1 MD3: The Multi-Dialect Dataset of Dialogues We introduce a new dataset of conversational speech representing English from India, Nigeria, and the United States. The Multi-Dialect Dataset of Dialogues (MD3) strikes a new balance between open-ended conversational speech and task-oriented dialogue by prompting participants to perform a series of short information-sharing tasks. This facilitates quantitative cross-dialectal comparison, while avoiding the imposition of a restrictive task structure that might inhibit the expression of dialect features. Preliminary analysis of the dataset reveals significant differences in syntax and in the use of discourse markers. The dataset, which will be made publicly available with the publication of this paper, includes more than 20 hours of audio and more than 200,000 orthographically-transcribed tokens. 5 authors · May 18, 2023
- E-MD3C: Taming Masked Diffusion Transformers for Efficient Zero-Shot Object Customization We propose E-MD3C (Efficient Masked Diffusion Transformer with Disentangled Conditions and Compact Collector), a highly efficient framework for zero-shot object image customization. Unlike prior works reliant on resource-intensive Unet architectures, our approach employs lightweight masked diffusion transformers operating on latent patches, offering significantly improved computational efficiency. The framework integrates three core components: (1) an efficient masked diffusion transformer for processing autoencoder latents, (2) a disentangled condition design that ensures compactness while preserving background alignment and fine details, and (3) a learnable Conditions Collector that consolidates multiple inputs into a compact representation for efficient denoising and learning. E-MD3C outperforms the existing approach on the VITON-HD dataset across metrics such as PSNR, FID, SSIM, and LPIPS, demonstrating clear advantages in parameters, memory efficiency, and inference speed. With only 1{4} of the parameters, our Transformer-based 468M model delivers 2.5times faster inference and uses 2{3} of the GPU memory compared to an 1720M Unet-based latent diffusion model. 5 authors · Feb 13, 2025