2Gloss: a task to extract these four annotation components automatically from speech, and introduce the first dataset to this end, Fieldwork: a corpus of speech with all these annotations covering 37 languages with standard formatting and train/dev/test splits. We compare end-to-end and cascaded Wav2Gloss methods, with analysis suggesting that pre-trained decoders assist with translation and glossing, that multi-task and multilingual approaches are underperformant, and that end-to-end systems perform better than cascaded systems, despite the text-only systems' advantages. We provide benchmarks to lay the ground work for future research on IGT generation from speech.
OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models
Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.
Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding
There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly.
Data Governance in the Age of Large-Scale Data-Driven Language Technology
The recent emergence and adoption of Machine Learning technology, and specifically of Large Language Models, has drawn attention to the need for systematic and transparent management of language data. This work proposes an approach to global language data governance that attempts to organize data management amongst stakeholders, values, and rights. Our proposal is informed by prior work on distributed governance that accounts for human values and grounded by an international research collaboration that brings together researchers and practitioners from 60 countries. The framework we present is a multi-party international governance structure focused on language data, and incorporating technical and organizational tools needed to support its work.
Beyond Monolingual Assumptions: A Survey of Code-Switched NLP in the Era of Large Language Models
Code-switching (CSW), the alternation of languages and scripts within a single utterance, remains a fundamental challenge for multiling ual NLP, even amidst the rapid advances of large language models (LLMs). Most LLMs still struggle with mixed-language inputs, limited CSW datasets, and evaluation biases, hindering deployment in multilingual societies. This survey provides the first comprehensive analysis of CSW-aware LLM research, reviewing unique_references studies spanning five research areas, 12 NLP tasks, 30+ datasets, and 80+ languages. We classify recent advances by architecture, training strategy, and evaluation methodology, outlining how LLMs have reshaped CSW modeling and what challenges persist. The paper concludes with a roadmap emphasizing the need for inclusive datasets, fair evaluation, and linguistically grounded models to achieve truly multilingual intelligence. A curated collection of all resources is maintained at https://github.com/lingo-iitgn/awesome-code-mixing/.
OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization
Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.
IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation
Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource -- yet widely spoken -- languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks -- despite using only one-fifth the parameters of a larger multilingual model, mBART-LARGE (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, local languages to achieve more efficient learning and faster inference for very low-resource languages like Javanese and Sundanese.
