Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNewswire: A Large-Scale Structured Database of a Century of Historical News
In the U.S. historically, local newspapers drew their content largely from newswires like the Associated Press. Historians argue that newswires played a pivotal role in creating a national identity and shared understanding of the world, but there is no comprehensive archive of the content sent over newswires. We reconstruct such an archive by applying a customized deep learning pipeline to hundreds of terabytes of raw image scans from thousands of local newspapers. The resulting dataset contains 2.7 million unique public domain U.S. newswire articles, written between 1878 and 1977. Locations in these articles are georeferenced, topics are tagged using customized neural topic classification, named entities are recognized, and individuals are disambiguated to Wikipedia using a novel entity disambiguation model. To construct the Newswire dataset, we first recognize newspaper layouts and transcribe around 138 millions structured article texts from raw image scans. We then use a customized neural bi-encoder model to de-duplicate reproduced articles, in the presence of considerable abridgement and noise, quantifying how widely each article was reproduced. A text classifier is used to ensure that we only include newswire articles, which historically are in the public domain. The structured data that accompany the texts provide rich information about the who (disambiguated individuals), what (topics), and where (georeferencing) of the news that millions of Americans read over the course of a century. We also include Library of Congress metadata information about the newspapers that ran the articles on their front pages. The Newswire dataset is useful both for large language modeling - expanding training data beyond what is available from modern web texts - and for studying a diversity of questions in computational linguistics, social science, and the digital humanities.
Analyzing the Influence of Fake News in the 2024 Elections: A Comprehensive Dataset
This work introduces a dataset focused on fake news in US political speeches, specifically examining racial slurs and biases. By scraping and annotating 40,000 news articles, using advanced NLP tools and human verification, we provide a nuanced understanding of misinformation in political discourse. The dataset, designed for machine learning and bias analysis, is a critical resource for researchers, policymakers, and educators. It facilitates the development of strategies against misinformation and enhances media literacy, marking a significant contribution to the study of fake news and political communication. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible for community to work on fake news identification. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible.
News Category Dataset
People rely on news to know what is happening around the world and inform their daily lives. In today's world, when the proliferation of fake news is rampant, having a large-scale and high-quality source of authentic news articles with the published category information is valuable to learning authentic news' Natural Language syntax and semantics. As part of this work, we present a News Category Dataset that contains around 210k news headlines from the year 2012 to 2022 obtained from HuffPost, along with useful metadata to enable various NLP tasks. In this paper, we also produce some novel insights from the dataset and describe various existing and potential applications of our dataset.
3DLNews: A Three-decade Dataset of US Local News Articles
We present 3DLNews, a novel dataset with local news articles from the United States spanning the period from 1996 to 2024. It contains almost 1 million URLs (with HTML text) from over 14,000 local newspapers, TV, and radio stations across all 50 states, and provides a broad snapshot of the US local news landscape. The dataset was collected by scraping Google and Twitter search results. We employed a multi-step filtering process to remove non-news article links and enriched the dataset with metadata such as the names and geo-coordinates of the source news media organizations, article publication dates, etc. Furthermore, we demonstrated the utility of 3DLNews by outlining four applications.
American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers
Existing full text datasets of U.S. public domain newspapers do not recognize the often complex layouts of newspaper scans, and as a result the digitized content scrambles texts from articles, headlines, captions, advertisements, and other layout regions. OCR quality can also be low. This study develops a novel, deep learning pipeline for extracting full article texts from newspaper images and applies it to the nearly 20 million scans in Library of Congress's public domain Chronicling America collection. The pipeline includes layout detection, legibility classification, custom OCR, and association of article texts spanning multiple bounding boxes. To achieve high scalability, it is built with efficient architectures designed for mobile phones. The resulting American Stories dataset provides high quality data that could be used for pre-training a large language model to achieve better understanding of historical English and historical world knowledge. The dataset could also be added to the external database of a retrieval-augmented language model to make historical information - ranging from interpretations of political events to minutiae about the lives of people's ancestors - more widely accessible. Furthermore, structured article texts facilitate using transformer-based methods for popular social science applications like topic classification, detection of reproduced content, and news story clustering. Finally, American Stories provides a massive silver quality dataset for innovating multimodal layout analysis models and other multimodal applications.
FinMultiTime: A Four-Modal Bilingual Dataset for Financial Time-Series Analysis
Pure time series forecasting tasks typically focus exclusively on numerical features; however, real-world financial decision-making demands the comparison and analysis of heterogeneous sources of information. Recent advances in deep learning and large scale language models (LLMs) have made significant strides in capturing sentiment and other qualitative signals, thereby enhancing the accuracy of financial time series predictions. Despite these advances, most existing datasets consist solely of price series and news text, are confined to a single market, and remain limited in scale. In this paper, we introduce FinMultiTime, the first large scale, multimodal financial time series dataset. FinMultiTime temporally aligns four distinct modalities financial news, structured financial tables, K-line technical charts, and stock price time series across both the S&P 500 and HS 300 universes. Covering 5,105 stocks from 2009 to 2025 in the United States and China, the dataset totals 112.6 GB and provides minute-level, daily, and quarterly resolutions, thus capturing short, medium, and long term market signals with high fidelity. Our experiments demonstrate that (1) scale and data quality markedly boost prediction accuracy; (2) multimodal fusion yields moderate gains in Transformer models; and (3) a fully reproducible pipeline enables seamless dataset updates.
NELA-GT-2018: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present a dataset of 713k articles collected between 02/2018-11/2018. These articles are collected directly from 194 news and media outlets including mainstream, hyper-partisan, and conspiracy sources. We incorporate ground truth ratings of the sources from 8 different assessment sites covering multiple dimensions of veracity, including reliability, bias, transparency, adherence to journalistic standards, and consumer trust. The NELA-GT-2018 dataset can be found at https://doi.org/10.7910/DVN/ULHLCB.
FNSPID: A Comprehensive Financial News Dataset in Time Series
Financial market predictions utilize historical data to anticipate future stock prices and market trends. Traditionally, these predictions have focused on the statistical analysis of quantitative factors, such as stock prices, trading volumes, inflation rates, and changes in industrial production. Recent advancements in large language models motivate the integrated financial analysis of both sentiment data, particularly market news, and numerical factors. Nonetheless, this methodology frequently encounters constraints due to the paucity of extensive datasets that amalgamate both quantitative and qualitative sentiment analyses. To address this challenge, we introduce a large-scale financial dataset, namely, Financial News and Stock Price Integration Dataset (FNSPID). It comprises 29.7 million stock prices and 15.7 million time-aligned financial news records for 4,775 S&P500 companies, covering the period from 1999 to 2023, sourced from 4 stock market news websites. We demonstrate that FNSPID excels existing stock market datasets in scale and diversity while uniquely incorporating sentiment information. Through financial analysis experiments on FNSPID, we propose: (1) the dataset's size and quality significantly boost market prediction accuracy; (2) adding sentiment scores modestly enhances performance on the transformer-based model; (3) a reproducible procedure that can update the dataset. Completed work, code, documentation, and examples are available at github.com/Zdong104/FNSPID. FNSPID offers unprecedented opportunities for the financial research community to advance predictive modeling and analysis.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
The 2021 Tokyo Olympics Multilingual News Article Dataset
In this paper, we introduce a dataset of multilingual news articles covering the 2021 Tokyo Olympics. A total of 10,940 news articles were gathered from 1,918 different publishers, covering 1,350 sub-events of the 2021 Olympics, and published between July 1, 2021, and August 14, 2021. These articles are written in nine languages from different language families and in different scripts. To create the dataset, the raw news articles were first retrieved via a service that collects and analyzes news articles. Then, the articles were grouped using an online clustering algorithm, with each group containing articles reporting on the same sub-event. Finally, the groups were manually annotated and evaluated. The development of this dataset aims to provide a resource for evaluating the performance of multilingual news clustering algorithms, for which limited datasets are available. It can also be used to analyze the dynamics and events of the 2021 Tokyo Olympics from different perspectives. The dataset is available in CSV format and can be accessed from the CLARIN.SI repository.
A Comprehensive Dataset for Human vs. AI Generated Text Detection
The rapid advancement of large language models (LLMs) has led to increasingly human-like AI-generated text, raising concerns about content authenticity, misinformation, and trustworthiness. Addressing the challenge of reliably detecting AI-generated text and attributing it to specific models requires large-scale, diverse, and well-annotated datasets. In this work, we present a comprehensive dataset comprising over 58,000 text samples that combine authentic New York Times articles with synthetic versions generated by multiple state-of-the-art LLMs including Gemma-2-9b, Mistral-7B, Qwen-2-72B, LLaMA-8B, Yi-Large, and GPT-4-o. The dataset provides original article abstracts as prompts, full human-authored narratives. We establish baseline results for two key tasks: distinguishing human-written from AI-generated text, achieving an accuracy of 58.35\%, and attributing AI texts to their generating models with an accuracy of 8.92\%. By bridging real-world journalistic content with modern generative models, the dataset aims to catalyze the development of robust detection and attribution methods, fostering trust and transparency in the era of generative AI. Our dataset is available at: https://huggingface.co/datasets/gsingh1-py/train.
NELA-GT-2022: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present the fifth installment of the NELA-GT datasets, NELA-GT-2022. The dataset contains 1,778,361 articles from 361 outlets between January 1st, 2022 and December 31st, 2022. Just as in past releases of the dataset, NELA-GT-2022 includes outlet-level veracity labels from Media Bias/Fact Check and tweets embedded in collected news articles. The NELA-GT-2022 dataset can be found at: https://doi.org/10.7910/DVN/AMCV2H
L3Cube-MahaSocialNER: A Social Media based Marathi NER Dataset and BERT models
This work introduces the L3Cube-MahaSocialNER dataset, the first and largest social media dataset specifically designed for Named Entity Recognition (NER) in the Marathi language. The dataset comprises 18,000 manually labeled sentences covering eight entity classes, addressing challenges posed by social media data, including non-standard language and informal idioms. Deep learning models, including CNN, LSTM, BiLSTM, and Transformer models, are evaluated on the individual dataset with IOB and non-IOB notations. The results demonstrate the effectiveness of these models in accurately recognizing named entities in Marathi informal text. The L3Cube-MahaSocialNER dataset offers user-centric information extraction and supports real-time applications, providing a valuable resource for public opinion analysis, news, and marketing on social media platforms. We also show that the zero-shot results of the regular NER model are poor on the social NER test set thus highlighting the need for more social NER datasets. The datasets and models are publicly available at https://github.com/l3cube-pune/MarathiNLP
ChroniclingAmericaQA: A Large-scale Question Answering Dataset based on Historical American Newspaper Pages
Question answering (QA) and Machine Reading Comprehension (MRC) tasks have significantly advanced in recent years due to the rapid development of deep learning techniques and, more recently, large language models. At the same time, many benchmark datasets have become available for QA and MRC tasks. However, most existing large-scale benchmark datasets have been created predominantly using synchronous document collections like Wikipedia or the Web. Archival document collections, such as historical newspapers, contain valuable information from the past that is still not widely used to train large language models. To further contribute to advancing QA and MRC tasks and to overcome the limitation of previous datasets, we introduce ChroniclingAmericaQA, a large-scale dataset with 485K question-answer pairs created based on the historical newspaper collection Chronicling America. Our dataset is constructed from a subset of the Chronicling America newspaper collection spanning 120 years. One of the significant challenges for utilizing digitized historical newspaper collections is the low quality of OCR text. Therefore, to enable realistic testing of QA models, our dataset can be used in three different ways: answering questions from raw and noisy content, answering questions from cleaner, corrected version of the content, as well as answering questions from scanned images of newspaper pages. This and the fact that ChroniclingAmericaQA spans the longest time period among available QA datasets make it quite a unique and useful resource.
NELA-GT-2020: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present an updated version of the NELA-GT-2019 dataset, entitled NELA-GT-2020. NELA-GT-2020 contains nearly 1.8M news articles from 519 sources collected between January 1st, 2020 and December 31st, 2020. Just as with NELA-GT-2018 and NELA-GT-2019, these sources come from a wide range of mainstream news sources and alternative news sources. Included in the dataset are source-level ground truth labels from Media Bias/Fact Check (MBFC) covering multiple dimensions of veracity. Additionally, new in the 2020 dataset are the Tweets embedded in the collected news articles, adding an extra layer of information to the data. The NELA-GT-2020 dataset can be found at https://doi.org/10.7910/DVN/CHMUYZ.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
Navigating News Narratives: A Media Bias Analysis Dataset
The proliferation of biased news narratives across various media platforms has become a prominent challenge, influencing public opinion on critical topics like politics, health, and climate change. This paper introduces the "Navigating News Narratives: A Media Bias Analysis Dataset", a comprehensive dataset to address the urgent need for tools to detect and analyze media bias. This dataset encompasses a broad spectrum of biases, making it a unique and valuable asset in the field of media studies and artificial intelligence. The dataset is available at https://huggingface.co/datasets/newsmediabias/news-bias-full-data.
NIFTY Financial News Headlines Dataset
We introduce and make publicly available the NIFTY Financial News Headlines dataset, designed to facilitate and advance research in financial market forecasting using large language models (LLMs). This dataset comprises two distinct versions tailored for different modeling approaches: (i) NIFTY-LM, which targets supervised fine-tuning (SFT) of LLMs with an auto-regressive, causal language-modeling objective, and (ii) NIFTY-RL, formatted specifically for alignment methods (like reinforcement learning from human feedback (RLHF)) to align LLMs via rejection sampling and reward modeling. Each dataset version provides curated, high-quality data incorporating comprehensive metadata, market indices, and deduplicated financial news headlines systematically filtered and ranked to suit modern LLM frameworks. We also include experiments demonstrating some applications of the dataset in tasks like stock price movement and the role of LLM embeddings in information acquisition/richness. The NIFTY dataset along with utilities (like truncating prompt's context length systematically) are available on Hugging Face at https://huggingface.co/datasets/raeidsaqur/NIFTY.
Enhancing Financial Market Predictions: Causality-Driven Feature Selection
This paper introduces the FinSen dataset that revolutionizes financial market analysis by integrating economic and financial news articles from 197 countries with stock market data. The dataset's extensive coverage spans 15 years from 2007 to 2023 with temporal information, offering a rich, global perspective with 160,000 records on financial market news. Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability. Utilizing the FinSen dataset, we introduce an innovative Focal Calibration Loss, reducing Expected Calibration Error (ECE) to 3.34 percent with the DAN 3 model. This not only improves prediction accuracy but also aligns probabilistic forecasts closely with real outcomes, crucial for the financial sector where predicted probability is paramount. Our approach demonstrates the effectiveness of combining sentiment analysis with precise calibration techniques for trustworthy financial forecasting where the cost of misinterpretation can be high. Finsen Data can be found at [this github URL](https://github.com/EagleAdelaide/FinSen_Dataset.git).
NELA-GT-2019: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present an updated version of the NELA-GT-2018 dataset (N{\o}rregaard, Horne, and Adal{\i} 2019), entitled NELA-GT-2019. NELA-GT-2019 contains 1.12M news articles from 260 sources collected between January 1st 2019 and December 31st 2019. Just as with NELA-GT-2018, these sources come from a wide range of mainstream news sources and alternative news sources. Included with the dataset are source-level ground truth labels from 7 different assessment sites covering multiple dimensions of veracity. The NELA-GT-2019 dataset can be found at: https://doi.org/10.7910/DVN/O7FWPO
The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America
Chronicling America is a product of the National Digital Newspaper Program, a partnership between the Library of Congress and the National Endowment for the Humanities to digitize historic newspapers. Over 16 million pages of historic American newspapers have been digitized for Chronicling America to date, complete with high-resolution images and machine-readable METS/ALTO OCR. Of considerable interest to Chronicling America users is a semantified corpus, complete with extracted visual content and headlines. To accomplish this, we introduce a visual content recognition model trained on bounding box annotations of photographs, illustrations, maps, comics, and editorial cartoons collected as part of the Library of Congress's Beyond Words crowdsourcing initiative and augmented with additional annotations including those of headlines and advertisements. We describe our pipeline that utilizes this deep learning model to extract 7 classes of visual content: headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements, complete with textual content such as captions derived from the METS/ALTO OCR, as well as image embeddings for fast image similarity querying. We report the results of running the pipeline on 16.3 million pages from the Chronicling America corpus and describe the resulting Newspaper Navigator dataset, the largest dataset of extracted visual content from historic newspapers ever produced. The Newspaper Navigator dataset, finetuned visual content recognition model, and all source code are placed in the public domain for unrestricted re-use.
Datasets: A Community Library for Natural Language Processing
The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.
A Public Dataset Tracking Social Media Discourse about the 2024 U.S. Presidential Election on Twitter/X
In this paper, we introduce the first release of a large-scale dataset capturing discourse on X (a.k.a., Twitter) related to the upcoming 2024 U.S. Presidential Election. Our dataset comprises 22 million publicly available posts on X.com, collected from May 1, 2024, to July 31, 2024, using a custom-built scraper, which we describe in detail. By employing targeted keywords linked to key political figures, events, and emerging issues, we aligned data collection with the election cycle to capture evolving public sentiment and the dynamics of political engagement on social media. This dataset offers researchers a robust foundation to investigate critical questions about the influence of social media in shaping political discourse, the propagation of election-related narratives, and the spread of misinformation. We also present a preliminary analysis that highlights prominent hashtags and keywords within the dataset, offering initial insights into the dominant themes and conversations occurring in the lead-up to the election. Our dataset is available at: url{https://github.com/sinking8/usc-x-24-us-election
OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents
Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train vision and language models of 9 and 80 billion parameters named IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code.
CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.
A Dataset of German Legal Documents for Named Entity Recognition
We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx.
Rapidly Bootstrapping a Question Answering Dataset for COVID-19
We present CovidQA, the beginnings of a question answering dataset specifically designed for COVID-19, built by hand from knowledge gathered from Kaggle's COVID-19 Open Research Dataset Challenge. To our knowledge, this is the first publicly available resource of its type, and intended as a stopgap measure for guiding research until more substantial evaluation resources become available. While this dataset, comprising 124 question-article pairs as of the present version 0.1 release, does not have sufficient examples for supervised machine learning, we believe that it can be helpful for evaluating the zero-shot or transfer capabilities of existing models on topics specifically related to COVID-19. This paper describes our methodology for constructing the dataset and presents the effectiveness of a number of baselines, including term-based techniques and various transformer-based models. The dataset is available at http://covidqa.ai/
BloombergGPT: A Large Language Model for Finance
The use of NLP in the realm of financial technology is broad and complex, with applications ranging from sentiment analysis and named entity recognition to question answering. Large Language Models (LLMs) have been shown to be effective on a variety of tasks; however, no LLM specialized for the financial domain has been reported in literature. In this work, we present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data. We construct a 363 billion token dataset based on Bloomberg's extensive data sources, perhaps the largest domain-specific dataset yet, augmented with 345 billion tokens from general purpose datasets. We validate BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most accurately reflect our intended usage. Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. Additionally, we explain our modeling choices, training process, and evaluation methodology. As a next step, we plan to release training logs (Chronicles) detailing our experience in training BloombergGPT.
Developing a Named Entity Recognition Dataset for Tagalog
We present the development of a Named Entity Recognition (NER) dataset for Tagalog. This corpus helps fill the resource gap present in Philippine languages today, where NER resources are scarce. The texts were obtained from a pretraining corpora containing news reports, and were labeled by native speakers in an iterative fashion. The resulting dataset contains ~7.8k documents across three entity types: Person, Organization, and Location. The inter-annotator agreement, as measured by Cohen's kappa, is 0.81. We also conducted extensive empirical evaluation of state-of-the-art methods across supervised and transfer learning settings. Finally, we released the data and processing code publicly to inspire future work on Tagalog NLP.
Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page
I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes.
AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset
Along with the COVID-19 pandemic, an "infodemic" of false and misleading information has emerged and has complicated the COVID-19 response efforts. Social networking sites such as Facebook and Twitter have contributed largely to the spread of rumors, conspiracy theories, hate, xenophobia, racism, and prejudice. To combat the spread of fake news, researchers around the world have and are still making considerable efforts to build and share COVID-19 related research articles, models, and datasets. This paper releases "AraCOVID19-MFH" a manually annotated multi-label Arabic COVID-19 fake news and hate speech detection dataset. Our dataset contains 10,828 Arabic tweets annotated with 10 different labels. The labels have been designed to consider some aspects relevant to the fact-checking task, such as the tweet's check worthiness, positivity/negativity, and factuality. To confirm our annotated dataset's practical utility, we used it to train and evaluate several classification models and reported the obtained results. Though the dataset is mainly designed for fake news detection, it can also be used for hate speech detection, opinion/news classification, dialect identification, and many other tasks.
HashSet -- A Dataset For Hashtag Segmentation
Hashtag segmentation is the task of breaking a hashtag into its constituent tokens. Hashtags often encode the essence of user-generated posts, along with information like topic and sentiment, which are useful in downstream tasks. Hashtags prioritize brevity and are written in unique ways -- transliterating and mixing languages, spelling variations, creative named entities. Benchmark datasets used for the hashtag segmentation task -- STAN, BOUN -- are small in size and extracted from a single set of tweets. However, datasets should reflect the variations in writing styles of hashtags and also account for domain and language specificity, failing which the results will misrepresent model performance. We argue that model performance should be assessed on a wider variety of hashtags, and datasets should be carefully curated. To this end, we propose HashSet, a dataset comprising of: a) 1.9k manually annotated dataset; b) 3.3M loosely supervised dataset. HashSet dataset is sampled from a different set of tweets when compared to existing datasets and provides an alternate distribution of hashtags to build and validate hashtag segmentation models. We show that the performance of SOTA models for Hashtag Segmentation drops substantially on proposed dataset, indicating that the proposed dataset provides an alternate set of hashtags to train and assess models.
AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and Other Sources about the 2024 Outbreak of Measles
The work of this paper presents a dataset that contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. The dataset is available at https://dx.doi.org/10.21227/40s8-xf63. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. Finally, this paper also presents a list of open research questions that may be investigated using this dataset.
RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and legal data processing. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data and OCR outputs are available to download at https://indicodatasolutions.github.io/RealKIE/ code to reproduce the baselines will be available shortly.
BanMANI: A Dataset to Identify Manipulated Social Media News in Bangla
Initial work has been done to address fake news detection and misrepresentation of news in the Bengali language. However, no work in Bengali yet addresses the identification of specific claims in social media news that falsely manipulates a related news article. At this point, this problem has been tackled in English and a few other languages, but not in the Bengali language. In this paper, we curate a dataset of social media content labeled with information manipulation relative to reference articles, called BanMANI. The dataset collection method we describe works around the limitations of the available NLP tools in Bangla. We expect these techniques will carry over to building similar datasets in other low-resource languages. BanMANI forms the basis both for evaluating the capabilities of existing NLP systems and for training or fine-tuning new models specifically on this task. In our analysis, we find that this task challenges current LLMs both under zero-shot and fine-tuned settings.
L3Cube-IndicNews: News-based Short Text and Long Document Classification Datasets in Indic Languages
In this work, we introduce L3Cube-IndicNews, a multilingual text classification corpus aimed at curating a high-quality dataset for Indian regional languages, with a specific focus on news headlines and articles. We have centered our work on 10 prominent Indic languages, including Hindi, Bengali, Marathi, Telugu, Tamil, Gujarati, Kannada, Odia, Malayalam, and Punjabi. Each of these news datasets comprises 10 or more classes of news articles. L3Cube-IndicNews offers 3 distinct datasets tailored to handle different document lengths that are classified as: Short Headlines Classification (SHC) dataset containing the news headline and news category, Long Document Classification (LDC) dataset containing the whole news article and the news category, and Long Paragraph Classification (LPC) containing sub-articles of the news and the news category. We maintain consistent labeling across all 3 datasets for in-depth length-based analysis. We evaluate each of these Indic language datasets using 4 different models including monolingual BERT, multilingual Indic Sentence BERT (IndicSBERT), and IndicBERT. This research contributes significantly to expanding the pool of available text classification datasets and also makes it possible to develop topic classification models for Indian regional languages. This also serves as an excellent resource for cross-lingual analysis owing to the high overlap of labels among languages. The datasets and models are shared publicly at https://github.com/l3cube-pune/indic-nlp
Incidents1M: a large-scale dataset of images with natural disasters, damage, and incidents
Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu.
Benchmarking Abstractive Summarisation: A Dataset of Human-authored Summaries of Norwegian News Articles
We introduce a dataset of high-quality human-authored summaries of news articles in Norwegian. The dataset is intended for benchmarking the abstractive summarisation capabilities of generative language models. Each document in the dataset is provided with three different candidate gold-standard summaries written by native Norwegian speakers, and all summaries are provided in both of the written variants of Norwegian -- Bokm{\aa}l and Nynorsk. The paper describes details on the data creation effort as well as an evaluation of existing open LLMs for Norwegian on the dataset. We also provide insights from a manual human evaluation, comparing human-authored to model-generated summaries. Our results indicate that the dataset provides a challenging LLM benchmark for Norwegian summarisation capabilities
KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi
Recent progress in text classification has been focused on high-resource languages such as English and Chinese. For low-resource languages, amongst them most African languages, the lack of well-annotated data and effective preprocessing, is hindering the progress and the transfer of successful methods. In this paper, we introduce two news datasets (KINNEWS and KIRNEWS) for multi-class classification of news articles in Kinyarwanda and Kirundi, two low-resource African languages. The two languages are mutually intelligible, but while Kinyarwanda has been studied in Natural Language Processing (NLP) to some extent, this work constitutes the first study on Kirundi. Along with the datasets, we provide statistics, guidelines for preprocessing, and monolingual and cross-lingual baseline models. Our experiments show that training embeddings on the relatively higher-resourced Kinyarwanda yields successful cross-lingual transfer to Kirundi. In addition, the design of the created datasets allows for a wider use in NLP beyond text classification in future studies, such as representation learning, cross-lingual learning with more distant languages, or as base for new annotations for tasks such as parsing, POS tagging, and NER. The datasets, stopwords, and pre-trained embeddings are publicly available at https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus .
Multi-Source Social Feedback of Online News Feeds
The profusion of user generated content caused by the rise of social media platforms has enabled a surge in research relating to fields such as information retrieval, recommender systems, data mining and machine learning. However, the lack of comprehensive baseline data sets to allow a thorough evaluative comparison has become an important issue. In this paper we present a large data set of news items from well-known aggregators such as Google News and Yahoo! News, and their respective social feedback on multiple platforms: Facebook, Google+ and LinkedIn. The data collected relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine. This data set is tailored for evaluative comparisons in predictive analytics tasks, although allowing for tasks in other research areas such as topic detection and tracking, sentiment analysis in short text, first story detection or news recommendation.
PEYMA: A Tagged Corpus for Persian Named Entities
The goal in the NER task is to classify proper nouns of a text into classes such as person, location, and organization. This is an important preprocessing step in many NLP tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art NER systems have reached performances of higher than 90 percent in terms of F1 measure, there are very few research studies for this task in Persian. One of the main important causes of this may be the lack of a standard Persian NER dataset to train and test NER systems. In this research we create a standard, big-enough tagged Persian NER dataset which will be distributed for free for research purposes. In order to construct such a standard dataset, we studied standard NER datasets which are constructed for English researches and found out that almost all of these datasets are constructed using news texts. So we collected documents from ten news websites. Later, in order to provide annotators with some guidelines to tag these documents, after studying guidelines used for constructing CoNLL and MUC standard English datasets, we set our own guidelines considering the Persian linguistic rules.
Outsourcing an Information Operation: A Complete Dataset of Tenet Media's Podcasts on Rumble
Tenet Media, a U.S.-based, right-wing media company, hired six established podcasters to create content related to U.S. politics and culture during the 2024 U.S. presidential election cycle. After publishing content on YouTube and Rumble for nearly a year, Tenet Media was declared by the U.S. government to be funded entirely by Russia -- making it effectively an outsourced state-sponsored information operation (SSIO). We present a complete dataset of the 560 podcast videos published by the Tenet Media channel on the video-sharing platform Rumble between November 2023 and September 2024. Our dataset includes video metadata and user comments, as well as high-quality video transcriptions, representing over 300 hours of video content. This dataset provides researchers with material to study a Russian SSIO, and notably on Rumble, which is an understudied platform in SSIO scholarship.
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition
In this paper we present KIND, an Italian dataset for Named-entity recognition. It contains more than one million tokens with annotation covering three classes: person, location, and organization. The dataset (around 600K tokens) mostly contains manual gold annotations in three different domains (news, literature, and political discourses) and a semi-automatically annotated part. The multi-domain feature is the main strength of the present work, offering a resource which covers different styles and language uses, as well as the largest Italian NER dataset with manual gold annotations. It represents an important resource for the training of NER systems in Italian. Texts and annotations are freely downloadable from the Github repository.
A Large-Scale Multi-Document Summarization Dataset from the Wikipedia Current Events Portal
Multi-document summarization (MDS) aims to compress the content in large document collections into short summaries and has important applications in story clustering for newsfeeds, presentation of search results, and timeline generation. However, there is a lack of datasets that realistically address such use cases at a scale large enough for training supervised models for this task. This work presents a new dataset for MDS that is large both in the total number of document clusters and in the size of individual clusters. We build this dataset by leveraging the Wikipedia Current Events Portal (WCEP), which provides concise and neutral human-written summaries of news events, with links to external source articles. We also automatically extend these source articles by looking for related articles in the Common Crawl archive. We provide a quantitative analysis of the dataset and empirical results for several state-of-the-art MDS techniques.
20min-XD: A Comparable Corpus of Swiss News Articles
We present 20min-XD (20 Minuten cross-lingual document-level), a French-German, document-level comparable corpus of news articles, sourced from the Swiss online news outlet 20 Minuten/20 minutes. Our dataset comprises around 15,000 article pairs spanning 2015 to 2024, automatically aligned based on semantic similarity. We detail the data collection process and alignment methodology. Furthermore, we provide a qualitative and quantitative analysis of the corpus. The resulting dataset exhibits a broad spectrum of cross-lingual similarity, ranging from near-translations to loosely related articles, making it valuable for various NLP applications and broad linguistically motivated studies. We publicly release the dataset in document- and sentence-aligned versions and code for the described experiments.
Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset
Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.
NewsQA: A Machine Comprehension Dataset
We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text from the corresponding articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. A thorough analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (0.198 in F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available at https://datasets.maluuba.com/NewsQA.
A Dataset for Answering Time-Sensitive Questions
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time. For example, the U.S. President might change every four years. Therefore, it is important to consider the time dimension and empower the existing QA models to reason over time. However, the existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability. In order to promote research in this direction, we propose to construct a time-sensitive QA dataset. The dataset is constructed by 1) mining time-evolving facts from WikiData and aligning them to their corresponding Wikipedia page, 2) employing crowd workers to verify and calibrate these noisy facts, 3) generating question-answer pairs based on the annotated time-sensitive facts. Our dataset poses challenges in the aspect of both temporal understanding and temporal reasoning. We evaluate different SoTA long-document QA systems like BigBird and FiD on our dataset. The best-performing model FiD can only achieve 46\% accuracy, still far behind the human performance of 87\%. We demonstrate that these models are still lacking the ability to perform consistent temporal reasoning. Therefore, we believe that our dataset could serve as a benchmark to develop NLP models more sensitive to temporal shifts. The dataset and code are released in~https://github.com/wenhuchen/Time-Sensitive-QA.
Raiders of the Lost Kek: 3.5 Years of Augmented 4chan Posts from the Politically Incorrect Board
This paper presents a dataset with over 3.3M threads and 134.5M posts from the Politically Incorrect board (/pol/) of the imageboard forum 4chan, posted over a period of almost 3.5 years (June 2016-November 2019). To the best of our knowledge, this represents the largest publicly available 4chan dataset, providing the community with an archive of posts that have been permanently deleted from 4chan and are otherwise inaccessible. We augment the data with a set of additional labels, including toxicity scores and the named entities mentioned in each post. We also present a statistical analysis of the dataset, providing an overview of what researchers interested in using it can expect, as well as a simple content analysis, shedding light on the most prominent discussion topics, the most popular entities mentioned, and the toxicity level of each post. Overall, we are confident that our work will motivate and assist researchers in studying and understanding 4chan, as well as its role on the greater Web. For instance, we hope this dataset may be used for cross-platform studies of social media, as well as being useful for other types of research like natural language processing. Finally, our dataset can assist qualitative work focusing on in-depth case studies of specific narratives, events, or social theories.
An Amharic News Text classification Dataset
In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments.
Datasets for Large Language Models: A Comprehensive Survey
This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis
Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA. The dataset and library are available at https://github.com/AdityaLab/Time-MMD and https://github.com/AdityaLab/MM-TSFlib.
The MERIT Dataset: Modelling and Efficiently Rendering Interpretable Transcripts
This paper introduces the MERIT Dataset, a multimodal (text + image + layout) fully labeled dataset within the context of school reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a valuable resource for training models in demanding Visually-rich Document Understanding (VrDU) tasks. By its nature (student grade reports), the MERIT Dataset can potentially include biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models (LLMs). The paper outlines the dataset's generation pipeline and highlights its main features in the textual, visual, layout, and bias domains. To demonstrate the dataset's utility, we present a benchmark with token classification models, showing that the dataset poses a significant challenge even for SOTA models and that these would greatly benefit from including samples from the MERIT Dataset in their pretraining phase.
A Large-scale Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform
Short-video platforms show an increasing impact on people's daily lives nowadays, with billions of active users spending plenty of time each day. The interactions between users and online platforms give rise to many scientific problems across computational social science and artificial intelligence. However, despite the rapid development of short-video platforms, currently there are serious shortcomings in existing relevant datasets on three aspects: inadequate user-video feedback, limited user attributes and lack of video content. To address these problems, we provide a large-scale dataset with rich user behavior, attributes and video content from a real mobile short-video platform. This dataset covers 10,000 voluntary users and 153,561 videos, and we conduct four-fold technical validations of the dataset. First, we verify the richness of the behavior and attribute data. Second, we confirm the representing ability of the content features. Third, we provide benchmarking results on recommendation algorithms with our dataset. Finally, we explore the filter bubble phenomenon on the platform using the dataset. We believe the dataset could support the broad research community, including but not limited to user modeling, social science, human behavior understanding, etc. The dataset and code is available at https://github.com/tsinghua-fib-lab/ShortVideo_dataset.
Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling
Predicting future international events from textual information, such as news articles, has tremendous potential for applications in global policy, strategic decision-making, and geopolitics. However, existing datasets available for this task are often limited in quality, hindering the progress of related research. In this paper, we introduce WORLDREP (WORLD Relationship and Event Prediction), a novel dataset designed to address these limitations by leveraging the advanced reasoning capabilities of large-language models (LLMs). Our dataset features high-quality scoring labels generated through advanced prompt modeling and rigorously validated by domain experts in political science. We showcase the quality and utility of WORLDREP for real-world event prediction tasks, demonstrating its effectiveness through extensive experiments and analysis. Furthermore, we publicly release our dataset along with the full automation source code for data collection, labeling, and benchmarking, aiming to support and advance research in text-based event prediction.
Named Entity Recognition in Twitter: A Dataset and Analysis on Short-Term Temporal Shifts
Recent progress in language model pre-training has led to important improvements in Named Entity Recognition (NER). Nonetheless, this progress has been mainly tested in well-formatted documents such as news, Wikipedia, or scientific articles. In social media the landscape is different, in which it adds another layer of complexity due to its noisy and dynamic nature. In this paper, we focus on NER in Twitter, one of the largest social media platforms, and construct a new NER dataset, TweetNER7, which contains seven entity types annotated over 11,382 tweets from September 2019 to August 2021. The dataset was constructed by carefully distributing the tweets over time and taking representative trends as a basis. Along with the dataset, we provide a set of language model baselines and perform an analysis on the language model performance on the task, especially analyzing the impact of different time periods. In particular, we focus on three important temporal aspects in our analysis: short-term degradation of NER models over time, strategies to fine-tune a language model over different periods, and self-labeling as an alternative to lack of recently-labeled data. TweetNER7 is released publicly (https://huggingface.co/datasets/tner/tweetner7) along with the models fine-tuned on it.
HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response
Timely and effective response to humanitarian crises requires quick and accurate analysis of large amounts of text data - a process that can highly benefit from expert-assisted NLP systems trained on validated and annotated data in the humanitarian response domain. To enable creation of such NLP systems, we introduce and release HumSet, a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. The dataset provides documents in three languages (English, French, Spanish) and covers a variety of humanitarian crises from 2018 to 2021 across the globe. For each document, HUMSET provides selected snippets (entries) as well as assigned classes to each entry annotated using common humanitarian information analysis frameworks. HUMSET also provides novel and challenging entry extraction and multi-label entry classification tasks. In this paper, we take a first step towards approaching these tasks and conduct a set of experiments on Pre-trained Language Models (PLM) to establish strong baselines for future research in this domain. The dataset is available at https://blog.thedeep.io/humset/.
A diverse Multilingual News Headlines Dataset from around the World
Babel Briefings is a novel dataset featuring 4.7 million news headlines from August 2020 to November 2021, across 30 languages and 54 locations worldwide with English translations of all articles included. Designed for natural language processing and media studies, it serves as a high-quality dataset for training or evaluating language models as well as offering a simple, accessible collection of articles, for example, to analyze global news coverage and cultural narratives. As a simple demonstration of the analyses facilitated by this dataset, we use a basic procedure using a TF-IDF weighted similarity metric to group articles into clusters about the same event. We then visualize the event signatures of the event showing articles of which languages appear over time, revealing intuitive features based on the proximity of the event and unexpectedness of the event. The dataset is available on https://www.kaggle.com/datasets/felixludos/babel-briefings{Kaggle} and https://huggingface.co/datasets/felixludos/babel-briefings{HuggingFace} with accompanying https://github.com/felixludos/babel-briefings{GitHub} code.
POLygraph: Polish Fake News Dataset
This paper presents the POLygraph dataset, a unique resource for fake news detection in Polish. The dataset, created by an interdisciplinary team, is composed of two parts: the "fake-or-not" dataset with 11,360 pairs of news articles (identified by their URLs) and corresponding labels, and the "fake-they-say" dataset with 5,082 news articles (identified by their URLs) and tweets commenting on them. Unlike existing datasets, POLygraph encompasses a variety of approaches from source literature, providing a comprehensive resource for fake news detection. The data was collected through manual annotation by expert and non-expert annotators. The project also developed a software tool that uses advanced machine learning techniques to analyze the data and determine content authenticity. The tool and dataset are expected to benefit various entities, from public sector institutions to publishers and fact-checking organizations. Further dataset exploration will foster fake news detection and potentially stimulate the implementation of similar models in other languages. The paper focuses on the creation and composition of the dataset, so it does not include a detailed evaluation of the software tool for content authenticity analysis, which is planned at a later stage of the project.
Retiring Adult: New Datasets for Fair Machine Learning
Although the fairness community has recognized the importance of data, researchers in the area primarily rely on UCI Adult when it comes to tabular data. Derived from a 1994 US Census survey, this dataset has appeared in hundreds of research papers where it served as the basis for the development and comparison of many algorithmic fairness interventions. We reconstruct a superset of the UCI Adult data from available US Census sources and reveal idiosyncrasies of the UCI Adult dataset that limit its external validity. Our primary contribution is a suite of new datasets derived from US Census surveys that extend the existing data ecosystem for research on fair machine learning. We create prediction tasks relating to income, employment, health, transportation, and housing. The data span multiple years and all states of the United States, allowing researchers to study temporal shift and geographic variation. We highlight a broad initial sweep of new empirical insights relating to trade-offs between fairness criteria, performance of algorithmic interventions, and the role of distribution shift based on our new datasets. Our findings inform ongoing debates, challenge some existing narratives, and point to future research directions. Our datasets are available at https://github.com/zykls/folktables.
Analog and Multi-modal Manufacturing Datasets Acquired on the Future Factories Platform V2
This paper presents two industry-grade datasets captured during an 8-hour continuous operation of the manufacturing assembly line at the Future Factories Lab, University of South Carolina, on 08/13/2024. The datasets adhere to industry standards, covering communication protocols, actuators, control mechanisms, transducers, sensors, and cameras. Data collection utilized both integrated and external sensors throughout the laboratory, including sensors embedded within the actuators and externally installed devices. Additionally, high-performance cameras captured key aspects of the operation. In a prior experiment [1], a 30-hour continuous run was conducted, during which all anomalies were documented. Maintenance procedures were subsequently implemented to reduce potential errors and operational disruptions. The two datasets include: (1) a time-series analog dataset, and (2) a multi-modal time-series dataset containing synchronized system data and images. These datasets aim to support future research in advancing manufacturing processes by providing a platform for testing novel algorithms without the need to recreate physical manufacturing environments. Moreover, the datasets are open-source and designed to facilitate the training of artificial intelligence models, streamlining research by offering comprehensive, ready-to-use resources for various applications and projects.
MOMENT: A Family of Open Time-series Foundation Models
We introduce MOMENT, a family of open-source foundation models for general-purpose time-series analysis. Pre-training large models on time-series data is challenging due to (1) the absence of a large and cohesive public time-series repository, and (2) diverse time-series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time-series, called the Time-series Pile, and systematically tackle time-series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time-series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time-series models. Our code is available anonymously at anonymous.4open.science/r/BETT-773F/.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
The Uli Dataset: An Exercise in Experience Led Annotation of oGBV
Online gender based violence has grown concomitantly with adoption of the internet and social media. Its effects are worse in the Global majority where many users use social media in languages other than English. The scale and volume of conversations on the internet has necessitated the need for automated detection of hate speech, and more specifically gendered abuse. There is, however, a lack of language specific and contextual data to build such automated tools. In this paper we present a dataset on gendered abuse in three languages- Hindi, Tamil and Indian English. The dataset comprises of tweets annotated along three questions pertaining to the experience of gender abuse, by experts who identify as women or a member of the LGBTQIA community in South Asia. Through this dataset we demonstrate a participatory approach to creating datasets that drive AI systems.
Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions
Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at https://aka.ms/NTX.
SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and its Evaluation
This study introduces SentiGOLD, a Bangla multi-domain sentiment analysis dataset. Comprising 70,000 samples, it was created from diverse sources and annotated by a gender-balanced team of linguists. SentiGOLD adheres to established linguistic conventions agreed upon by the Government of Bangladesh and a Bangla linguistics committee. Unlike English and other languages, Bangla lacks standard sentiment analysis datasets due to the absence of a national linguistics framework. The dataset incorporates data from online video comments, social media posts, blogs, news, and other sources while maintaining domain and class distribution rigorously. It spans 30 domains (e.g., politics, entertainment, sports) and includes 5 sentiment classes (strongly negative, weakly negative, neutral, and strongly positive). The annotation scheme, approved by the national linguistics committee, ensures a robust Inter Annotator Agreement (IAA) with a Fleiss' kappa score of 0.88. Intra- and cross-dataset evaluation protocols are applied to establish a standard classification system. Cross-dataset evaluation on the noisy SentNoB dataset presents a challenging test scenario. Additionally, zero-shot experiments demonstrate the generalizability of SentiGOLD. The top model achieves a macro f1 score of 0.62 (intra-dataset) across 5 classes, setting a benchmark, and 0.61 (cross-dataset from SentNoB) across 3 classes, comparable to the state-of-the-art. Fine-tuned sentiment analysis model can be accessed at https://sentiment.bangla.gov.bd.
MultiVENT: Multilingual Videos of Events with Aligned Natural Text
Everyday news coverage has shifted from traditional broadcasts towards a wide range of presentation formats such as first-hand, unedited video footage. Datasets that reflect the diverse array of multimodal, multilingual news sources available online could be used to teach models to benefit from this shift, but existing news video datasets focus on traditional news broadcasts produced for English-speaking audiences. We address this limitation by constructing MultiVENT, a dataset of multilingual, event-centric videos grounded in text documents across five target languages. MultiVENT includes both news broadcast videos and non-professional event footage, which we use to analyze the state of online news videos and how they can be leveraged to build robust, factually accurate models. Finally, we provide a model for complex, multilingual video retrieval to serve as a baseline for information retrieval using MultiVENT.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
We present NEWSROOM, a summarization dataset of 1.3 million articles and summaries written by authors and editors in newsrooms of 38 major news publications. Extracted from search and social media metadata between 1998 and 2017, these high-quality summaries demonstrate high diversity of summarization styles. In particular, the summaries combine abstractive and extractive strategies, borrowing words and phrases from articles at varying rates. We analyze the extraction strategies used in NEWSROOM summaries against other datasets to quantify the diversity and difficulty of our new data, and train existing methods on the data to evaluate its utility and challenges.
BanglishRev: A Large-Scale Bangla-English and Code-mixed Dataset of Product Reviews in E-Commerce
This work presents the BanglishRev Dataset, the largest e-commerce product review dataset to date for reviews written in Bengali, English, a mixture of both and Banglish, Bengali words written with English alphabets. The dataset comprises of 1.74 million written reviews from 3.2 million ratings information collected from a total of 128k products being sold in online e-commerce platforms targeting the Bengali population. It includes an extensive array of related metadata for each of the reviews including the rating given by the reviewer, date the review was posted and date of purchase, number of likes, dislikes, response from the seller, images associated with the review etc. With sentiment analysis being the most prominent usage of review datasets, experimentation with a binary sentiment analysis model with the review rating serving as an indicator of positive or negative sentiment was conducted to evaluate the effectiveness of the large amount of data presented in BanglishRev for sentiment analysis tasks. A BanglishBERT model is trained on the data from BanglishRev with reviews being considered labeled positive if the rating is greater than 3 and negative if the rating is less than or equal to 3. The model is evaluated by being testing against a previously published manually annotated dataset for e-commerce reviews written in a mixture of Bangla, English and Banglish. The experimental model achieved an exceptional accuracy of 94\% and F1 score of 0.94, demonstrating the dataset's efficacy for sentiment analysis. Some of the intriguing patterns and observations seen within the dataset and future research directions where the dataset can be utilized is also discussed and explored. The dataset can be accessed through https://huggingface.co/datasets/BanglishRev/bangla-english-and-code-mixed-ecommerce-review-dataset.
FooDI-ML: a large multi-language dataset of food, drinks and groceries images and descriptions
In this paper we introduce the FooDI-ML dataset. This dataset contains over 1.5M unique images and over 9.5M store names, product names descriptions, and collection sections gathered from the Glovo application. The data made available corresponds to food, drinks and groceries products from 37 countries in Europe, the Middle East, Africa and Latin America. The dataset comprehends 33 languages, including 870K samples of languages of countries from Eastern Europe and Western Asia such as Ukrainian and Kazakh, which have been so far underrepresented in publicly available visio-linguistic datasets. The dataset also includes widely spoken languages such as Spanish and English. To assist further research, we include benchmarks over two tasks: text-image retrieval and conditional image generation.
Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product Search
Improving the quality of search results can significantly enhance users experience and engagement with search engines. In spite of several recent advancements in the fields of machine learning and data mining, correctly classifying items for a particular user search query has been a long-standing challenge, which still has a large room for improvement. This paper introduces the "Shopping Queries Dataset", a large dataset of difficult Amazon search queries and results, publicly released with the aim of fostering research in improving the quality of search results. The dataset contains around 130 thousand unique queries and 2.6 million manually labeled (query,product) relevance judgements. The dataset is multilingual with queries in English, Japanese, and Spanish. The Shopping Queries Dataset is being used in one of the KDDCup'22 challenges. In this paper, we describe the dataset and present three evaluation tasks along with baseline results: (i) ranking the results list, (ii) classifying product results into relevance categories, and (iii) identifying substitute products for a given query. We anticipate that this data will become the gold standard for future research in the topic of product search.
Multimodal datasets: misogyny, pornography, and malignant stereotypes
We have now entered the era of trillion parameter machine learning models trained on billion-sized datasets scraped from the internet. The rise of these gargantuan datasets has given rise to formidable bodies of critical work that has called for caution while generating these large datasets. These address concerns surrounding the dubious curation practices used to generate these datasets, the sordid quality of alt-text data available on the world wide web, the problematic content of the CommonCrawl dataset often used as a source for training large language models, and the entrenched biases in large-scale visio-linguistic models (such as OpenAI's CLIP model) trained on opaque datasets (WebImageText). In the backdrop of these specific calls of caution, we examine the recently released LAION-400M dataset, which is a CLIP-filtered dataset of Image-Alt-text pairs parsed from the Common-Crawl dataset. We found that the dataset contains, troublesome and explicit images and text pairs of rape, pornography, malign stereotypes, racist and ethnic slurs, and other extremely problematic content. We outline numerous implications, concerns and downstream harms regarding the current state of large scale datasets while raising open questions for various stakeholders including the AI community, regulators, policy makers and data subjects.
Sri Lanka Document Datasets: A Large-Scale, Multilingual Resource for Law, News, and Policy (v20251005)
We present a collection of open, machine-readable document datasets covering parliamentary proceedings, legal judgments, government publications, news, and tourism statistics from Sri Lanka. As of v20251005, the collection currently comprises 215,670 documents (60.3 GB) across 13 datasets in Sinhala, Tamil, and English. The datasets are updated daily and mirrored on GitHub and Hugging Face. These resources aim to support research in computational linguistics, legal analytics, socio-political studies, and multilingual natural language processing. We describe the data sources, collection pipeline, formats, and potential use cases, while discussing licensing and ethical considerations.
HiNER: A Large Hindi Named Entity Recognition Dataset
Named Entity Recognition (NER) is a foundational NLP task that aims to provide class labels like Person, Location, Organisation, Time, and Number to words in free text. Named Entities can also be multi-word expressions where the additional I-O-B annotation information helps label them during the NER annotation process. While English and European languages have considerable annotated data for the NER task, Indian languages lack on that front -- both in terms of quantity and following annotation standards. This paper releases a significantly sized standard-abiding Hindi NER dataset containing 109,146 sentences and 2,220,856 tokens, annotated with 11 tags. We discuss the dataset statistics in all their essential detail and provide an in-depth analysis of the NER tag-set used with our data. The statistics of tag-set in our dataset show a healthy per-tag distribution, especially for prominent classes like Person, Location and Organisation. Since the proof of resource-effectiveness is in building models with the resource and testing the model on benchmark data and against the leader-board entries in shared tasks, we do the same with the aforesaid data. We use different language models to perform the sequence labelling task for NER and show the efficacy of our data by performing a comparative evaluation with models trained on another dataset available for the Hindi NER task. Our dataset helps achieve a weighted F1 score of 88.78 with all the tags and 92.22 when we collapse the tag-set, as discussed in the paper. To the best of our knowledge, no available dataset meets the standards of volume (amount) and variability (diversity), as far as Hindi NER is concerned. We fill this gap through this work, which we hope will significantly help NLP for Hindi. We release this dataset with our code and models at https://github.com/cfiltnlp/HiNER
Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data
Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing Chat-TS, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the TS Instruct Training Dataset which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the TS Instruct Question and Answer (QA) Gold Dataset which provides multiple-choice questions designed to evaluate multimodal reasoning, and a TS Instruct Quantitative Probing Set which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL].}
SciNews: From Scholarly Complexities to Public Narratives -- A Dataset for Scientific News Report Generation
Scientific news reports serve as a bridge, adeptly translating complex research articles into reports that resonate with the broader public. The automated generation of such narratives enhances the accessibility of scholarly insights. In this paper, we present a new corpus to facilitate this paradigm development. Our corpus comprises a parallel compilation of academic publications and their corresponding scientific news reports across nine disciplines. To demonstrate the utility and reliability of our dataset, we conduct an extensive analysis, highlighting the divergences in readability and brevity between scientific news narratives and academic manuscripts. We benchmark our dataset employing state-of-the-art text generation models. The evaluation process involves both automatic and human evaluation, which lays the groundwork for future explorations into the automated generation of scientific news reports. The dataset and code related to this work are available at https://dongqi.me/projects/SciNews.
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
NewsEdits: A News Article Revision Dataset and a Document-Level Reasoning Challenge
News article revision histories provide clues to narrative and factual evolution in news articles. To facilitate analysis of this evolution, we present the first publicly available dataset of news revision histories, NewsEdits. Our dataset is large-scale and multilingual; it contains 1.2 million articles with 4.6 million versions from over 22 English- and French-language newspaper sources based in three countries, spanning 15 years of coverage (2006-2021). We define article-level edit actions: Addition, Deletion, Edit and Refactor, and develop a high-accuracy extraction algorithm to identify these actions. To underscore the factual nature of many edit actions, we conduct analyses showing that added and deleted sentences are more likely to contain updating events, main content and quotes than unchanged sentences. Finally, to explore whether edit actions are predictable, we introduce three novel tasks aimed at predicting actions performed during version updates. We show that these tasks are possible for expert humans but are challenging for large NLP models. We hope this can spur research in narrative framing and help provide predictive tools for journalists chasing breaking news.
Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://github.com/blacksnail789521/Time-IMM, and the benchmark library can be accessed at https://github.com/blacksnail789521/IMM-TSF. Project page: https://blacksnail789521.github.io/time-imm-project-page/
IMDB-WIKI-SbS: An Evaluation Dataset for Crowdsourced Pairwise Comparisons
Today, comprehensive evaluation of large-scale machine learning models is possible thanks to the open datasets produced using crowdsourcing, such as SQuAD, MS COCO, ImageNet, SuperGLUE, etc. These datasets capture objective responses, assuming the single correct answer, which does not allow to capture the subjective human perception. In turn, pairwise comparison tasks, in which one has to choose between only two options, allow taking peoples' preferences into account for very challenging artificial intelligence tasks, such as information retrieval and recommender system evaluation. Unfortunately, the available datasets are either small or proprietary, slowing down progress in gathering better feedback from human users. In this paper, we present IMDB-WIKI-SbS, a new large-scale dataset for evaluating pairwise comparisons. It contains 9,150 images appearing in 250,249 pairs annotated on a crowdsourcing platform. Our dataset has balanced distributions of age and gender using the well-known IMDB-WIKI dataset as ground truth. We describe how our dataset is built and then compare several baseline methods, indicating its suitability for model evaluation.
TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.
Razmecheno: Named Entity Recognition from Digital Archive of Diaries "Prozhito"
The vast majority of existing datasets for Named Entity Recognition (NER) are built primarily on news, research papers and Wikipedia with a few exceptions, created from historical and literary texts. What is more, English is the main source for data for further labelling. This paper aims to fill in multiple gaps by creating a novel dataset "Razmecheno", gathered from the diary texts of the project "Prozhito" in Russian. Our dataset is of interest for multiple research lines: literary studies of diary texts, transfer learning from other domains, low-resource or cross-lingual named entity recognition. Razmecheno comprises 1331 sentences and 14119 tokens, sampled from diaries, written during the Perestroika. The annotation schema consists of five commonly used entity tags: person, characteristics, location, organisation, and facility. The labelling is carried out on the crowdsourcing platfrom Yandex.Toloka in two stages. First, workers selected sentences, which contain an entity of particular type. Second, they marked up entity spans. As a result 1113 entities were obtained. Empirical evaluation of Razmecheno is carried out with off-the-shelf NER tools and by fine-tuning pre-trained contextualized encoders. We release the annotated dataset for open access.
Dataset of Quotation Attribution in German News Articles
Extracting who says what to whom is a crucial part in analyzing human communication in today's abundance of data such as online news articles. Yet, the lack of annotated data for this task in German news articles severely limits the quality and usability of possible systems. To remedy this, we present a new, freely available, creative-commons-licensed dataset for quotation attribution in German news articles based on WIKINEWS. The dataset provides curated, high-quality annotations across 1000 documents (250,000 tokens) in a fine-grained annotation schema enabling various downstream uses for the dataset. The annotations not only specify who said what but also how, in which context, to whom and define the type of quotation. We specify our annotation schema, describe the creation of the dataset and provide a quantitative analysis. Further, we describe suitable evaluation metrics, apply two existing systems for quotation attribution, discuss their results to evaluate the utility of our dataset and outline use cases of our dataset in downstream tasks.
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
Tabular Transformers for Modeling Multivariate Time Series
Tabular datasets are ubiquitous in data science applications. Given their importance, it seems natural to apply state-of-the-art deep learning algorithms in order to fully unlock their potential. Here we propose neural network models that represent tabular time series that can optionally leverage their hierarchical structure. This results in two architectures for tabular time series: one for learning representations that is analogous to BERT and can be pre-trained end-to-end and used in downstream tasks, and one that is akin to GPT and can be used for generation of realistic synthetic tabular sequences. We demonstrate our models on two datasets: a synthetic credit card transaction dataset, where the learned representations are used for fraud detection and synthetic data generation, and on a real pollution dataset, where the learned encodings are used to predict atmospheric pollutant concentrations. Code and data are available at https://github.com/IBM/TabFormer.
WMT24++: Expanding the Language Coverage of WMT24 to 55 Languages & Dialects
As large language models (LLM) become more and more capable in languages other than English, it is important to collect benchmark datasets in order to evaluate their multilingual performance, including on tasks like machine translation (MT). In this work, we extend the WMT24 dataset to cover 55 languages by collecting new human-written references and post-edits for 46 new languages and dialects in addition to post-edits of the references in 8 out of 9 languages in the original WMT24 dataset. The dataset covers four domains: literary, news, social, and speech. We benchmark a variety of MT providers and LLMs on the collected dataset using automatic metrics and find that LLMs are the best-performing MT systems in all 55 languages. These results should be confirmed using a human-based evaluation, which we leave for future work.
EVBattery: A Large-Scale Electric Vehicle Dataset for Battery Health and Capacity Estimation
Electric vehicles (EVs) play an important role in reducing carbon emissions. As EV adoption accelerates, safety issues caused by EV batteries have become an important research topic. In order to benchmark and develop data-driven methods for this task, we introduce a large and comprehensive dataset of EV batteries. Our dataset includes charging records collected from hundreds of EVs from three manufacturers over several years. Our dataset is the first large-scale public dataset on real-world battery data, as existing data either include only several vehicles or is collected in the lab environment. Meanwhile, our dataset features two types of labels, corresponding to two key tasks - battery health estimation and battery capacity estimation. In addition to demonstrating how existing deep learning algorithms can be applied to this task, we further develop an algorithm that exploits the data structure of battery systems. Our algorithm achieves better results and shows that a customized method can improve model performances. We hope that this public dataset provides valuable resources for researchers, policymakers, and industry professionals to better understand the dynamics of EV battery aging and support the transition toward a sustainable transportation system.
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
Trade the Event: Corporate Events Detection for News-Based Event-Driven Trading
In this paper, we introduce an event-driven trading strategy that predicts stock movements by detecting corporate events from news articles. Unlike existing models that utilize textual features (e.g., bag-of-words) and sentiments to directly make stock predictions, we consider corporate events as the driving force behind stock movements and aim to profit from the temporary stock mispricing that may occur when corporate events take place. The core of the proposed strategy is a bi-level event detection model. The low-level event detector identifies events' existences from each token, while the high-level event detector incorporates the entire article's representation and the low-level detected results to discover events at the article-level. We also develop an elaborately-annotated dataset EDT for corporate event detection and news-based stock prediction benchmark. EDT includes 9721 news articles with token-level event labels as well as 303893 news articles with minute-level timestamps and comprehensive stock price labels. Experiments on EDT indicate that the proposed strategy outperforms all the baselines in winning rate, excess returns over the market, and the average return on each transaction.
Nyonic Technical Report
This report details the development and key achievements of our latest language model designed for custom large language models. The advancements introduced include a novel Online Data Scheduler that supports flexible training data adjustments and curriculum learning. The model's architecture is fortified with state-of-the-art techniques such as Rotary Positional Embeddings, QK-LayerNorm, and a specially crafted multilingual tokenizer to enhance stability and performance. Moreover, our robust training framework incorporates advanced monitoring and rapid recovery features to ensure optimal efficiency. Our Wonton 7B model has demonstrated competitive performance on a range of multilingual and English benchmarks. Future developments will prioritize narrowing the performance gap with more extensively trained models, thereby enhancing the model's real-world efficacy and adaptability.GitHub: https://github.com/nyonicai/nyonic-public
PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages
Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as "model hubs" support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult - there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data. We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset. The PTMTorrent dataset (v1) is available at: https://app.globus.org/file-manager?origin_id=55e17a6e-9d8f-11ed-a2a2-8383522b48d9&origin_path=%2F~%2F. Our dataset generation tools are available on GitHub: https://doi.org/10.5281/zenodo.7570357.
DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery
The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.
Formulation Comparison for Timeline Construction using LLMs
Constructing a timeline requires identifying the chronological order of events in an article. In prior timeline construction datasets, temporal orders are typically annotated by either event-to-time anchoring or event-to-event pairwise ordering, both of which suffer from missing temporal information. To mitigate the issue, we develop a new evaluation dataset, TimeSET, consisting of single-document timelines with document-level order annotation. TimeSET features saliency-based event selection and partial ordering, which enable a practical annotation workload. Aiming to build better automatic timeline construction systems, we propose a novel evaluation framework to compare multiple task formulations with TimeSET by prompting open LLMs, i.e., Llama 2 and Flan-T5. Considering that identifying temporal orders of events is a core subtask in timeline construction, we further benchmark open LLMs on existing event temporal ordering datasets to gain a robust understanding of their capabilities. Our experiments show that (1) NLI formulation with Flan-T5 demonstrates a strong performance among others, while (2) timeline construction and event temporal ordering are still challenging tasks for few-shot LLMs. Our code and data are available at https://github.com/kimihiroh/timeset.
Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors
Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.
LAION-5B: An open large-scale dataset for training next generation image-text models
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/
HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols
Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration.
Vārta: A Large-Scale Headline-Generation Dataset for Indic Languages
We present V\=arta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes 41.8 million news articles in 14 different Indic languages (and English), which come from a variety of high-quality sources. To the best of our knowledge, this is the largest collection of curated articles for Indic languages currently available. We use the data collected in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pretrain strong language models that outperform competitive baselines in both NLU and NLG benchmarks.
FFN: a Fine-grained Chinese-English Financial Domain Parallel Corpus
Large Language Models (LLMs) have stunningly advanced the field of machine translation, though their effectiveness within the financial domain remains largely underexplored. To probe this issue, we constructed a fine-grained Chinese-English parallel corpus of financial news called FFN. We acquired financial news articles spanning between January 1st, 2014, to December 31, 2023, from mainstream media websites such as CNN, FOX, and China Daily. The dataset consists of 1,013 main text and 809 titles, all of which have been manually corrected. We measured the translation quality of two LLMs -- ChatGPT and ERNIE-bot, utilizing BLEU, TER and chrF scores as the evaluation metrics. For comparison, we also trained an OpenNMT model based on our dataset. We detail problems of LLMs and provide in-depth analysis, intending to stimulate further research and solutions in this largely uncharted territory. Our research underlines the need to optimize LLMs within the specific field of financial translation to ensure accuracy and quality.
Revisiting Table Detection Datasets for Visually Rich Documents
Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.
Multimodal Banking Dataset: Understanding Client Needs through Event Sequences
Financial organizations collect a huge amount of data about clients that typically has a temporal (sequential) structure and is collected from various sources (modalities). Due to privacy issues, there are no large-scale open-source multimodal datasets of event sequences, which significantly limits the research in this area. In this paper, we present the industrial-scale publicly available multimodal banking dataset, MBD, that contains more than 1.5M corporate clients with several modalities: 950M bank transactions, 1B geo position events, 5M embeddings of dialogues with technical support and monthly aggregated purchases of four bank's products. All entries are properly anonymized from real proprietary bank data. Using this dataset, we introduce a novel benchmark with two business tasks: campaigning (purchase prediction in the next month) and matching of clients. We provide numerical results that demonstrate the superiority of our multi-modal baselines over single-modal techniques for each task. As a result, the proposed dataset can open new perspectives and facilitate the future development of practically important large-scale multimodal algorithms for event sequences. HuggingFace Link: https://huggingface.co/datasets/ai-lab/MBD Github Link: https://github.com/Dzhambo/MBD
Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
Time series has been left behind in the era of pre-training and transfer learning. While research in the fields of natural language processing and computer vision are enjoying progressively larger datasets to train massive models, the most popular time series datasets consist of only tens of thousands of time steps, limiting our ability to study the effectiveness of pre-training and scaling. Recent studies have also cast doubt on the need for expressive models and scale. To alleviate these issues, we introduce three large-scale time series forecasting datasets from the cloud operations (CloudOps) domain, the largest having billions of observations, enabling further study into pre-training and scaling of time series models. We build the empirical groundwork for studying pre-training and scaling of time series models and pave the way for future research by identifying a promising candidate architecture. We show that it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size. Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method - achieving a 27% reduction in error on the largest dataset. Code and datasets will be released.
VNHSGE: VietNamese High School Graduation Examination Dataset for Large Language Models
The VNHSGE (VietNamese High School Graduation Examination) dataset, developed exclusively for evaluating large language models (LLMs), is introduced in this article. The dataset, which covers nine subjects, was generated from the Vietnamese National High School Graduation Examination and comparable tests. 300 literary essays have been included, and there are over 19,000 multiple-choice questions on a range of topics. The dataset assesses LLMs in multitasking situations such as question answering, text generation, reading comprehension, visual question answering, and more by including both textual data and accompanying images. Using ChatGPT and BingChat, we evaluated LLMs on the VNHSGE dataset and contrasted their performance with that of Vietnamese students to see how well they performed. The results show that ChatGPT and BingChat both perform at a human level in a number of areas, including literature, English, history, geography, and civics education. They still have space to grow, though, especially in the areas of mathematics, physics, chemistry, and biology. The VNHSGE dataset seeks to provide an adequate benchmark for assessing the abilities of LLMs with its wide-ranging coverage and variety of activities. We intend to promote future developments in the creation of LLMs by making this dataset available to the scientific community, especially in resolving LLMs' limits in disciplines involving mathematics and the natural sciences.
LePaRD: A Large-Scale Dataset of Judges Citing Precedents
We present the Legal Passage Retrieval Dataset LePaRD. LePaRD is a massive collection of U.S. federal judicial citations to precedent in context. The dataset aims to facilitate work on legal passage prediction, a challenging practice-oriented legal retrieval and reasoning task. Legal passage prediction seeks to predict relevant passages from precedential court decisions given the context of a legal argument. We extensively evaluate various retrieval approaches on LePaRD, and find that classification appears to work best. However, we note that legal precedent prediction is a difficult task, and there remains significant room for improvement. We hope that by publishing LePaRD, we will encourage others to engage with a legal NLP task that promises to help expand access to justice by reducing the burden associated with legal research. A subset of the LePaRD dataset is freely available and the whole dataset will be released upon publication.
Curating Grounded Synthetic Data with Global Perspectives for Equitable A
The development of robust AI models relies heavily on the quality and variety of training data available. In fields where data scarcity is prevalent, synthetic data generation offers a vital solution. In this paper, we introduce a novel approach to creating synthetic datasets, grounded in real-world diversity and enriched through strategic diversification. We synthesize data using a comprehensive collection of news articles spanning 12 languages and originating from 125 countries, to ensure a breadth of linguistic and cultural representations. Through enforced topic diversification, translation, and summarization, the resulting dataset accurately mirrors real-world complexities and addresses the issue of underrepresentation in traditional datasets. This methodology, applied initially to Named Entity Recognition (NER), serves as a model for numerous AI disciplines where data diversification is critical for generalizability. Preliminary results demonstrate substantial improvements in performance on traditional NER benchmarks, by up to 7.3%, highlighting the effectiveness of our synthetic data in mimicking the rich, varied nuances of global data sources. This paper outlines the strategies employed for synthesizing diverse datasets and provides such a curated dataset for NER.
Background Summarization of Event Timelines
Generating concise summaries of news events is a challenging natural language processing task. While journalists often curate timelines to highlight key sub-events, newcomers to a news event face challenges in catching up on its historical context. In this paper, we address this need by introducing the task of background news summarization, which complements each timeline update with a background summary of relevant preceding events. We construct a dataset by merging existing timeline datasets and asking human annotators to write a background summary for each timestep of each news event. We establish strong baseline performance using state-of-the-art summarization systems and propose a query-focused variant to generate background summaries. To evaluate background summary quality, we present a question-answering-based evaluation metric, Background Utility Score (BUS), which measures the percentage of questions about a current event timestep that a background summary answers. Our experiments show the effectiveness of instruction fine-tuned systems such as Flan-T5, in addition to strong zero-shot performance using GPT-3.5.
Alloprof: a new French question-answer education dataset and its use in an information retrieval case study
Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting.
MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
In recent years, the problem of misinformation on the web has become widespread across languages, countries, and various social media platforms. Although there has been much work on automated fake news detection, the role of images and their variety are not well explored. In this paper, we investigate the roles of image and text at an earlier stage of the fake news detection pipeline, called claim detection. For this purpose, we introduce a novel dataset, MM-Claims, which consists of tweets and corresponding images over three topics: COVID-19, Climate Change and broadly Technology. The dataset contains roughly 86000 tweets, out of which 3400 are labeled manually by multiple annotators for the training and evaluation of multimodal models. We describe the dataset in detail, evaluate strong unimodal and multimodal baselines, and analyze the potential and drawbacks of current models.
TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu
News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.
AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages
We present the IndicNLP corpus, a large-scale, general-domain corpus containing 2.7 billion words for 10 Indian languages from two language families. We share pre-trained word embeddings trained on these corpora. We create news article category classification datasets for 9 languages to evaluate the embeddings. We show that the IndicNLP embeddings significantly outperform publicly available pre-trained embedding on multiple evaluation tasks. We hope that the availability of the corpus will accelerate Indic NLP research. The resources are available at https://github.com/ai4bharat-indicnlp/indicnlp_corpus.
MasakhaNER: Named Entity Recognition for African Languages
We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.
MUSAN: A Music, Speech, and Noise Corpus
This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification.
A Real-World Energy Management Dataset from a Smart Company Building for Optimization and Machine Learning
We present a large real-world dataset obtained from monitoring a smart company facility over the course of six years, from 2018 to 2023. The dataset includes energy consumption data from various facility areas and components, energy production data from a photovoltaic system and a combined heat and power plant, operational data from heating and cooling systems, and weather data from an on-site weather station. The measurement sensors installed throughout the facility are organized in a hierarchical metering structure with multiple sub-metering levels, which is reflected in the dataset. The dataset contains measurement data from 72 energy meters, 9 heat meters and a weather station. Both raw and processed data at different processing levels, including labeled issues, is available. In this paper, we describe the data acquisition and post-processing employed to create the dataset. The dataset enables the application of a wide range of methods in the domain of energy management, including optimization, modeling, and machine learning to optimize building operations and reduce costs and carbon emissions.
LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset
Studying how people interact with large language models (LLMs) in real-world scenarios is increasingly important due to their widespread use in various applications. In this paper, we introduce LMSYS-Chat-1M, a large-scale dataset containing one million real-world conversations with 25 state-of-the-art LLMs. This dataset is collected from 210K unique IP addresses in the wild on our Vicuna demo and Chatbot Arena website. We offer an overview of the dataset's content, including its curation process, basic statistics, and topic distribution, highlighting its diversity, originality, and scale. We demonstrate its versatility through four use cases: developing content moderation models that perform similarly to GPT-4, building a safety benchmark, training instruction-following models that perform similarly to Vicuna, and creating challenging benchmark questions. We believe that this dataset will serve as a valuable resource for understanding and advancing LLM capabilities. The dataset is publicly available at https://huggingface.co/datasets/lmsys/lmsys-chat-1m.
FineFreq: A Multilingual Character Frequency Dataset from Web-Scale Text
We present FineFreq, a large-scale multilingual character frequency dataset derived from the FineWeb and FineWeb2 corpora, covering over 1900 languages and spanning 2013-2025. The dataset contains frequency counts for 96 trillion characters processed from 57 TB of compressed text. For each language, FineFreq provides per-character statistics with aggregate and year-level frequencies, allowing fine-grained temporal analysis. The dataset preserves naturally occurring multilingual features such as cross-script borrowings, emoji, and acronyms without applying artificial filtering. Each character entry includes Unicode metadata (category, script, block), enabling domain-specific or other downstream filtering and analysis. The full dataset is released in both CSV and Parquet formats, with associated metadata, available on GitHub and HuggingFace. https://github.com/Bin-2/FineFreq
