new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

OpenTSLM: Time-Series Language Models for Reasoning over Multivariate Medical Text- and Time-Series Data

LLMs have emerged as powerful tools for interpreting multimodal data. In medicine, they hold particular promise for synthesizing large volumes of clinical information into actionable insights and digital health applications. Yet, a major limitation remains their inability to handle time series. To overcome this gap, we present OpenTSLM, a family of Time Series Language Models (TSLMs) created by integrating time series as a native modality to pretrained LLMs, enabling reasoning over multiple time series of any length. We investigate two architectures for OpenTSLM. The first, OpenTSLM-SoftPrompt, models time series implicitly by concatenating learnable time series tokens with text tokens via soft prompting. Although parameter-efficient, we hypothesize that explicit time series modeling scales better and outperforms implicit approaches. We thus introduce OpenTSLM-Flamingo, which integrates time series with text via cross-attention. We benchmark both variants against baselines that treat time series as text tokens or plots, across a suite of text-time-series Chain-of-Thought (CoT) reasoning tasks. We introduce three datasets: HAR-CoT, Sleep-CoT, and ECG-QA-CoT. Across all, OpenTSLM models outperform baselines, reaching 69.9 F1 in sleep staging and 65.4 in HAR, compared to 9.05 and 52.2 for finetuned text-only models. Notably, even 1B-parameter OpenTSLM models surpass GPT-4o (15.47 and 2.95). OpenTSLM-Flamingo matches OpenTSLM-SoftPrompt in performance and outperforms on longer sequences, while maintaining stable memory requirements. By contrast, SoftPrompt grows exponentially in memory with sequence length, requiring around 110 GB compared to 40 GB VRAM when training on ECG-QA with LLaMA-3B. Expert reviews by clinicians find strong reasoning capabilities exhibited by OpenTSLMs on ECG-QA. To facilitate further research, we provide all code, datasets, and models open-source.

ProofBridge: Auto-Formalization of Natural Language Proofs in Lean via Joint Embeddings

Translating human-written mathematical theorems and proofs from natural language (NL) into formal languages (FLs) like Lean 4 has long been a significant challenge for AI. Most state-of-the-art methods address this separately, first translating theorems and then generating proofs, creating a fundamental disconnect vis-a-vis true proof auto-formalization. This two-step process and its limitations were evident even in AlphaProof's silver-medal performance at the 2024 IMO, where problem statements needed manual translation before automated proof synthesis. We present ProofBridge, a unified framework for automatically translating entire NL theorems and proofs into Lean 4. At its core is a joint embedding model that aligns NL and FL (NL-FL) theorem-proof pairs in a shared semantic space, enabling cross-modal retrieval of semantically relevant FL examples to guide translation. Our training ensures that NL-FL theorems (and their proofs) are mapped close together in this space if and only if the NL-FL pairs are semantically equivalent. ProofBridge integrates retrieval-augmented fine-tuning with iterative proof repair, leveraging Lean's type checker and semantic equivalence feedback to ensure both syntactic correctness and semantic fidelity. Experiments show substantial improvements in proof auto-formalization over strong baselines (including GPT-5, Gemini-2.5, Kimina-Prover, DeepSeek-Prover), with our retrieval-augmented approach yielding significant gains in semantic correctness (SC, via proving bi-directional equivalence) and type correctness (TC, via type-checking theorem+proof) across pass@k metrics on miniF2F-Test-PF, a dataset we curated. In particular, ProofBridge improves cross-modal retrieval quality by up to 3.28x Recall@1 over all-MiniLM-L6-v2, and achieves +31.14% SC and +1.64% TC (pass@32) compared to the baseline Kimina-Prover-RL-1.7B.

  • 6 authors
·
Oct 17 1

Infinity-RoPE: Action-Controllable Infinite Video Generation Emerges From Autoregressive Self-Rollout

Current autoregressive video diffusion models are constrained by three core bottlenecks: (i) the finite temporal horizon imposed by the base model's 3D Rotary Positional Embedding (3D-RoPE), (ii) slow prompt responsiveness in maintaining fine-grained action control during long-form rollouts, and (iii) the inability to realize discontinuous cinematic transitions within a single generation stream. We introduce infty-RoPE, a unified inference-time framework that addresses all three limitations through three interconnected components: Block-Relativistic RoPE, KV Flush, and RoPE Cut. Block-Relativistic RoPE reformulates temporal encoding as a moving local reference frame, where each newly generated latent block is rotated relative to the base model's maximum frame horizon while earlier blocks are rotated backward to preserve relative temporal geometry. This relativistic formulation eliminates fixed temporal positions, enabling continuous video generation far beyond the base positional limits. To obtain fine-grained action control without re-encoding, KV Flush renews the KV cache by retaining only two latent frames, the global sink and the last generated latent frame, thereby ensuring immediate prompt responsiveness. Finally, RoPE Cut introduces controlled discontinuities in temporal RoPE coordinates, enabling multi-cut scene transitions within a single continuous rollout. Together, these components establish infty-RoPE as a training-free foundation for infinite-horizon, controllable, and cinematic video diffusion. Comprehensive experiments show that infty-RoPE consistently surpasses previous autoregressive models in overall VBench scores.

  • 5 authors
·
Nov 25 2

Semi-Parametric Neural Image Synthesis

Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.

  • 5 authors
·
Apr 25, 2022

BEV-Seg: Bird's Eye View Semantic Segmentation Using Geometry and Semantic Point Cloud

Bird's-eye-view (BEV) is a powerful and widely adopted representation for road scenes that captures surrounding objects and their spatial locations, along with overall context in the scene. In this work, we focus on bird's eye semantic segmentation, a task that predicts pixel-wise semantic segmentation in BEV from side RGB images. This task is made possible by simulators such as Carla, which allow for cheap data collection, arbitrary camera placements, and supervision in ways otherwise not possible in the real world. There are two main challenges to this task: the view transformation from side view to bird's eye view, as well as transfer learning to unseen domains. Existing work transforms between views through fully connected layers and transfer learns via GANs. This suffers from a lack of depth reasoning and performance degradation across domains. Our novel 2-staged perception pipeline explicitly predicts pixel depths and combines them with pixel semantics in an efficient manner, allowing the model to leverage depth information to infer objects' spatial locations in the BEV. In addition, we transfer learning by abstracting high-level geometric features and predicting an intermediate representation that is common across different domains. We publish a new dataset called BEVSEG-Carla and show that our approach improves state-of-the-art by 24% mIoU and performs well when transferred to a new domain.

  • 6 authors
·
Jun 19, 2020

Using Degeneracy in the Loss Landscape for Mechanistic Interpretability

Mechanistic Interpretability aims to reverse engineer the algorithms implemented by neural networks by studying their weights and activations. An obstacle to reverse engineering neural networks is that many of the parameters inside a network are not involved in the computation being implemented by the network. These degenerate parameters may obfuscate internal structure. Singular learning theory teaches us that neural network parameterizations are biased towards being more degenerate, and parameterizations with more degeneracy are likely to generalize further. We identify 3 ways that network parameters can be degenerate: linear dependence between activations in a layer; linear dependence between gradients passed back to a layer; ReLUs which fire on the same subset of datapoints. We also present a heuristic argument that modular networks are likely to be more degenerate, and we develop a metric for identifying modules in a network that is based on this argument. We propose that if we can represent a neural network in a way that is invariant to reparameterizations that exploit the degeneracies, then this representation is likely to be more interpretable, and we provide some evidence that such a representation is likely to have sparser interactions. We introduce the Interaction Basis, a tractable technique to obtain a representation that is invariant to degeneracies from linear dependence of activations or Jacobians.

  • 8 authors
·
May 17, 2024

Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation

Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.

The Local Interaction Basis: Identifying Computationally-Relevant and Sparsely Interacting Features in Neural Networks

Mechanistic interpretability aims to understand the behavior of neural networks by reverse-engineering their internal computations. However, current methods struggle to find clear interpretations of neural network activations because a decomposition of activations into computational features is missing. Individual neurons or model components do not cleanly correspond to distinct features or functions. We present a novel interpretability method that aims to overcome this limitation by transforming the activations of the network into a new basis - the Local Interaction Basis (LIB). LIB aims to identify computational features by removing irrelevant activations and interactions. Our method drops irrelevant activation directions and aligns the basis with the singular vectors of the Jacobian matrix between adjacent layers. It also scales features based on their importance for downstream computation, producing an interaction graph that shows all computationally-relevant features and interactions in a model. We evaluate the effectiveness of LIB on modular addition and CIFAR-10 models, finding that it identifies more computationally-relevant features that interact more sparsely, compared to principal component analysis. However, LIB does not yield substantial improvements in interpretability or interaction sparsity when applied to language models. We conclude that LIB is a promising theory-driven approach for analyzing neural networks, but in its current form is not applicable to large language models.

  • 10 authors
·
May 17, 2024

Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness

Machine learning (ML) algorithms are heavily based on the availability of training data, which, depending on the domain, often includes sensitive information about data providers. This raises critical privacy concerns. Anonymization techniques have emerged as a practical solution to address these issues by generalizing features or suppressing data to make it more difficult to accurately identify individuals. Although recent studies have shown that privacy-enhancing technologies can influence ML predictions across different subgroups, thus affecting fair decision-making, the specific effects of anonymization techniques, such as k-anonymity, ell-diversity, and t-closeness, on ML fairness remain largely unexplored. In this work, we systematically audit the impact of anonymization techniques on ML fairness, evaluating both individual and group fairness. Our quantitative study reveals that anonymization can degrade group fairness metrics by up to fourfold. Conversely, similarity-based individual fairness metrics tend to improve under stronger anonymization, largely as a result of increased input homogeneity. By analyzing varying levels of anonymization across diverse privacy settings and data distributions, this study provides critical insights into the trade-offs between privacy, fairness, and utility, offering actionable guidelines for responsible AI development. Our code is publicly available at: https://github.com/hharcolezi/anonymity-impact-fairness.

  • 4 authors
·
May 12

UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning

Transductive few-shot learning has recently triggered wide attention in computer vision. Yet, current methods introduce key hyper-parameters, which control the prediction statistics of the test batches, such as the level of class balance, affecting performances significantly. Such hyper-parameters are empirically grid-searched over validation data, and their configurations may vary substantially with the target dataset and pre-training model, making such empirical searches both sub-optimal and computationally intractable. In this work, we advocate and introduce the unrolling paradigm, also referred to as "learning to optimize", in the context of few-shot learning, thereby learning efficiently and effectively a set of optimized hyper-parameters. Specifically, we unroll a generalization of the ubiquitous Expectation-Maximization (EM) optimizer into a neural network architecture, mapping each of its iterates to a layer and learning a set of key hyper-parameters over validation data. Our unrolling approach covers various statistical feature distributions and pre-training paradigms, including recent foundational vision-language models and standard vision-only classifiers. We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks, showing significant gains brought by the proposed unrolled EM algorithm over iterative variants. The achieved improvements reach up to 10% and 7.5% on vision-only and vision-language benchmarks, respectively.

  • 6 authors
·
Dec 21, 2024

The X-ray Integral Field Unit at the end of the Athena reformulation phase

The Athena mission entered a redefinition phase in July 2022, driven by the imperative to reduce the mission cost at completion for the European Space Agency below an acceptable target, while maintaining the flagship nature of its science return. This notably called for a complete redesign of the X-ray Integral Field Unit (X-IFU) cryogenic architecture towards a simpler active cooling chain. Passive cooling via successive radiative panels at spacecraft level is now used to provide a 50 K thermal environment to an X-IFU owned cryostat. 4.5 K cooling is achieved via a single remote active cryocooler unit, while a multi-stage Adiabatic Demagnetization Refrigerator ensures heat lift down to the 50 mK required by the detectors. Amidst these changes, the core concept of the readout chain remains robust, employing Transition Edge Sensor microcalorimeters and a SQUID-based Time-Division Multiplexing scheme. Noteworthy is the introduction of a slower pixel. This enables an increase in the multiplexing factor (from 34 to 48) without compromising the instrument energy resolution, hence keeping significant system margins to the new 4 eV resolution requirement. This allows reducing the number of channels by more than a factor two, and thus the resource demands on the system, while keeping a 4' field of view (compared to 5' before). In this article, we will give an overview of this new architecture, before detailing its anticipated performances. Finally, we will present the new X-IFU schedule, with its short term focus on demonstration activities towards a mission adoption in early 2027.

  • 282 authors
·
Feb 15

IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare

The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65.

  • 137 authors
·
Nov 25, 2024