Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLarge-scale image analysis using docker sandboxing
With the advent of specialized hardware such as Graphics Processing Units (GPUs), large scale image localization, classification and retrieval have seen increased prevalence. Designing scalable software architecture that co-evolves with such specialized hardware is a challenge in the commercial setting. In this paper, we describe one such architecture (Cortexica) that leverages scalability of GPUs and sandboxing offered by docker containers. This allows for the flexibility of mixing different computer architectures as well as computational algorithms with the security of a trusted environment. We illustrate the utility of this framework in a commercial setting i.e., searching for multiple products in an image by combining image localisation and retrieval.
ThunderKittens: Simple, Fast, and Adorable AI Kernels
The challenge of mapping AI architectures to GPU hardware is creating a critical bottleneck in AI progress. Despite substantial efforts, hand-written custom kernels fail to meet their theoretical performance thresholds, even on well-established operations like linear attention. The diverse hardware capabilities of GPUs might suggest that we need a wide variety of techniques to achieve high performance. However, our work explores whether a small number of key abstractions can drastically simplify the process. We present ThunderKittens (TK), a framework for writing performant AI kernels while remaining easy to use and maintain. Our abstractions map to the three levels of the GPU hierarchy: (1) at the warp-level, we provide 16x16 matrix tiles as basic data structures and PyTorch-like parallel compute operations over tiles, (2) at the thread-block level, we provide a template for overlapping asynchronous operations across parallel warps, and (3) at the grid-level, we provide support to help hide the block launch and tear-down, and memory costs. We show the value of TK by providing kernels that match or outperform prior kernels for a range of AI operations. We match CuBLAS and FlashAttention-3 on GEMM and attention inference performance and outperform the strongest baselines by 10-40% on attention backwards, 8times on state space models, and 14times on linear attention.
PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning
Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks --a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatial-based distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively. Code is available at https://github.com/arthurdouillard/incremental_learning.pytorch
HipKittens: Fast and Furious AMD Kernels
AMD GPUs offer state-of-the-art compute and memory bandwidth; however, peak performance AMD kernels are written in raw assembly. To address the difficulty of mapping AI algorithms to hardware, recent work proposes C++ embedded and PyTorch-inspired domain-specific languages like ThunderKittens (TK) to simplify high performance AI kernel development on NVIDIA hardware. We explore the extent to which such primitives -- for explicit tile-based programming with optimized memory accesses and fine-grained asynchronous execution across workers -- are NVIDIA-specific or general. We provide the first detailed study of the programming primitives that lead to performant AMD AI kernels, and we encapsulate these insights in the HipKittens (HK) programming framework. We find that tile-based abstractions used in prior DSLs generalize to AMD GPUs, however we need to rethink the algorithms that instantiate these abstractions for AMD. We validate the HK primitives across CDNA3 and CDNA4 AMD platforms. In evaluations, HK kernels compete with AMD's hand-optimized assembly kernels for GEMMs and attention, and consistently outperform compiler baselines. Moreover, assembly is difficult to scale to the breadth of AI workloads; reflecting this, in some settings HK outperforms all available kernel baselines by 1.2-2.4times (e.g., d=64 attention, GQA backwards, memory-bound kernels). These findings help pave the way for a single, tile-based software layer for high-performance AI kernels that translates across GPU vendors. HipKittens is released at: https://github.com/HazyResearch/HipKittens.
Language Modeling on a SpiNNaker 2 Neuromorphic Chip
As large language models continue to scale in size rapidly, so too does the computational power required to run them. Event-based networks on neuromorphic devices offer a potential way to reduce energy consumption for inference significantly. However, to date, most event-based networks that can run on neuromorphic hardware, including spiking neural networks (SNNs), have not achieved task performance even on par with LSTM models for language modeling. As a result, language modeling on neuromorphic devices has seemed a distant prospect. In this work, we demonstrate the first-ever implementation of a language model on a neuromorphic device - specifically the SpiNNaker 2 chip - based on a recently published event-based architecture called the EGRU. SpiNNaker 2 is a many-core neuromorphic chip designed for large-scale asynchronous processing, while the EGRU is architected to leverage such hardware efficiently while maintaining competitive task performance. This implementation marks the first time a neuromorphic language model matches LSTMs, setting the stage for taking task performance to the level of large language models. We also demonstrate results on a gesture recognition task based on inputs from a DVS camera. Overall, our results showcase the feasibility of this neuro-inspired neural network in hardware, highlighting significant gains versus conventional hardware in energy efficiency for the common use case of single batch inference.
LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones
Research in efficient vision backbones is evolving into models that are a mixture of convolutions and transformer blocks. A smart combination of both, architecture-wise and component-wise is mandatory to excel in the speedaccuracy trade-off. Most publications focus on maximizing accuracy and utilize MACs (multiply accumulate operations) as an efficiency metric. The latter however often do not measure accurately how fast a model actually is due to factors like memory access cost and degree of parallelism. We analyzed common modules and architectural design choices for backbones not in terms of MACs, but rather in actual throughput and latency, as the combination of the latter two is a better representation of the efficiency of models in real applications. We applied the conclusions taken from that analysis to create a recipe for increasing hardware-efficiency in macro design. Additionally we introduce a simple slimmed-down version of MultiHead Self-Attention, that aligns with our analysis. We combine both macro and micro design to create a new family of hardware-efficient backbone networks called LowFormer. LowFormer achieves a remarkable speedup in terms of throughput and latency, while achieving similar or better accuracy than current state-of-the-art efficient backbones. In order to prove the generalizability of our hardware-efficient design, we evaluate our method on GPU, mobile GPU and ARM CPU. We further show that the downstream tasks object detection and semantic segmentation profit from our hardware-efficient architecture. Code and models are available at https://github.com/ altair199797/LowFormer.
PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management
The pre-trained model (PTM) is revolutionizing Artificial Intelligence (AI) technology. However, the hardware requirement of PTM training is prohibitively high, making it a game for a small proportion of people. Therefore, we proposed PatrickStar system to lower the hardware requirements of PTMs and make them accessible to everyone. PatrickStar uses the CPU-GPU heterogeneous memory space to store the model data. Different from existing works, we organize the model data in memory chunks and dynamically distribute them in the heterogeneous memory. Guided by the runtime memory statistics collected in a warm-up iteration, chunks are orchestrated efficiently in heterogeneous memory and generate lower CPU-GPU data transmission volume and higher bandwidth utilization. Symbiosis with the Zero Redundancy Optimizer, PatrickStar scales to multiple GPUs on multiple nodes. % using data parallelism. The system can train tasks on bigger models and larger batch sizes, which cannot be accomplished by existing works. Experimental results show that PatrickStar extends model scales 2.27 and 2.5 times of DeepSpeed, and consistently exhibits significantly higher execution speed. PatricStar also successfully runs the 175B GPT3 training task on a 32 GPU cluster. Our code is publicly available at https://github.com/Tencent/PatrickStar.
Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning
The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
Galvatron: Automatic Distributed Training for Large Transformer Models
Training multi-billion to trillion-parameter language models efficiently on GPU clusters requires leveraging multiple parallelism strategies. We present Galvatron, a novel open-source framework (dubbed 'Optimus-Megatron' in the implementation) that dynamically combines data parallelism, tensor model parallelism, and pipeline parallelism to optimize training throughput. Built atop PyTorch and integrating NVIDIA's Megatron-LM and Microsoft's DeepSpeed, Galvatron automatically selects and adjusts parallelism strategies in real time based on model architecture, hardware, and training dynamics. This paper details Galvatron's key features -- automatic hybrid parallelism selection, layer-wise and phase-wise strategy optimization, and runtime adaptation -- and contrasts them with existing static frameworks. We describe the system's technical stack, including its use of DeepSpeed's ZeRO and NCCL communication, and provide an in-depth implementation overview of its core modules (profilers, strategy selector, parallelism manager). We then illustrate how Galvatron can be seamlessly integrated into existing training pipelines with minimal code modifications, providing companies a plug-and-play solution for efficient large-model training. Finally, we situate Galvatron in context with related efforts (NVIDIA Megatron-LM, Microsoft DeepSpeed, Google GShard, Meta FairScale, etc.), highlighting how it advances the state of the art in distributed deep learning. References to the GitHub repository and relevant literature are provided throughout.
Expert-as-a-Service: Towards Efficient, Scalable, and Robust Large-scale MoE Serving
Mixture-of-Experts (MoE) models challenge serving infrastructures with dynamic, sparse expert utilization, causing instability on conventional systems designed for dense architectures. We propose EaaS, a novel serving system to enable efficient, scalable, and robust MoE deployment. Our system disaggregates MoE modules into independent, stateless services. This design enables fine-grained resource scaling and provides inherent fault tolerance by decoupling compute units. The architecture is powered by a high-performance, CPU-free peer-to-peer communication library that ensures minimal overhead and high throughput. Experiments confirm EaaS's scalability and efficiency, achieving performance comparable to monolithic systems while providing robust fault tolerance and strong scalability. EaaS incurs less than a 2% throughput reduction under simulated hardware failures that would otherwise halt monolithic architectures. It further saves up to 37.5% of computing resources through dynamic fine-grained adaptation to serving traffic, demonstrating strong resilience for large-scale MoE deployment in production.
ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design
Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.
Serverless Cold Starts and Where to Find Them
This paper releases and analyzes a month-long trace of 85 billion user requests and 11.9 million cold starts from Huawei's serverless cloud platform. Our analysis spans workloads from five data centers. We focus on cold starts and provide a comprehensive examination of the underlying factors influencing the number and duration of cold starts. These factors include trigger types, request synchronicity, runtime languages, and function resource allocations. We investigate components of cold starts, including pod allocation time, code and dependency deployment time, and scheduling delays, and examine their relationships with runtime languages, trigger types, and resource allocation. We introduce pod utility ratio to measure the pod's useful lifetime relative to its cold start time, giving a more complete picture of cold starts, and see that some pods with long cold start times have longer useful lifetimes. Our findings reveal the complexity and multifaceted origins of the number, duration, and characteristics of cold starts, driven by differences in trigger types, runtime languages, and function resource allocations. For example, cold starts in Region 1 take up to 7 seconds, dominated by dependency deployment time and scheduling. In Region 2, cold starts take up to 3 seconds and are dominated by pod allocation time. Based on this, we identify opportunities to reduce the number and duration of cold starts using strategies for multi-region scheduling. Finally, we suggest directions for future research to address these challenges and enhance the performance of serverless cloud platforms. Our datasets and code are available here https://github.com/sir-lab/data-release
Composer: A Search Framework for Hybrid Neural Architecture Design
Hybrid model architectures that combine computational primitives (e.g., Attention, MLP) in different ratios have shown promising performance beyond Transformers. Some studies have shown that different interleavings of primitives can affect model quality as well. However, prior works explore the hybrid model architecture design space manually. Due to the large design space and training costs, discovering hybrid models that combine key computational primitives for pre-training is challenging. In this work, we take a principled approach in designing a modular hybrid model architecture search framework -- Composer. Composer explores model architectures at a small scale and extrapolates the top-performing model architectures to a larger scale using our proposed scaling strategies. Using Composer, we discover new hybrid LLM architectures that outperform Llama 3.2. Compared to Llama 3.2 and previous state-of-the-art baselines, the new model architectures consistently reduce validation loss at parameter scales of 350M-3B and improve evaluation accuracy on the downstream tasks by up to 2.8-8.3% (1.1-3.1% on average) while improving both training and inference efficiency.
Pulsar: Efficient Sphere-based Neural Rendering
We propose Pulsar, an efficient sphere-based differentiable renderer that is orders of magnitude faster than competing techniques, modular, and easy-to-use due to its tight integration with PyTorch. Differentiable rendering is the foundation for modern neural rendering approaches, since it enables end-to-end training of 3D scene representations from image observations. However, gradient-based optimization of neural mesh, voxel, or function representations suffers from multiple challenges, i.e., topological inconsistencies, high memory footprints, or slow rendering speeds. To alleviate these problems, Pulsar employs: 1) a sphere-based scene representation, 2) an efficient differentiable rendering engine, and 3) neural shading. Pulsar executes orders of magnitude faster than existing techniques and allows real-time rendering and optimization of representations with millions of spheres. Using spheres for the scene representation, unprecedented speed is obtained while avoiding topology problems. Pulsar is fully differentiable and thus enables a plethora of applications, ranging from 3D reconstruction to general neural rendering.
Analyzing Modern NVIDIA GPU cores
GPUs are the most popular platform for accelerating HPC workloads, such as artificial intelligence and science simulations. However, most microarchitectural research in academia relies on GPU core pipeline designs based on architectures that are more than 15 years old. This paper reverse engineers modern NVIDIA GPU cores, unveiling many key aspects of its design and explaining how GPUs leverage hardware-compiler techniques where the compiler guides hardware during execution. In particular, it reveals how the issue logic works including the policy of the issue scheduler, the structure of the register file and its associated cache, and multiple features of the memory pipeline. Moreover, it analyses how a simple instruction prefetcher based on a stream buffer fits well with modern NVIDIA GPUs and is likely to be used. Furthermore, we investigate the impact of the register file cache and the number of register file read ports on both simulation accuracy and performance. By modeling all these new discovered microarchitectural details, we achieve 18.24% lower mean absolute percentage error (MAPE) in execution cycles than previous state-of-the-art simulators, resulting in an average of 13.98% MAPE with respect to real hardware (NVIDIA RTX A6000). Also, we demonstrate that this new model stands for other NVIDIA architectures, such as Turing. Finally, we show that the software-based dependence management mechanism included in modern NVIDIA GPUs outperforms a hardware mechanism based on scoreboards in terms of performance and area.
TorchTitan: One-stop PyTorch native solution for production ready LLM pre-training
The development of large language models (LLMs) has been instrumental in advancing state-of-the-art natural language processing applications. Training LLMs with billions of parameters and trillions of tokens require sophisticated distributed systems that enable composing and comparing several state-of-the-art techniques in order to efficiently scale across thousands of accelerators. However, existing solutions are complex, scattered across multiple libraries/repositories, lack interoperability, and are cumbersome to maintain. Thus, curating and empirically comparing training recipes require non-trivial engineering effort. This paper introduces TorchTitan, an open-source, PyTorch-native distributed training system that unifies state-of-the-art techniques, streamlining integration and reducing overhead. TorchTitan enables 3D parallelism in a modular manner with elastic scaling, providing comprehensive logging, checkpointing, and debugging tools for production-ready training. It also incorporates hardware-software co-designed solutions, leveraging features like Float8 training and SymmetricMemory. As a flexible test bed, TorchTitan facilitates custom recipe curation and comparison, allowing us to develop optimized training recipes for Llama 3.1 and provide guidance on selecting techniques for maximum efficiency based on our experiences. We thoroughly assess TorchTitan on the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its exceptional performance, modular composability, and elastic scalability. By stacking training optimizations, we demonstrate accelerations of 65.08% with 1D parallelism at the 128-GPU scale (Llama 3.1 8B), an additional 12.59% with 2D parallelism at the 256-GPU scale (Llama 3.1 70B), and an additional 30% with 3D parallelism at the 512-GPU scale (Llama 3.1 405B) on NVIDIA H100 GPUs over optimized baselines.
Accelerating Computer Architecture Simulation through Machine Learning
This paper presents our approach to accelerate computer architecture simulation by leveraging machine learning techniques. Traditional computer architecture simulations are time-consuming, making it challenging to explore different design choices efficiently. Our proposed model utilizes a combination of application features and micro-architectural features to predict the performance of an application. These features are derived from simulations of a small portion of the application. We demonstrate the effectiveness of our approach by building and evaluating a machine learning model that offers significant speedup in architectural exploration. This model demonstrates the ability to predict IPC values for the testing data with a root mean square error of less than 0.1.
Lance: Efficient Random Access in Columnar Storage through Adaptive Structural Encodings
The growing interest in artificial intelligence has created workloads that require both sequential and random access. At the same time, NVMe-backed storage solutions have emerged, providing caching capability for large columnar datasets in cloud storage. Current columnar storage libraries fall short of effectively utilizing an NVMe device's capabilities, especially when it comes to random access. Historically, this has been assumed an implicit weakness in columnar storage formats, but this has not been sufficiently explored. In this paper, we examine the effectiveness of popular columnar formats such as Apache Arrow, Apache Parquet, and Lance in both random access and full scan tasks against NVMe storage. We argue that effective encoding of a column's structure, such as the repetition and validity information, is the key to unlocking the disk's performance. We show that Parquet, when configured correctly, can achieve over 60x better random access performance than default settings. We also show that this high random access performance requires making minor trade-offs in scan performance and RAM utilization. We then describe the Lance structural encoding scheme, which alternates between two different structural encodings based on data width, and achieves better random access performance without making trade-offs in scan performance or RAM utilization.
Progressive Volume Distillation with Active Learning for Efficient NeRF Architecture Conversion
Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including the plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their combinations, entail distinct trade-offs. For instance, representations based on Hashtables enable faster rendering but lack clear geometric meaning, thereby posing challenges for spatial-relation-aware editing. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversion between diverse architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a three-level active learning technique provides continuous feedback from teacher to student during the distillation process, achieving high-performance outcomes. Experimental evidence showcases the effectiveness of our method across multiple benchmark datasets. For instance, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10~20X faster speed and 0.8dB~2dB higher PSNR than training the MLP-based model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements like mobile devices. Project website: https://sk-fun.fun/PVD-AL.
4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion
We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence).
Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks
Neural Architecture Search (NAS) has demonstrated its power on various AI accelerating platforms such as Field Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs). However, it remains an open problem, how to integrate NAS with Application-Specific Integrated Circuits (ASICs), despite them being the most powerful AI accelerating platforms. The major bottleneck comes from the large design freedom associated with ASIC designs. Moreover, with the consideration that multiple DNNs will run in parallel for different workloads with diverse layer operations and sizes, integrating heterogeneous ASIC sub-accelerators for distinct DNNs in one design can significantly boost performance, and at the same time further complicate the design space. To address these challenges, in this paper we build ASIC template set based on existing successful designs, described by their unique dataflows, so that the design space is significantly reduced. Based on the templates, we further propose a framework, namely NASAIC, which can simultaneously identify multiple DNN architectures and the associated heterogeneous ASIC accelerator design, such that the design specifications (specs) can be satisfied, while the accuracy can be maximized. Experimental results show that compared with successive NAS and ASIC design optimizations which lead to design spec violations, NASAIC can guarantee the results to meet the design specs with 17.77%, 2.49x, and 2.32x reductions on latency, energy, and area and with 0.76% accuracy loss. To the best of the authors' knowledge, this is the first work on neural architecture and ASIC accelerator design co-exploration.
Mobile Machine Learning Hardware at ARM: A Systems-on-Chip (SoC) Perspective
Machine learning is playing an increasingly significant role in emerging mobile application domains such as AR/VR, ADAS, etc. Accordingly, hardware architects have designed customized hardware for machine learning algorithms, especially neural networks, to improve compute efficiency. However, machine learning is typically just one processing stage in complex end-to-end applications, involving multiple components in a mobile Systems-on-a-chip (SoC). Focusing only on ML accelerators loses bigger optimization opportunity at the system (SoC) level. This paper argues that hardware architects should expand the optimization scope to the entire SoC. We demonstrate one particular case-study in the domain of continuous computer vision where camera sensor, image signal processor (ISP), memory, and NN accelerator are synergistically co-designed to achieve optimal system-level efficiency.
AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation
Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective asymmetric architecture, where the distribution of convolutional and transformer blocks is asymmetric, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency. We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance compared to the most recent public and commercial models. Notably, even without any computation optimization for transformer blocks, our models still yield faster inference speed than existing works featuring efficient attention mechanisms, highlighting the advantages and the value of our approach.
SBCFormer: Lightweight Network Capable of Full-size ImageNet Classification at 1 FPS on Single Board Computers
Computer vision has become increasingly prevalent in solving real-world problems across diverse domains, including smart agriculture, fishery, and livestock management. These applications may not require processing many image frames per second, leading practitioners to use single board computers (SBCs). Although many lightweight networks have been developed for mobile/edge devices, they primarily target smartphones with more powerful processors and not SBCs with the low-end CPUs. This paper introduces a CNN-ViT hybrid network called SBCFormer, which achieves high accuracy and fast computation on such low-end CPUs. The hardware constraints of these CPUs make the Transformer's attention mechanism preferable to convolution. However, using attention on low-end CPUs presents a challenge: high-resolution internal feature maps demand excessive computational resources, but reducing their resolution results in the loss of local image details. SBCFormer introduces an architectural design to address this issue. As a result, SBCFormer achieves the highest trade-off between accuracy and speed on a Raspberry Pi 4 Model B with an ARM-Cortex A72 CPU. For the first time, it achieves an ImageNet-1K top-1 accuracy of around 80% at a speed of 1.0 frame/sec on the SBC. Code is available at https://github.com/xyongLu/SBCFormer.
Benchmarking and Dissecting the Nvidia Hopper GPU Architecture
Graphics processing units (GPUs) are continually evolving to cater to the computational demands of contemporary general-purpose workloads, particularly those driven by artificial intelligence (AI) utilizing deep learning techniques. A substantial body of studies have been dedicated to dissecting the microarchitectural metrics characterizing diverse GPU generations, which helps researchers understand the hardware details and leverage them to optimize the GPU programs. However, the latest Hopper GPUs present a set of novel attributes, including new tensor cores supporting FP8, DPX, and distributed shared memory. Their details still remain mysterious in terms of performance and operational characteristics. In this research, we propose an extensive benchmarking study focused on the Hopper GPU. The objective is to unveil its microarchitectural intricacies through an examination of the new instruction-set architecture (ISA) of Nvidia GPUs and the utilization of new CUDA APIs. Our approach involves two main aspects. Firstly, we conduct conventional latency and throughput comparison benchmarks across the three most recent GPU architectures, namely Hopper, Ada, and Ampere. Secondly, we delve into a comprehensive discussion and benchmarking of the latest Hopper features, encompassing the Hopper DPX dynamic programming (DP) instruction set, distributed shared memory, and the availability of FP8 tensor cores. The microbenchmarking results we present offer a deeper understanding of the novel GPU AI function units and programming features introduced by the Hopper architecture. This newfound understanding is expected to greatly facilitate software optimization and modeling efforts for GPU architectures. To the best of our knowledge, this study makes the first attempt to demystify the tensor core performance and programming instruction sets unique to Hopper GPUs.
An Empirical Evaluation of Columnar Storage Formats
Columnar storage is a core component of a modern data analytics system. Although many database management systems (DBMSs) have proprietary storage formats, most provide extensive support to open-source storage formats such as Parquet and ORC to facilitate cross-platform data sharing. But these formats were developed over a decade ago, in the early 2010s, for the Hadoop ecosystem. Since then, both the hardware and workload landscapes have changed. In this paper, we revisit the most widely adopted open-source columnar storage formats (Parquet and ORC) with a deep dive into their internals. We designed a benchmark to stress-test the formats' performance and space efficiency under different workload configurations. From our comprehensive evaluation of Parquet and ORC, we identify design decisions advantageous with modern hardware and real-world data distributions. These include using dictionary encoding by default, favoring decoding speed over compression ratio for integer encoding algorithms, making block compression optional, and embedding finer-grained auxiliary data structures. We also point out the inefficiencies in the format designs when handling common machine learning workloads and using GPUs for decoding. Our analysis identified important considerations that may guide future formats to better fit modern technology trends.
Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs with Pollara interconnect. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts on Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
TensorIR: An Abstraction for Automatic Tensorized Program Optimization
Deploying deep learning models on various devices has become an important topic. The wave of hardware specialization brings a diverse set of acceleration primitives for multi-dimensional tensor computations. These new acceleration primitives, along with the emerging machine learning models, bring tremendous engineering challenges. In this paper, we present TensorIR, a compiler abstraction for optimizing programs with these tensor computation primitives. TensorIR generalizes the loop nest representation used in existing machine learning compilers to bring tensor computation as the first-class citizen. Finally, we build an end-to-end framework on top of our abstraction to automatically optimize deep learning models for given tensor computation primitives. Experimental results show that TensorIR compilation automatically uses the tensor computation primitives for given hardware backends and delivers performance that is competitive to state-of-art hand-optimized systems across platforms.
Training Transformers for Mesh-Based Simulations
Simulating physics using Graph Neural Networks (GNNs) is predominantly driven by message-passing architectures, which face challenges in scaling and efficiency, particularly in handling large, complex meshes. These architectures have inspired numerous enhancements, including multigrid approaches and K-hop aggregation (using neighbours of distance K), yet they often introduce significant complexity and suffer from limited in-depth investigations. In response to these challenges, we propose a novel Graph Transformer architecture that leverages the adjacency matrix as an attention mask. The proposed approach incorporates innovative augmentations, including Dilated Sliding Windows and Global Attention, to extend receptive fields without sacrificing computational efficiency. Through extensive experimentation, we evaluate model size, adjacency matrix augmentations, positional encoding and K-hop configurations using challenging 3D computational fluid dynamics (CFD) datasets. We also train over 60 models to find a scaling law between training FLOPs and parameters. The introduced models demonstrate remarkable scalability, performing on meshes with up to 300k nodes and 3 million edges. Notably, the smallest model achieves parity with MeshGraphNet while being 7times faster and 6times smaller. The largest model surpasses the previous state-of-the-art by 38.8\% on average and outperforms MeshGraphNet by 52\% on the all-rollout RMSE, while having a similar training speed. Code and datasets are available at https://github.com/DonsetPG/graph-physics.
The Kubernetes Network Driver Model: A Composable Architecture for High-Performance Networking
Traditional Kubernetes networking struggles to meet the escalating demands of AI/ML and evolving Telco infrastructure. This paper introduces Kubernetes Network Drivers (KNDs), a transformative, modular, and declarative architecture designed to overcome current imperative provisioning and API limitations. KNDs integrate network resource management into Kubernetes' core by utilizing Dynamic Resource Allocation (DRA), Node Resource Interface (NRI) improvements, and upcoming OCI Runtime Specification changes. Our DraNet implementation demonstrates declarative attachment of network interfaces, including Remote Direct Memory Access (RDMA) devices, significantly boosting high-performance AI/ML workloads. This capability enables sophisticated cloud-native applications and lays crucial groundwork for future Telco solutions, fostering a "galaxy" of specialized KNDs for enhanced application delivery and reduced operational complexity.
SambaNova SN40L: Scaling the AI Memory Wall with Dataflow and Composition of Experts
Monolithic large language models (LLMs) like GPT-4 have paved the way for modern generative AI applications. Training, serving, and maintaining monolithic LLMs at scale, however, remains prohibitively expensive and challenging. The disproportionate increase in compute-to-memory ratio of modern AI accelerators have created a memory wall, necessitating new methods to deploy AI. Composition of Experts (CoE) is an alternative modular approach that lowers the cost and complexity of training and serving. However, this approach presents two key challenges when using conventional hardware: (1) without fused operations, smaller models have lower operational intensity, which makes high utilization more challenging to achieve; and (2) hosting a large number of models can be either prohibitively expensive or slow when dynamically switching between them. In this paper, we describe how combining CoE, streaming dataflow, and a three-tier memory system scales the AI memory wall. We describe Samba-CoE, a CoE system with 150 experts and a trillion total parameters. We deploy Samba-CoE on the SambaNova SN40L Reconfigurable Dataflow Unit (RDU) - a commercial dataflow accelerator architecture that has been co-designed for enterprise inference and training applications. The chip introduces a new three-tier memory system with on-chip distributed SRAM, on-package HBM, and off-package DDR DRAM. A dedicated inter-RDU network enables scaling up and out over multiple sockets. We demonstrate speedups ranging from 2x to 13x on various benchmarks running on eight RDU sockets compared with an unfused baseline. We show that for CoE inference deployments, the 8-socket RDU Node reduces machine footprint by up to 19x, speeds up model switching time by 15x to 31x, and achieves an overall speedup of 3.7x over a DGX H100 and 6.6x over a DGX A100.
Co-design Hardware and Algorithm for Vector Search
Vector search has emerged as the foundation for large-scale information retrieval and machine learning systems, with search engines like Google and Bing processing tens of thousands of queries per second on petabyte-scale document datasets by evaluating vector similarities between encoded query texts and web documents. As performance demands for vector search systems surge, accelerated hardware offers a promising solution in the post-Moore's Law era. We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator. FANNS attains up to 23.0times and 37.2times speedup compared to FPGA and CPU baselines, respectively, and demonstrates superior scalability to GPUs, achieving 5.5times and 7.6times speedup in median and 95th percentile (P95) latency within an eight-accelerator configuration. The remarkable performance of FANNS lays a robust groundwork for future FPGA integration in data centers and AI supercomputers.
PockEngine: Sparse and Efficient Fine-tuning in a Pocket
On-device learning and efficient fine-tuning enable continuous and privacy-preserving customization (e.g., locally fine-tuning large language models on personalized data). However, existing training frameworks are designed for cloud servers with powerful accelerators (e.g., GPUs, TPUs) and lack the optimizations for learning on the edge, which faces challenges of resource limitations and edge hardware diversity. We introduce PockEngine: a tiny, sparse and efficient engine to enable fine-tuning on various edge devices. PockEngine supports sparse backpropagation: it prunes the backward graph and sparsely updates the model with measured memory saving and latency reduction while maintaining the model quality. Secondly, PockEngine is compilation first: the entire training graph (including forward, backward and optimization steps) is derived at compile-time, which reduces the runtime overhead and brings opportunities for graph transformations. PockEngine also integrates a rich set of training graph optimizations, thus can further accelerate the training cost, including operator reordering and backend switching. PockEngine supports diverse applications, frontends and hardware backends: it flexibly compiles and tunes models defined in PyTorch/TensorFlow/Jax and deploys binaries to mobile CPU/GPU/DSPs. We evaluated PockEngine on both vision models and large language models. PockEngine achieves up to 15 times speedup over off-the-shelf TensorFlow (Raspberry Pi), 5.6 times memory saving back-propagation (Jetson AGX Orin). Remarkably, PockEngine enables fine-tuning LLaMav2-7B on NVIDIA Jetson AGX Orin at 550 tokens/s, 7.9times faster than the PyTorch.
InTAR: Inter-Task Auto-Reconfigurable Accelerator Design for High Data Volume Variation in DNNs
The rise of deep neural networks (DNNs) has driven an increased demand for computing power and memory. Modern DNNs exhibit high data volume variation (HDV) across tasks, which poses challenges for FPGA acceleration: conventional accelerators rely on fixed execution patterns (dataflow or sequential) that can lead to pipeline stalls or necessitate frequent off-chip memory accesses. To address these challenges, we introduce the Inter-Task Auto-Reconfigurable Accelerator (InTAR), a novel accelerator design methodology for HDV applications on FPGAs. InTAR combines the high computational efficiency of sequential execution with the reduced off-chip memory overhead of dataflow execution. It switches execution patterns automatically with a static schedule determined before circuit design based on resource constraints and problem sizes. Unlike previous reconfigurable accelerators, InTAR encodes reconfiguration schedules during circuit design, allowing model-specific optimizations that allocate only the necessary logic and interconnects. Thus, InTAR achieves a high clock frequency with fewer resources and low reconfiguration time. Furthermore, InTAR supports high-level tools such as HLS for fast design generation. We implement a set of multi-task HDV DNN kernels using InTAR. Compared with dataflow and sequential accelerators, InTAR exhibits 1.8times and 7.1 times speedups correspondingly. Moreover, we extend InTAR to GPT-2 medium as a more complex example, which is 3.65 sim 39.14times faster and a 1.72 sim 10.44times more DSP efficient than SoTA accelerators (Allo and DFX) on FPGAs. Additionally, this design demonstrates 1.66 sim 7.17times better power efficiency than GPUs. Code: https://github.com/OswaldHe/InTAR
Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
Hyperdimensional computing (HD), also known as vector symbolic architectures (VSA), is a framework for computing with distributed representations by exploiting properties of random high-dimensional vector spaces. The commitment of the scientific community to aggregate and disseminate research in this particularly multidisciplinary area has been fundamental for its advancement. Joining these efforts, we present Torchhd, a high-performance open source Python library for HD/VSA. Torchhd seeks to make HD/VSA more accessible and serves as an efficient foundation for further research and application development. The easy-to-use library builds on top of PyTorch and features state-of-the-art HD/VSA functionality, clear documentation, and implementation examples from well-known publications. Comparing publicly available code with their corresponding Torchhd implementation shows that experiments can run up to 100x faster. Torchhd is available at: https://github.com/hyperdimensional-computing/torchhd.
FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining
Neural Architecture Search (NAS) yields state-of-the-art neural networks that outperform their best manually-designed counterparts. However, previous NAS methods search for architectures under one set of training hyper-parameters (i.e., a training recipe), overlooking superior architecture-recipe combinations. To address this, we present Neural Architecture-Recipe Search (NARS) to search both (a) architectures and (b) their corresponding training recipes, simultaneously. NARS utilizes an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking. Furthermore, to compensate for the enlarged search space, we leverage "free" architecture statistics (e.g., FLOP count) to pretrain the predictor, significantly improving its sample efficiency and prediction reliability. After training the predictor via constrained iterative optimization, we run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints, called FBNetV3. FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors. For example, FBNetV3 matches both EfficientNet and ResNeSt accuracy on ImageNet with up to 2.0x and 7.1x fewer FLOPs, respectively. Furthermore, FBNetV3 yields significant performance gains for downstream object detection tasks, improving mAP despite 18% fewer FLOPs and 34% fewer parameters than EfficientNet-based equivalents.
KernelEvolve: Scaling Agentic Kernel Coding for Heterogeneous AI Accelerators at Meta
Making deep learning recommendation model (DLRM) training and inference fast and efficient is important. However, this presents three key system challenges - model architecture diversity, kernel primitive diversity, and hardware generation and architecture heterogeneity. This paper presents KernelEvolve-an agentic kernel coding framework-to tackle heterogeneity at-scale for DLRM. KernelEvolve is designed to take kernel specifications as input and automate the process of kernel generation and optimization for recommendation model across heterogeneous hardware architectures. KernelEvolve does so by operating at multiple programming abstractions, from Triton and CuTe DSL to low-level hardware agnostic languages, spanning the full hardware-software optimization stack. The kernel optimization process is described as graph-based search with selection policy, universal operator, fitness function, and termination rule, dynamically adapts to runtime execution context through retrieval-augmented prompt synthesis. We designed, implemented, and deployed KernelEvolve to optimize a wide variety of production recommendation models across generations of NVIDIA and AMD GPUs, as well as Meta's AI accelerators. We validate KernelEvolve on the publicly-available KernelBench suite, achieving 100% pass rate on all 250 problems across three difficulty levels, and 160 PyTorch ATen operators across three heterogeneous hardware platforms, demonstrating 100% correctness. KernelEvolve reduces development time from weeks to hours and achieves substantial performance improvements over PyTorch baselines across diverse production use cases and for heterogeneous AI systems at-scale. Beyond performance efficiency improvements, KernelEvolve significantly mitigates the programmability barrier for new AI hardware by enabling automated kernel generation for in-house developed AI hardware.
DRACO: Co-Optimizing Hardware Utilization, and Performance of DNNs on Systolic Accelerator
The number of processing elements (PEs) in a fixed-sized systolic accelerator is well matched for large and compute-bound DNNs; whereas, memory-bound DNNs suffer from PE underutilization and fail to achieve peak performance and energy efficiency. To mitigate this, specialized dataflow and/or micro-architectural techniques have been proposed. However, due to the longer development cycle and the rapid pace of evolution in the deep learning fields, these hardware-based solutions can be obsolete and ineffective in dealing with PE underutilization for state-of-the-art DNNs. In this work, we address the challenge of PE underutilization at the algorithm front and propose data reuse aware co-optimization (DRACO). This improves the PE utilization of memory-bound DNNs without any additional need for dataflow/micro-architecture modifications. Furthermore, unlike the previous co-optimization methods, DRACO not only maximizes performance and energy efficiency but also improves the predictive performance of DNNs. To the best of our knowledge, DRACO is the first work that resolves the resource underutilization challenge at the algorithm level and demonstrates a trade-off between computational efficiency, PE utilization, and predictive performance of DNN. Compared to the state-of-the-art row stationary dataflow, DRACO achieves 41.8% and 42.6% improvement in average PE utilization and inference latency (respectively) with negligible loss in predictive performance in MobileNetV1 on a 64times64 systolic array. DRACO provides seminal insights for utilization-aware DNN design methodologies that can fully leverage the computation power of systolic array-based hardware accelerators.
D-DARTS: Distributed Differentiable Architecture Search
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods. It drastically reduces search cost by resorting to weight-sharing. However, it also dramatically reduces the search space, thus excluding potential promising architectures. In this article, we propose D-DARTS, a solution that addresses this problem by nesting neural networks at the cell level instead of using weight-sharing to produce more diversified and specialized architectures. Moreover, we introduce a novel algorithm that can derive deeper architectures from a few trained cells, increasing performance and saving computation time. In addition, we also present an alternative search space (DARTOpti) in which we optimize existing handcrafted architectures (e.g., ResNet) rather than starting from scratch. This approach is accompanied by a novel metric that measures the distance between architectures inside our custom search space. Our solution reaches competitive performance on multiple computer vision tasks. Code and pretrained models can be accessed at https://github.com/aheuillet/D-DARTS.
Lightplane: Highly-Scalable Components for Neural 3D Fields
Contemporary 3D research, particularly in reconstruction and generation, heavily relies on 2D images for inputs or supervision. However, current designs for these 2D-3D mapping are memory-intensive, posing a significant bottleneck for existing methods and hindering new applications. In response, we propose a pair of highly scalable components for 3D neural fields: Lightplane Render and Splatter, which significantly reduce memory usage in 2D-3D mapping. These innovations enable the processing of vastly more and higher resolution images with small memory and computational costs. We demonstrate their utility in various applications, from benefiting single-scene optimization with image-level losses to realizing a versatile pipeline for dramatically scaling 3D reconstruction and generation. Code: https://github.com/facebookresearch/lightplane.
Benchmarking On-Device Machine Learning on Apple Silicon with MLX
The recent widespread adoption of Large Language Models (LLMs) and machine learning in general has sparked research interest in exploring the possibilities of deploying these models on smaller devices such as laptops and mobile phones. This creates a need for frameworks and approaches that are capable of taking advantage of on-device hardware. The MLX framework was created to address this need. It is a framework optimized for machine learning (ML) computations on Apple silicon devices, facilitating easier research, experimentation, and prototyping. This paper presents a performance evaluation of MLX, focusing on inference latency of transformer models. We compare the performance of different transformer architecture implementations in MLX with their Pytorch counterparts. For this research we create a framework called MLX-transformers which includes different transformer implementations in MLX and downloads the model checkpoints in pytorch and converts it to the MLX format. By leveraging the advanced architecture and capabilities of Apple Silicon, MLX-Transformers enables seamless execution of transformer models directly sourced from Hugging Face, eliminating the need for checkpoint conversion often required when porting models between frameworks. Our study benchmarks different transformer models on two Apple Silicon macbook devices against an NVIDIA CUDA GPU. Specifically, we compare the inference latency performance of models with the same parameter sizes and checkpoints. We evaluate the performance of BERT, RoBERTa, and XLM-RoBERTa models, with the intention of extending future work to include models of different modalities, thus providing a more comprehensive assessment of MLX's capabilities. The results highlight MLX's potential in enabling efficient and more accessible on-device ML applications within Apple's ecosystem.
An Evaluation of LLMs Inference on Popular Single-board Computers
The growing demand for on-device large language model (LLM) inference is driving interest in deploying lightweight, cost-effective AI solutions on edge hardware. Single-board computers (SBCs) such as the Raspberry Pi and Orange Pi offer a promising platform for localized, privacy-preserving inference-but remain underexplored in the context of LLM workloads. In this work, we benchmark the performance of 25 quantized open-source LLMs across three SBCs-Raspberry Pi 4, Raspberry Pi 5, and Orange Pi 5 Pro-using two inference runtimes: Ollama and Llamafile. We evaluate generation throughput, memory usage, and power consumption under varying CPU configurations, using multiple prompt types to simulate realistic workloads. Our results show that SBCs can reliably support models up to 1.5B parameters, with Llamafile achieving up to 4x higher throughput and 30-40% lower power usage than Ollama. We identify architecture-specific bottlenecks, highlight runtime-level trade-offs, and provide practical deployment recommendations. This study offers the first broad evaluation of LLM inference on SBCs, bridging the gap between high-performance language models and affordable edge computing.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
Centaur: A Chiplet-based, Hybrid Sparse-Dense Accelerator for Personalized Recommendations
Personalized recommendations are the backbone machine learning (ML) algorithm that powers several important application domains (e.g., ads, e-commerce, etc) serviced from cloud datacenters. Sparse embedding layers are a crucial building block in designing recommendations yet little attention has been paid in properly accelerating this important ML algorithm. This paper first provides a detailed workload characterization on personalized recommendations and identifies two significant performance limiters: memory-intensive embedding layers and compute-intensive multi-layer perceptron (MLP) layers. We then present Centaur, a chiplet-based hybrid sparse-dense accelerator that addresses both the memory throughput challenges of embedding layers and the compute limitations of MLP layers. We implement and demonstrate our proposal on an Intel HARPv2, a package-integrated CPU+FPGA device, which shows a 1.7-17.2x performance speedup and 1.7-19.5x energy-efficiency improvement than conventional approaches.
UFO^3: Weaving the Digital Agent Galaxy
Large language model (LLM)-powered agents are transforming digital devices from passive tools into proactive intelligent collaborators. However, most existing frameworks remain confined to a single OS or device, making cross-device workflows brittle and largely manual. We present UFO^3, a system that unifies heterogeneous endpoints, desktops, servers, mobile devices, and edge, into a single orchestration fabric. UFO^3 models each user request as a mutable TaskConstellation: a distributed DAG of atomic subtasks (TaskStars) with explicit control and data dependencies (TaskStarLines). The TaskConstellation continuously evolves as results stream in from distributed devices, enabling asynchronous execution, adaptive recovery, and dynamic optimization. A Constellation Orchestrator} executes tasks safely and asynchronously while applying dynamic DAG updates, and the Agent Interaction Protocol (AIP) provides persistent, low-latency channels for reliable task dispatch and result streaming. These designs dissolve the traditional boundaries between devices and platforms, allowing agents to collaborate seamlessly and amplify their collective intelligence. We evaluate UFO^3 on NebulaBench, a benchmark of 55 cross-device tasks across 5 machines and 10 categories. UFO^3 achieves 83.3% subtask completion, 70.9% task success, exposes parallelism with an average width of 1.72, and reduces end-to-end latency by 31% relative to a sequential baseline. Fault-injection experiments demonstrate graceful degradation and recovery under transient and permanent agent failures. These results show that UFO^3 achieves accurate, efficient, and resilient task orchestration across heterogeneous devices, uniting isolated agents into a coherent, adaptive computing fabric that extends across the landscape of ubiquitous computing.
Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing
The real-time deployment of cascaded generative AI pipelines for applications like video translation is constrained by significant system-level challenges. These include the cumulative latency of sequential model inference and the quadratic (O(N^2)) computational complexity that renders multi-user video conferencing applications unscalable. This paper proposes and evaluates a practical system-level framework designed to mitigate these critical bottlenecks. The proposed architecture incorporates a turn-taking mechanism to reduce computational complexity from quadratic to linear in multi-user scenarios, and a segmented processing protocol to manage inference latency for a perceptually real-time experience. We implement a proof-of-concept pipeline and conduct a rigorous performance analysis across a multi-tiered hardware setup, including commodity (NVIDIA RTX 4060), cloud (NVIDIA T4), and enterprise (NVIDIA A100) GPUs. Our objective evaluation demonstrates that the system achieves real-time throughput (τ< 1.0) on modern hardware. A subjective user study further validates the approach, showing that a predictable, initial processing delay is highly acceptable to users in exchange for a smooth, uninterrupted playback experience. The work presents a validated, end-to-end system design that offers a practical roadmap for deploying scalable, real-time generative AI applications in multilingual communication platforms.
sharpDARTS: Faster and More Accurate Differentiable Architecture Search
Neural Architecture Search (NAS) has been a source of dramatic improvements in neural network design, with recent results meeting or exceeding the performance of hand-tuned architectures. However, our understanding of how to represent the search space for neural net architectures and how to search that space efficiently are both still in their infancy. We have performed an in-depth analysis to identify limitations in a widely used search space and a recent architecture search method, Differentiable Architecture Search (DARTS). These findings led us to introduce novel network blocks with a more general, balanced, and consistent design; a better-optimized Cosine Power Annealing learning rate schedule; and other improvements. Our resulting sharpDARTS search is 50% faster with a 20-30% relative improvement in final model error on CIFAR-10 when compared to DARTS. Our best single model run has 1.93% (1.98+/-0.07) validation error on CIFAR-10 and 5.5% error (5.8+/-0.3) on the recently released CIFAR-10.1 test set. To our knowledge, both are state of the art for models of similar size. This model also generalizes competitively to ImageNet at 25.1% top-1 (7.8% top-5) error. We found improvements for existing search spaces but does DARTS generalize to new domains? We propose Differentiable Hyperparameter Grid Search and the HyperCuboid search space, which are representations designed to leverage DARTS for more general parameter optimization. Here we find that DARTS fails to generalize when compared against a human's one shot choice of models. We look back to the DARTS and sharpDARTS search spaces to understand why, and an ablation study reveals an unusual generalization gap. We finally propose Max-W regularization to solve this problem, which proves significantly better than the handmade design. Code will be made available.
RHAPSODY: Execution of Hybrid AI-HPC Workflows at Scale
Hybrid AI-HPC workflows combine large-scale simulation, training, high-throughput inference, and tightly coupled, agent-driven control within a single execution campaign. These workflows impose heterogeneous and often conflicting requirements on runtime systems, spanning MPI executables, persistent AI services, fine-grained tasks, and low-latency AI-HPC coupling. Existing systems typically address only subsets of these requirements, limiting their ability to support emerging AI-HPC applications at scale. We present RHAPSODY, a multi-runtime middleware that enables concurrent execution of heterogeneous AI-HPC workloads through uniform abstractions for tasks, services, resources, and execution policies. Rather than replacing existing runtimes, RHAPSODY composes and coordinates them, allowing simulation codes, inference services, and agentic workflows to coexist within a single job allocation on leadership-class HPC platforms. We evaluate RHAPSODY with Dragon and vLLM on multiple HPC systems using representative heterogeneous, inference-at-scale, and tightly coupled AI-HPC workflows. Our results show that RHAPSODY introduces minimal runtime overhead, sustains increasing heterogeneity at scale, achieves near-linear scaling for high-throughput inference workloads, and data- and control-efficient coupling between AI and HPC tasks in agentic workflows.
Closing the Performance Gap with Modern C++
On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.
POLCA: Power Oversubscription in LLM Cloud Providers
Recent innovation in large language models (LLMs), and their myriad use-cases have rapidly driven up the compute capacity demand for datacenter GPUs. Several cloud providers and other enterprises have made substantial plans of growth in their datacenters to support these new workloads. One of the key bottleneck resources in datacenters is power, and given the increasing model sizes of LLMs, they are becoming increasingly power intensive. In this paper, we show that there is a significant opportunity to oversubscribe power in LLM clusters. Power oversubscription improves the power efficiency of these datacenters, allowing more deployable servers per datacenter, and reduces the deployment time, since building new datacenters is slow. We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the inference and training power consumption patterns. Based on our analysis of these LLMs, we claim that the average and peak power utilization in LLM clusters for inference should not be very high. Our deductions align with the data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment, makes it challenging to have a reliable and robust power oversubscription mechanism. We propose POLCA, our framework for power oversubscription that is robust, reliable, and readily deployable for GPU clusters. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in the same GPU cluster for inference, with minimal performance loss
Modeling Performance of Data Collection Systems for High-Energy Physics
Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.
SkiffOS: Minimal Cross-compiled Linux for Embedded Containers
Embedded Linux processors are increasingly used for real-time computing tasks such as robotics and Internet of Things (IoT). These applications require robust and reproducible behavior from the host OS, commonly achieved through immutable firmware stored in read-only memory. SkiffOS addresses these requirements with a minimal cross-compiled GNU/Linux system optimized for hosting containerized distributions and applications, and a configuration layering system for the Buildroot embedded cross-compiler tool which automatically re-targets system configurations to any platform or device. This approach cleanly separates the hardware support from the applications. The host system and containers are independently upgraded and backed-up over-the-air (OTA).
Modular Neural Image Signal Processing
This paper presents a modular neural image signal processing (ISP) framework that processes raw inputs and renders high-quality display-referred images. Unlike prior neural ISP designs, our method introduces a high degree of modularity, providing full control over multiple intermediate stages of the rendering process.~This modular design not only achieves high rendering accuracy but also improves scalability, debuggability, generalization to unseen cameras, and flexibility to match different user-preference styles. To demonstrate the advantages of this design, we built a user-interactive photo-editing tool that leverages our neural ISP to support diverse editing operations and picture styles. The tool is carefully engineered to take advantage of the high-quality rendering of our neural ISP and to enable unlimited post-editable re-rendering. Our method is a fully learning-based framework with variants of different capacities, all of moderate size (ranging from ~0.5 M to ~3.9 M parameters for the entire pipeline), and consistently delivers competitive qualitative and quantitative results across multiple test sets. Watch the supplemental video at: https://youtu.be/ByhQjQSjxVM
The Architecture Tradeoff and Risk Analysis Framework (ATRAF): A Unified Approach for Evaluating Software Architectures, Reference Architectures, and Architectural Frameworks
Modern software systems are guided by hierarchical architectural concepts -- software architectures, reference architectures, and architectural frameworks -- each operating at a distinct level of abstraction. These artifacts promote reuse, scalability, and consistency, but also embed tradeoffs that shape critical quality attributes such as modifiability, performance, and security. Existing evaluation methods, such as the Architecture Tradeoff Analysis Method (ATAM), focus on system-specific architectures and are not designed to address the broader generality and variability of higher-level architectural forms. To close this gap, we introduce the Architecture Tradeoff and Risk Analysis Framework (ATRAF) -- a unified, scenario-driven framework for evaluating tradeoffs and risks across architectural levels. ATRAF encompasses three methods: the Architecture Tradeoff and Risk Analysis Method (ATRAM), extending ATAM with enhanced risk identification for concrete systems; the Reference Architecture Tradeoff and Risk Analysis Method (RATRAM), adapting ATRAM to the evaluation of domain-level reference architectures; and the Architectural Framework Tradeoff and Risk Analysis Method (AFTRAM), supporting the evaluation of architectural frameworks that guide entire system families. All three methods follow an iterative spiral process that enables the identification of sensitivities, tradeoffs, and risks while supporting continuous refinement of architectural artifacts. We demonstrate ATRAF through progressively abstracted examples derived from the Remote Temperature Sensor (RTS) case, originally introduced in the ATAM literature. ATRAF equips architects, reference modelers, and framework designers with a practical, systematic approach for analyzing design alternatives and managing quality attribute tradeoffs early in the lifecycle and across all levels of architectural abstraction.
ConsumerBench: Benchmarking Generative AI Applications on End-User Devices
The recent shift in Generative AI (GenAI) applications from cloud-only environments to end-user devices introduces new challenges in resource management, system efficiency, and user experience. This paper presents ConsumerBench, a comprehensive benchmarking framework designed to evaluate the system efficiency and response time of GenAI models running on end-user devices. Unlike existing benchmarks that assume exclusive model access on dedicated GPUs, ConsumerBench simulates realistic multi-application scenarios executing concurrently on constrained hardware. Furthermore, ConsumerBench supports customizable workflows that simulate complex tasks requiring coordination among multiple applications. ConsumerBench captures both application-level metrics, including latency and Service Level Objective (SLO) attainment, and system-level metrics like CPU/GPU utilization and memory bandwidth. Through extensive experiments, ConsumerBench reveals inefficiencies in resource sharing, unfair scheduling under greedy allocation, and performance pitfalls of static model server configurations. The paper also provides practical insights for model developers and system designers, highlighting the benefits of custom kernels tailored to consumer-grade GPU architectures and the value of implementing SLO-aware scheduling strategies.
The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries
Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.
Priority Matters: Optimising Kubernetes Clusters Usage with Constraint-Based Pod Packing
Distributed applications employ Kubernetes for scalable, fault-tolerant deployments over computer clusters, where application components run in groups of containers called pods. The scheduler, at the heart of Kubernetes' architecture, determines the placement of pods given their priority and resource requirements on cluster nodes. To quickly allocate pods, the scheduler uses lightweight heuristics that can lead to suboptimal placements and resource fragmentation, preventing allocations of otherwise deployable pods on the available nodes. We propose the usage of constraint programming to find the optimal allocation of pods satisfying all their priorities and resource requests. Implementation-wise, our solution comes as a plug-in to the default scheduler that operates as a fallback mechanism when some pods cannot be allocated. Using the OR-Tools constraint solver, our experiments on small-to-mid-sized clusters indicate that, within a 1-second scheduling window, our approach places more higher-priority pods than the default scheduler (possibly demonstrating allocation optimality) in over 44\% of realisable allocation scenarios where the default scheduler fails, while certifying that the default scheduler's placement is already optimal in over 19\% of scenarios. With a 10-second window, our approach improves placements in over 73\% and still certifies that the default scheduler's placement is already optimal in over 19\% of scenarios.
Profiling Neural Blocks and Design Spaces for Mobile Neural Architecture Search
Neural architecture search automates neural network design and has achieved state-of-the-art results in many deep learning applications. While recent literature has focused on designing networks to maximize accuracy, little work has been conducted to understand the compatibility of architecture design spaces to varying hardware. In this paper, we analyze the neural blocks used to build Once-for-All (MobileNetV3), ProxylessNAS and ResNet families, in order to understand their predictive power and inference latency on various devices, including Huawei Kirin 9000 NPU, RTX 2080 Ti, AMD Threadripper 2990WX, and Samsung Note10. We introduce a methodology to quantify the friendliness of neural blocks to hardware and the impact of their placement in a macro network on overall network performance via only end-to-end measurements. Based on extensive profiling results, we derive design insights and apply them to hardware-specific search space reduction. We show that searching in the reduced search space generates better accuracy-latency Pareto frontiers than searching in the original search spaces, customizing architecture search according to the hardware. Moreover, insights derived from measurements lead to notably higher ImageNet top-1 scores on all search spaces investigated.
Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices
The ability to dynamically adjust the computational load of neural models during inference in a resource aware manner is crucial for on-device processing scenarios, characterised by limited and time-varying computational resources. Early-exit architectures represent an elegant and effective solution, since they can process the input with a subset of their layers, exiting at intermediate branches (the upmost layers are hence removed from the model). From a different perspective, for automatic speech recognition applications there are memory-efficient neural architectures that apply variable frame rate analysis, through downsampling/upsampling operations in the middle layers, reducing the overall number of operations and improving significantly the performance on well established benchmarks. One example is the Zipformer. However, these architectures lack the modularity necessary to inject early-exit branches. With the aim of improving the performance in early-exit models, we propose introducing parallel layers in the architecture that process downsampled versions of their inputs. % in conjunction with standard processing layers. We show that in this way the speech recognition performance on standard benchmarks significantly improve, at the cost of a small increase in the overall number of model parameters but without affecting the inference time.
MicroRacer: a didactic environment for Deep Reinforcement Learning
MicroRacer is a simple, open source environment inspired by car racing especially meant for the didactics of Deep Reinforcement Learning. The complexity of the environment has been explicitly calibrated to allow users to experiment with many different methods, networks and hyperparameters settings without requiring sophisticated software or the need of exceedingly long training times. Baseline agents for major learning algorithms such as DDPG, PPO, SAC, TD2 and DSAC are provided too, along with a preliminary comparison in terms of training time and performance.
RandAR: Decoder-only Autoregressive Visual Generation in Random Orders
We introduce RandAR, a decoder-only visual autoregressive (AR) model capable of generating images in arbitrary token orders. Unlike previous decoder-only AR models that rely on a predefined generation order, RandAR removes this inductive bias, unlocking new capabilities in decoder-only generation. Our essential design enables random order by inserting a "position instruction token" before each image token to be predicted, representing the spatial location of the next image token. Trained on randomly permuted token sequences -- a more challenging task than fixed-order generation, RandAR achieves comparable performance to its conventional raster-order counterpart. More importantly, decoder-only transformers trained from random orders acquire new capabilities. For the efficiency bottleneck of AR models, RandAR adopts parallel decoding with KV-Cache at inference time, enjoying 2.5x acceleration without sacrificing generation quality. Additionally, RandAR supports inpainting, outpainting and resolution extrapolation in a zero-shot manner. We hope RandAR inspires new directions for decoder-only visual generation models and broadens their applications across diverse scenarios. Our project page is at https://rand-ar.github.io/.
Aster: Autonomous Scientific Discovery over 20x Faster Than Existing Methods
We introduce Aster, an AI agent for autonomous scientific discovery capable of operating over 20 times faster than existing frameworks. Given a task, an initial program, and a script to evaluate the performance of the program, Aster iteratively improves the program, often leading to new state-of-the-art performances. Aster's significant reduction in the number of iterations required for novel discovery expands the domain of tractable problems to include tasks with long evaluation durations, such as multi-hour machine learning training runs. We applied Aster to problems in mathematics, GPU kernel engineering, biology, neuroscience, and language model training. More specifically: the Erdos minimum overlap problem, optimizing the TriMul kernel, a single-cell analysis denoising problem, training a neural activity prediction model to perform well on ZAPBench, and the NanoGPT Speedrun Competition. Aster attains SOTA results in every task, except for ZAPBench, where it matches the performance of the best human solution with less than 1/190th of the compute. Aster is accessible via a web interface and API at asterlab.ai.
A projection-based framework for gradient-free and parallel learning
We present a feasibility-seeking approach to neural network training. This mathematical optimization framework is distinct from conventional gradient-based loss minimization and uses projection operators and iterative projection algorithms. We reformulate training as a large-scale feasibility problem: finding network parameters and states that satisfy local constraints derived from its elementary operations. Training then involves projecting onto these constraints, a local operation that can be parallelized across the network. We introduce PJAX, a JAX-based software framework that enables this paradigm. PJAX composes projection operators for elementary operations, automatically deriving the solution operators for the feasibility problems (akin to autodiff for derivatives). It inherently supports GPU/TPU acceleration, provides a familiar NumPy-like API, and is extensible. We train diverse architectures (MLPs, CNNs, RNNs) on standard benchmarks using PJAX, demonstrating its functionality and generality. Our results show that this approach is as a compelling alternative to gradient-based training, with clear advantages in parallelism and the ability to handle non-differentiable operations.
LM4HPC: Towards Effective Language Model Application in High-Performance Computing
In recent years, language models (LMs), such as GPT-4, have been widely used in multiple domains, including natural language processing, visualization, and so on. However, applying them for analyzing and optimizing high-performance computing (HPC) software is still challenging due to the lack of HPC-specific support. In this paper, we design the LM4HPC framework to facilitate the research and development of HPC software analyses and optimizations using LMs. Tailored for supporting HPC datasets, AI models, and pipelines, our framework is built on top of a range of components from different levels of the machine learning software stack, with Hugging Face-compatible APIs. Using three representative tasks, we evaluated the prototype of our framework. The results show that LM4HPC can help users quickly evaluate a set of state-of-the-art models and generate insightful leaderboards.
Implementing and Optimizing the Scaled Dot-Product Attention on Streaming Dataflow
Transformer models serve as the backbone of many state-ofthe-art language models, and most use the scaled dot-product attention (SDPA) mechanism to capture relationships between tokens. However, the straightforward implementation of SDPA has quadratic compute and memory complexity with respect to the sequence length. On processor architectures such as GPUs and TPUs, there is a robust body of prior work. However, little work has been performed on non-processor architectures.In this work, we show how the architecture and execution model of Streaming Dataflow Accelerators can help tackle this challenge. We first define abstract hardware that adopts a streaming execution model, and we implement a cycle-accurate simulator of the abstract hardware using the Dataflow Abstract Machine simulation framework. Second, we implement the naive SDPA algorithm on this abstract hardware and show it requires linear (O(N)) intermediate memory. Third, we then modify the naive algorithm, taking inspiration from prior processor-oriented works, by reordering the multiplication and division operations. Finally, we map the modified algorithm to abstract hardware, and confirm that the implementation computes SDPA at full throughput while only using a constant amount (O(1)) of intermediate memory.
EvolVE: Evolutionary Search for LLM-based Verilog Generation and Optimization
Verilog's design cycle is inherently labor-intensive and necessitates extensive domain expertise. Although Large Language Models (LLMs) offer a promising pathway toward automation, their limited training data and intrinsic sequential reasoning fail to capture the strict formal logic and concurrency inherent in hardware systems. To overcome these barriers, we present EvolVE, the first framework to analyze multiple evolution strategies on chip design tasks, revealing that Monte Carlo Tree Search (MCTS) excels at maximizing functional correctness, while Idea-Guided Refinement (IGR) proves superior for optimization. We further leverage Structured Testbench Generation (STG) to accelerate the evolutionary process. To address the lack of complex optimization benchmarks, we introduce IC-RTL, targeting industry-scale problems derived from the National Integrated Circuit Contest. Evaluations establish EvolVE as the new state-of-the-art, achieving 98.1% on VerilogEval v2 and 92% on RTLLM v2. Furthermore, on the industry-scale IC-RTL suite, our framework surpasses reference implementations authored by contest participants, reducing the Power, Performance, Area (PPA) product by up to 66% in Huffman Coding and 17% in the geometric mean across all problems. The source code of the IC-RTL benchmark is available at https://github.com/weiber2002/ICRTL.
KForge: Program Synthesis for Diverse AI Hardware Accelerators
GPU kernels are critical for ML performance but difficult to optimize across diverse accelerators. We present KForge, a platform-agnostic framework built on two collaborative LLM-based agents: a generation agent that produces and iteratively refines programs through compilation and correctness feedback, and a performance analysis agent that interprets profiling data to guide optimization. This agent-based architecture requires only a single-shot example to target new platforms. We make three key contributions: (1) introducing an iterative refinement system where the generation agent and performance analysis agent collaborate through functional and optimization passes, interpreting diverse profiling data (from programmatic APIs to GUI-based tools) to generate actionable recommendations that guide program synthesis for arbitrary accelerators; (2) demonstrating that the generation agent effectively leverages cross-platform knowledge transfer, where a reference implementation from one architecture substantially improves generation quality for different hardware targets; and (3) validating the platform-agnostic nature of our approach by demonstrating effective program synthesis across fundamentally different parallel computing platforms: NVIDIA CUDA and Apple Metal.
Bielik v3 Small: Technical Report
We introduce Bielik v3, a series of parameter-efficient generative text models (1.5B and 4.5B) optimized for Polish language processing. These models demonstrate that smaller, well-optimized architectures can achieve performance comparable to much larger counterparts while requiring substantially fewer computational resources. Our approach incorporates several key innovations: a custom Polish tokenizer (APT4) that significantly improves token efficiency, Weighted Instruction Cross-Entropy Loss to balance learning across instruction types, and Adaptive Learning Rate that dynamically adjusts based on training progress. Trained on a meticulously curated corpus of 292 billion tokens spanning 303 million documents, these models excel across multiple benchmarks, including the Open PL LLM Leaderboard, Complex Polish Text Understanding Benchmark, Polish EQ-Bench, and Polish Medical Leaderboard. The 4.5B parameter model achieves results competitive with models 2-3 times its size, while the 1.5B model delivers strong performance despite its extremely compact profile. These advances establish new benchmarks for parameter-efficient language modeling in less-represented languages, making high-quality Polish language AI more accessible for resource-constrained applications.
On-Device Training Under 256KB Memory
On-device training enables the model to adapt to new data collected from the sensors by fine-tuning a pre-trained model. Users can benefit from customized AI models without having to transfer the data to the cloud, protecting the privacy. However, the training memory consumption is prohibitive for IoT devices that have tiny memory resources. We propose an algorithm-system co-design framework to make on-device training possible with only 256KB of memory. On-device training faces two unique challenges: (1) the quantized graphs of neural networks are hard to optimize due to low bit-precision and the lack of normalization; (2) the limited hardware resource does not allow full back-propagation. To cope with the optimization difficulty, we propose Quantization-Aware Scaling to calibrate the gradient scales and stabilize 8-bit quantized training. To reduce the memory footprint, we propose Sparse Update to skip the gradient computation of less important layers and sub-tensors. The algorithm innovation is implemented by a lightweight training system, Tiny Training Engine, which prunes the backward computation graph to support sparse updates and offload the runtime auto-differentiation to compile time. Our framework is the first solution to enable tiny on-device training of convolutional neural networks under 256KB SRAM and 1MB Flash without auxiliary memory, using less than 1/1000 of the memory of PyTorch and TensorFlow while matching the accuracy on tinyML application VWW. Our study enables IoT devices not only to perform inference but also to continuously adapt to new data for on-device lifelong learning. A video demo can be found here: https://youtu.be/XaDCO8YtmBw.
TEMPI: An Interposed MPI Library with a Canonical Representation of CUDA-aware Datatypes
MPI derived datatypes are an abstraction that simplifies handling of non-contiguous data in MPI applications. These datatypes are recursively constructed at runtime from primitive Named Types defined in the MPI standard. More recently, the development and deployment of CUDA-aware MPI implementations has encouraged the transition of distributed high-performance MPI codes to use GPUs. Such implementations allow MPI functions to directly operate on GPU buffers, easing integration of GPU compute into MPI codes. This work first presents a novel datatype handling strategy for nested strided datatypes, which finds a middle ground between the specialized or generic handling in prior work. This work also shows that the performance characteristics of non-contiguous data handling can be modeled with empirical system measurements, and used to transparently improve MPI_Send/Recv latency. Finally, despite substantial attention to non-contiguous GPU data and CUDA-aware MPI implementations, good performance cannot be taken for granted. This work demonstrates its contributions through an MPI interposer library, TEMPI. TEMPI can be used with existing MPI deployments without system or application changes. Ultimately, the interposed-library model of this work demonstrates MPI_Pack speedup of up to 242000x and MPI_Send speedup of up to 59000x compared to the MPI implementation deployed on a leadership-class supercomputer. This yields speedup of more than 917x in a 3D halo exchange with 3072 processes.
KAIROS: Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous Cloud Resources
Online inference is becoming a key service product for many businesses, deployed in cloud platforms to meet customer demands. Despite their revenue-generation capability, these services need to operate under tight Quality-of-Service (QoS) and cost budget constraints. This paper introduces KAIROS, a novel runtime framework that maximizes the query throughput while meeting QoS target and a cost budget. KAIROS designs and implements novel techniques to build a pool of heterogeneous compute hardware without online exploration overhead, and distribute inference queries optimally at runtime. Our evaluation using industry-grade deep learning (DL) models shows that KAIROS yields up to 2X the throughput of an optimal homogeneous solution, and outperforms state-of-the-art schemes by up to 70%, despite advantageous implementations of the competing schemes to ignore their exploration overhead.
AXLearn: Modular Large Model Training on Heterogeneous Infrastructure
We design and implement AXLearn, a production deep learning system that facilitates scalable and high-performance training of large deep learning models. Compared to other state-of-the-art deep learning systems, AXLearn has a unique focus on modularity and support for heterogeneous hardware infrastructure. AXLearn's internal interfaces between software components follow strict encapsulation, allowing different components to be assembled to facilitate rapid model development and experimentation on heterogeneous compute infrastructure. We introduce a novel method of quantifying modularity via Lines-of-Code (LoC)-complexity, which demonstrates how our system maintains constant complexity as we scale the components in the system, compared to linear or quadratic complexity in other systems. This allows integrating features such as Rotary Position Embeddings (RoPE) into AXLearn across hundred of modules with just 10 lines of code, compared to hundreds as required in other systems. At the same time, AXLearn maintains equivalent performance compared to state-of-the-art training systems. Finally, we share our experience in the development and operation of AXLearn.
er.autopilot 1.0: The Full Autonomous Stack for Oval Racing at High Speeds
The Indy Autonomous Challenge (IAC) brought together for the first time in history nine autonomous racing teams competing at unprecedented speed and in head-to-head scenario, using independently developed software on open-wheel racecars. This paper presents the complete software architecture used by team TII EuroRacing (TII-ER), covering all the modules needed to avoid static obstacles, perform active overtakes and reach speeds above 75 m/s (270 km/h). In addition to the most common modules related to perception, planning, and control, we discuss the approaches used for vehicle dynamics modelling, simulation, telemetry, and safety. Overall results and the performance of each module are described, as well as the lessons learned during the first two events of the competition on oval tracks, where the team placed respectively second and third.
Parallel Neural Computing for Scene Understanding from LiDAR Perception in Autonomous Racing
Autonomous driving in high-speed racing, as opposed to urban environments, presents significant challenges in scene understanding due to rapid changes in the track environment. Traditional sequential network approaches may struggle to meet the real-time knowledge and decision-making demands of an autonomous agent covering large displacements in a short time. This paper proposes a novel baseline architecture for developing sophisticated models capable of true hardware-enabled parallelism, achieving neural processing speeds that mirror the agent's high velocity. The proposed model (Parallel Perception Network (PPN)) consists of two independent neural networks, segmentation and reconstruction networks, running parallelly on separate accelerated hardware. The model takes raw 3D point cloud data from the LiDAR sensor as input and converts it into a 2D Bird's Eye View Map on both devices. Each network independently extracts its input features along space and time dimensions and produces outputs parallelly. The proposed method's model is trained on a system with two NVIDIA T4 GPUs, using a combination of loss functions, including edge preservation, and demonstrates a 2x speedup in model inference time compared to a sequential configuration. Implementation is available at: https://github.com/suwesh/Parallel-Perception-Network. Learned parameters of the trained networks are provided at: https://huggingface.co/suwesh/ParallelPerceptionNetwork.
Efficient Tabular Data Preprocessing of ML Pipelines
Data preprocessing pipelines, which includes data decoding, cleaning, and transforming, are a crucial component of Machine Learning (ML) training. Thy are computationally intensive and often become a major bottleneck, due to the increasing performance gap between the CPUs used for preprocessing and the GPUs used for model training. Recent studies show that a significant number of CPUs across several machines are required to achieve sufficient throughput to saturate the GPUs, leading to increased resource and energy consumption. When the pipeline involves vocabulary generation, the preprocessing performance scales poorly due to significant row-wise synchronization overhead between different CPU cores and servers. To address this limitation, in this paper we present the design of Piper, a hardware accelerator for tabular data preprocessing, prototype it on FPGAs, and demonstrate its potential for training pipelines of commercial recommender systems. Piper achieves 4.7 sim 71.3times speedup in latency over a 128-core CPU server and outperforms a data-center GPU by 4.8sim 20.3times when using binary input. The impressive performance showcases Piper's potential to increase the efficiency of data preprocessing pipelines and significantly reduce their resource consumption.
Flex-PE: Flexible and SIMD Multi-Precision Processing Element for AI Workloads
The rapid adaptation of data driven AI models, such as deep learning inference, training, Vision Transformers (ViTs), and other HPC applications, drives a strong need for runtime precision configurable different non linear activation functions (AF) hardware support. Existing solutions support diverse precision or runtime AF reconfigurability but fail to address both simultaneously. This work proposes a flexible and SIMD multiprecision processing element (FlexPE), which supports diverse runtime configurable AFs, including sigmoid, tanh, ReLU and softmax, and MAC operation. The proposed design achieves an improved throughput of up to 16X FxP4, 8X FxP8, 4X FxP16 and 1X FxP32 in pipeline mode with 100% time multiplexed hardware. This work proposes an area efficient multiprecision iterative mode in the SIMD systolic arrays for edge AI use cases. The design delivers superior performance with up to 62X and 371X reductions in DMA reads for input feature maps and weight filters in VGG16, with an energy efficiency of 8.42 GOPS / W within the accuracy loss of 2%. The proposed architecture supports emerging 4-bit computations for DL inference while enhancing throughput in FxP8/16 modes for transformers and other HPC applications. The proposed approach enables future energy-efficient AI accelerators in edge and cloud environments.
Rethinking the shape convention of an MLP
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
MoKA: Mixture of Kronecker Adapters
Parameter-efficient fine-tuning (PEFT) is essential for reducing the computational overhead of large language models (LLMs). Low-rank family adapters are commonly used to control the parameter size efficiently while maintaining the generative power of LLMs. However, their limited expressiveness due to the rank constraint often restricts their performance on complex tasks. We propose Mixture of Kronecker Adapters (MoKA), a new generation of Kronecker adapters that addresses this limitation by modeling weight updates as a mixture of Kronecker products. Our proposed adapter leverages a gating mechanism that measures the importance of each Kronecker factor, enabling more expressive adaptation. Moreover, MoKA enables a rank flexibility that provides a better trade-off between parameter efficiency and accuracy. To ensure hardware efficiency, we reformulate Kronecker computations using standard matrix operations, allowing seamless deployment on GPU-optimized hardware. We conduct extensive experiments on instruction-tuning and commonsense reasoning tasks using low-bit quantized versions of LLaMA2-7B and LLaMA3-8B models. MoKA not only outperforms PEFT baselines, but also reduces the number of trainable parameters up to 27x, achieving state-of-the-art trade-offs between performance and parameter efficiency.
Clustering and Ranking: Diversity-preserved Instruction Selection through Expert-aligned Quality Estimation
With contributions from the open-source community, a vast amount of instruction tuning (IT) data has emerged. Given the significant resource allocation required for training and evaluating models, it is advantageous to have an efficient method for selecting high-quality IT data. However, existing methods for instruction data selection have limitations such as relying on fragile external APIs, being affected by biases in GPT models, or reducing the diversity of the selected instruction dataset. In this paper, we propose an industrial-friendly, expert-aligned and diversity-preserved instruction data selection method: Clustering and Ranking (CaR). CaR employs a two-step process: first, it ranks instruction pairs using a high-accuracy (84.25%) scoring model aligned with expert preferences; second, it preserves dataset diversity through clustering. In our experiment, CaR efficiently selected a mere 1.96% of Alpaca's IT data, yet the resulting AlpaCaR model surpassed Alpaca's performance by an average of 32.1% in GPT-4 evaluations. Moreover, we find that data selecting is a consistent paradigm whether the pre-trained model is more capable or the model parameters scaling up. Our approach employs compact models with 550M parameters and incurs just 11.2% of the financial outlay of current methods, enhancing its industrial deployability.
STAR: Synthesis of Tailored Architectures
Iterative improvement of model architectures is fundamental to deep learning: Transformers first enabled scaling, and recent advances in model hybridization have pushed the quality-efficiency frontier. However, optimizing architectures remains challenging and expensive. Current automated or manual approaches fall short, largely due to limited progress in the design of search spaces and due to the simplicity of resulting patterns and heuristics. In this work, we propose a new approach for the synthesis of tailored architectures (STAR). Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics. Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
Punica: Multi-Tenant LoRA Serving
Low-rank adaptation (LoRA) has become an important and popular method to adapt pre-trained models to specific domains. We present Punica, a system to serve multiple LoRA models in a shared GPU cluster. Punica contains a new CUDA kernel design that allows batching of GPU operations for different LoRA models. This allows a GPU to hold only a single copy of the underlying pre-trained model when serving multiple, different LoRA models, significantly enhancing GPU efficiency in terms of both memory and computation. Our scheduler consolidates multi-tenant LoRA serving workloads in a shared GPU cluster. With a fixed-sized GPU cluster, our evaluations show that Punica achieves 12x higher throughput in serving multiple LoRA models compared to state-of-the-art LLM serving systems while only adding 2ms latency per token. Punica is open source at https://github.com/punica-ai/punica .
PodAgent: A Comprehensive Framework for Podcast Generation
Existing Existing automatic audio generation methods struggle to generate podcast-like audio programs effectively. The key challenges lie in in-depth content generation, appropriate and expressive voice production. This paper proposed PodAgent, a comprehensive framework for creating audio programs. PodAgent 1) generates informative topic-discussion content by designing a Host-Guest-Writer multi-agent collaboration system, 2) builds a voice pool for suitable voice-role matching and 3) utilizes LLM-enhanced speech synthesis method to generate expressive conversational speech. Given the absence of standardized evaluation criteria for podcast-like audio generation, we developed comprehensive assessment guidelines to effectively evaluate the model's performance. Experimental results demonstrate PodAgent's effectiveness, significantly surpassing direct GPT-4 generation in topic-discussion dialogue content, achieving an 87.4% voice-matching accuracy, and producing more expressive speech through LLM-guided synthesis. Demo page: https://podcast-agent.github.io/demo/. Source code: https://github.com/yujxx/PodAgent.
Latency-Aware Differentiable Neural Architecture Search
Differentiable neural architecture search methods became popular in recent years, mainly due to their low search costs and flexibility in designing the search space. However, these methods suffer the difficulty in optimizing network, so that the searched network is often unfriendly to hardware. This paper deals with this problem by adding a differentiable latency loss term into optimization, so that the search process can tradeoff between accuracy and latency with a balancing coefficient. The core of latency prediction is to encode each network architecture and feed it into a multi-layer regressor, with the training data which can be easily collected from randomly sampling a number of architectures and evaluating them on the hardware. We evaluate our approach on NVIDIA Tesla-P100 GPUs. With 100K sampled architectures (requiring a few hours), the latency prediction module arrives at a relative error of lower than 10%. Equipped with this module, the search method can reduce the latency by 20% meanwhile preserving the accuracy. Our approach also enjoys the ability of being transplanted to a wide range of hardware platforms with very few efforts, or being used to optimizing other non-differentiable factors such as power consumption.
Towards Robust Agentic CUDA Kernel Benchmarking, Verification, and Optimization
Recent advances in large language models (LLMs) demonstrate their effectiveness in scaling test-time compute for software engineering tasks. However, these approaches often focus on high-level solutions, with limited attention to optimizing low-level CUDA kernel implementations. Additionally, existing kernel generation benchmarks suffer from exploitable loopholes and insufficient diversity in testing conditions, hindering true generalization assessment. To address these limitations, we introduce robust-kbench, a new benchmark for rigorous evaluation of kernel performance and correctness across varied scenarios. Furthermore, we present a comprehensive agentic framework that automates CUDA kernel discovery, verification, and optimization. This pipeline enables frontier LLMs to translate torch code to CUDA kernels and iteratively improve their runtime within our robust evaluation setting. Our sequential workflow first translates PyTorch code into equivalent CUDA kernels. It then optimizes their runtime using a novel evolutionary meta-generation procedure tailored to the CUDA ecosystem, guided by LLM-based verifiers for correctness and efficient filtering. Evaluated on robust-kbench, our approach produces CUDA kernels outperforming torch implementations for practical applications, including forward and backward passes. It can fuse operations and deploy various runtime optimization strategies. The verifier workflow accurately classifies incorrect kernels, enhancing hardware verification efficiency.
Zero-CPU Collection with Direct Telemetry Access
Programmable switches are driving a massive increase in fine-grained measurements. This puts significant pressure on telemetry collectors that have to process reports from many switches. Past research acknowledged this problem by either improving collectors' stack performance or by limiting the amount of data sent from switches. In this paper, we take a different and radical approach: switches are responsible for directly inserting queryable telemetry data into the collectors' memory, bypassing their CPU, and thereby improving their collection scalability. We propose to use a method we call direct telemetry access, where switches jointly write telemetry reports directly into the same collector's memory region, without coordination. Our solution, DART, is probabilistic, trading memory redundancy and query success probability for CPU resources at collectors. We prototype DART using commodity hardware such as P4 switches and RDMA NICs and show that we get high query success rates with a reasonable memory overhead. For example, we can collect INT path tracing information on a fat tree topology without a collector's CPU involvement while achieving 99.9\% query success probability and using just 300 bytes per flow.
Kubric: A scalable dataset generator
Data is the driving force of machine learning, with the amount and quality of training data often being more important for the performance of a system than architecture and training details. But collecting, processing and annotating real data at scale is difficult, expensive, and frequently raises additional privacy, fairness and legal concerns. Synthetic data is a powerful tool with the potential to address these shortcomings: 1) it is cheap 2) supports rich ground-truth annotations 3) offers full control over data and 4) can circumvent or mitigate problems regarding bias, privacy and licensing. Unfortunately, software tools for effective data generation are less mature than those for architecture design and training, which leads to fragmented generation efforts. To address these problems we introduce Kubric, an open-source Python framework that interfaces with PyBullet and Blender to generate photo-realistic scenes, with rich annotations, and seamlessly scales to large jobs distributed over thousands of machines, and generating TBs of data. We demonstrate the effectiveness of Kubric by presenting a series of 13 different generated datasets for tasks ranging from studying 3D NeRF models to optical flow estimation. We release Kubric, the used assets, all of the generation code, as well as the rendered datasets for reuse and modification.
3D radio data visualisation in open science platforms for next-generation observatories
Next-generation telescopes will bring groundbreaking discoveries but they will also present new technological challenges. The Square Kilometre Array Observatory (SKAO) will be one of the most demanding scientific infrastructures, with a projected data output of 700 PB per year to be distributed to a network of SKA Regional Centres. Current tools are not fully suited to manage such massive data volumes, therefore, new research is required to transform science archives from data providers into service providers. In this paper we examine how a science archive can deliver advanced visualisation capabilities for the SKA science archive. In particular, we have conducted a thorough exploration of existing visualisation software for astronomy and other fields to identify tools capable of addressing Big Data requirements. Using selected technologies, we have developed a prototype archive that provides access to interactive visualisations of 3D radio data through web-based interfaces, adhering to International Virtual Observatory Alliance (IVOA) recommendations to favour interoperability and Open Science practices. In addition, we discuss how current IVOA recommendations support these visualisation capabilities and how they could be expanded. Our prototype archive includes a service to generate 3D models on the fly as a server operation, enabling remote visualisations in a flexible manner; for instance, a set of parameters can be used to customise the models and their visualisation. We have used SKA precursor and pathfinder data to test its usability and scalability, concluding that remote visualisation is a viable solution for handling high-volume data. However, our prototype is constrained by memory limitations, requiring techniques to reduce memory usage.
B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory
We describe a family of architectures to support transductive inference by allowing memory to grow to a finite but a-priori unknown bound while making efficient use of finite resources for inference. Current architectures use such resources to represent data either eidetically over a finite span ("context" in Transformers), or fading over an infinite span (in State Space Models, or SSMs). Recent hybrid architectures have combined eidetic and fading memory, but with limitations that do not allow the designer or the learning process to seamlessly modulate the two, nor to extend the eidetic memory span. We leverage ideas from Stochastic Realization Theory to develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an elementary composable module. The overall architecture can be used to implement models that can access short-term eidetic memory "in-context," permanent structural memory "in-weights," fading memory "in-state," and long-term eidetic memory "in-storage" by natively incorporating retrieval from an asynchronously updated memory. We show that Transformers, existing SSMs such as Mamba, and hybrid architectures such as Jamba are special cases of B'MOJO and describe a basic implementation, to be open sourced, that can be stacked and scaled efficiently in hardware. We test B'MOJO on transductive inference tasks, such as associative recall, where it outperforms existing SSMs and Hybrid models; as a baseline, we test ordinary language modeling where B'MOJO achieves perplexity comparable to similarly-sized Transformers and SSMs up to 1.4B parameters, while being up to 10% faster to train. Finally, we show that B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens, four-fold the length of the longest sequences seen during training.
VPU-EM: An Event-based Modeling Framework to Evaluate NPU Performance and Power Efficiency at Scale
State-of-art NPUs are typically architected as a self-contained sub-system with multiple heterogeneous hardware computing modules, and a dataflow-driven programming model. There lacks well-established methodology and tools in the industry to evaluate and compare the performance of NPUs from different architectures. We present an event-based performance modeling framework, VPU-EM, targeting scalable performance evaluation of modern NPUs across diversified AI workloads. The framework adopts high-level event-based system-simulation methodology to abstract away design details for speed, while maintaining hardware pipelining, concurrency and interaction with software task scheduling. It is natively developed in Python and built to interface directly with AI frameworks such as Tensorflow, PyTorch, ONNX and OpenVINO, linking various in-house NPU graph compilers to achieve optimized full model performance. Furthermore, VPU-EM also provides the capability to model power characteristics of NPU in Power-EM mode to enable joint performance/power analysis. Using VPU-EM, we conduct performance/power analysis of models from representative neural network architecture. We demonstrate that even though this framework is developed for Intel VPU, an Intel in-house NPU IP technology, the methodology can be generalized for analysis of modern NPUs.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble-pipeline-parallelism{this url}.
Application-Agnostic Language Modeling for On-Device ASR
On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several applications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling approaches to build a single application-agnostic model. We propose two novel feed-forward architectures that find an optimal trade off between different on-device constraints. In comparison to the application-specific solution, one of our novel approaches reduces the disk size by half, while maintaining speed and accuracy of the original model.
LEONARDO: A Pan-European Pre-Exascale Supercomputer for HPC and AI Applications
A new pre-exascale computer cluster has been designed to foster scientific progress and competitive innovation across European research systems, it is called LEONARDO. This paper describes the general architecture of the system and focuses on the technologies adopted for its GPU-accelerated partition. High density processing elements, fast data movement capabilities and mature software stack collections allow the machine to run intensive workloads in a flexible and scalable way. Scientific applications from traditional High Performance Computing (HPC) as well as emerging Artificial Intelligence (AI) domains can benefit from this large apparatus in terms of time and energy to solution.
FastAttention: Extend FlashAttention2 to NPUs and Low-resource GPUs
FlashAttention series has been widely applied in the inference of large language models (LLMs). However, FlashAttention series only supports the high-level GPU architectures, e.g., Ampere and Hopper. At present, FlashAttention series is not easily transferrable to NPUs and low-resource GPUs. Moreover, FlashAttention series is inefficient for multi- NPUs or GPUs inference scenarios. In this work, we propose FastAttention which pioneers the adaptation of FlashAttention series for NPUs and low-resource GPUs to boost LLM inference efficiency. Specifically, we take Ascend NPUs and Volta-based GPUs as representatives for designing our FastAttention. We migrate FlashAttention series to Ascend NPUs by proposing a novel two-level tiling strategy for runtime speedup, tiling-mask strategy for memory saving and the tiling-AllReduce strategy for reducing communication overhead, respectively. Besides, we adapt FlashAttention for Volta-based GPUs by redesigning the operands layout in shared memory and introducing a simple yet effective CPU-GPU cooperative strategy for efficient memory utilization. On Ascend NPUs, our FastAttention can achieve a 10.7times speedup compared to the standard attention implementation. Llama-7B within FastAttention reaches up to 5.16times higher throughput than within the standard attention. On Volta architecture GPUs, FastAttention yields 1.43times speedup compared to its equivalents in xformers. Pangu-38B within FastAttention brings 1.46times end-to-end speedup using FasterTransformer. Coupled with the propose CPU-GPU cooperative strategy, FastAttention supports a maximal input length of 256K on 8 V100 GPUs. All the codes will be made available soon.
STEP: A Unified Spiking Transformer Evaluation Platform for Fair and Reproducible Benchmarking
Spiking Transformers have recently emerged as promising architectures for combining the efficiency of spiking neural networks with the representational power of self-attention. However, the lack of standardized implementations, evaluation pipelines, and consistent design choices has hindered fair comparison and principled analysis. In this paper, we introduce STEP, a unified benchmark framework for Spiking Transformers that supports a wide range of tasks, including classification, segmentation, and detection across static, event-based, and sequential datasets. STEP provides modular support for diverse components such as spiking neurons, input encodings, surrogate gradients, and multiple backends (e.g., SpikingJelly, BrainCog). Using STEP, we reproduce and evaluate several representative models, and conduct systematic ablation studies on attention design, neuron types, encoding schemes, and temporal modeling capabilities. We also propose a unified analytical model for energy estimation, accounting for spike sparsity, bitwidth, and memory access, and show that quantized ANNs may offer comparable or better energy efficiency. Our results suggest that current Spiking Transformers rely heavily on convolutional frontends and lack strong temporal modeling, underscoring the need for spike-native architectural innovations. The full code is available at: https://github.com/Fancyssc/STEP
wa-hls4ml: A Benchmark and Surrogate Models for hls4ml Resource and Latency Estimation
As machine learning (ML) is increasingly implemented in hardware to address real-time challenges in scientific applications, the development of advanced toolchains has significantly reduced the time required to iterate on various designs. These advancements have solved major obstacles, but also exposed new challenges. For example, processes that were not previously considered bottlenecks, such as hardware synthesis, are becoming limiting factors in the rapid iteration of designs. To mitigate these emerging constraints, multiple efforts have been undertaken to develop an ML-based surrogate model that estimates resource usage of ML accelerator architectures. We introduce wa-hls4ml, a benchmark for ML accelerator resource and latency estimation, and its corresponding initial dataset of over 680,000 fully connected and convolutional neural networks, all synthesized using hls4ml and targeting Xilinx FPGAs. The benchmark evaluates the performance of resource and latency predictors against several common ML model architectures, primarily originating from scientific domains, as exemplar models, and the average performance across a subset of the dataset. Additionally, we introduce GNN- and transformer-based surrogate models that predict latency and resources for ML accelerators. We present the architecture and performance of the models and find that the models generally predict latency and resources for the 75% percentile within several percent of the synthesized resources on the synthetic test dataset.
Ark: An Open-source Python-based Framework for Robot Learning
Robotics has made remarkable hardware strides-from DARPA's Urban and Robotics Challenges to the first humanoid-robot kickboxing tournament-yet commercial autonomy still lags behind progress in machine learning. A major bottleneck is software: current robot stacks demand steep learning curves, low-level C/C++ expertise, fragmented tooling, and intricate hardware integration, in stark contrast to the Python-centric, well-documented ecosystems that propelled modern AI. We introduce ARK, an open-source, Python-first robotics framework designed to close that gap. ARK presents a Gym-style environment interface that allows users to collect data, preprocess it, and train policies using state-of-the-art imitation-learning algorithms (e.g., ACT, Diffusion Policy) while seamlessly toggling between high-fidelity simulation and physical robots. A lightweight client-server architecture provides networked publisher-subscriber communication, and optional C/C++ bindings ensure real-time performance when needed. ARK ships with reusable modules for control, SLAM, motion planning, system identification, and visualization, along with native ROS interoperability. Comprehensive documentation and case studies-from manipulation to mobile navigation-demonstrate rapid prototyping, effortless hardware swapping, and end-to-end pipelines that rival the convenience of mainstream machine-learning workflows. By unifying robotics and AI practices under a common Python umbrella, ARK lowers entry barriers and accelerates research and commercial deployment of autonomous robots.
SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
lrnnx: A library for Linear RNNs
Linear recurrent neural networks (LRNNs) provide a structured approach to sequence modeling that bridges classical linear dynamical systems and modern deep learning, offering both expressive power and theoretical guarantees on stability and trainability. In recent years, multiple LRNN-based architectures have been proposed, each introducing distinct parameterizations, discretization schemes, and implementation constraints. However, existing implementations are fragmented across different software frameworks, often rely on framework-specific optimizations, and in some cases require custom CUDA kernels or lack publicly available code altogether. As a result, using, comparing, or extending LRNNs requires substantial implementation effort. To address this, we introduce lrnnx, a unified software library that implements several modern LRNN architectures under a common interface. The library exposes multiple levels of control, allowing users to work directly with core components or higher-level model abstractions. lrnnx aims to improve accessibility, reproducibility, and extensibility of LRNN research and applications. We make our code available under a permissive MIT license.
Spiking Neural Network as Adaptive Event Stream Slicer
Event-based cameras are attracting significant interest as they provide rich edge information, high dynamic range, and high temporal resolution. Many state-of-the-art event-based algorithms rely on splitting the events into fixed groups, resulting in the omission of crucial temporal information, particularly when dealing with diverse motion scenarios (\eg, high/low speed).In this work, we propose SpikeSlicer, a novel-designed plug-and-play event processing method capable of splitting events stream adaptively.SpikeSlicer utilizes a low-energy spiking neural network (SNN) to trigger event slicing. To guide the SNN to fire spikes at optimal time steps, we propose the Spiking Position-aware Loss (SPA-Loss) to modulate the neuron's state. Additionally, we develop a Feedback-Update training strategy that refines the slicing decisions using feedback from the downstream artificial neural network (ANN). Extensive experiments demonstrate that our method yields significant performance improvements in event-based object tracking and recognition. Notably, SpikeSlicer provides a brand-new SNN-ANN cooperation paradigm, where the SNN acts as an efficient, low-energy data processor to assist the ANN in improving downstream performance, injecting new perspectives and potential avenues of exploration.
Mooncake: A KVCache-centric Disaggregated Architecture for LLM Serving
Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI. It features a KVCache-centric disaggregated architecture that separates the prefill and decoding clusters. It also leverages the underutilized CPU, DRAM, and SSD resources of the GPU cluster to implement a disaggregated cache of KVCache. The core of Mooncake is its KVCache-centric scheduler, which balances maximizing overall effective throughput while meeting latency-related Service Level Objectives (SLOs). Unlike traditional studies that assume all requests will be processed, Mooncake faces challenges due to highly overloaded scenarios. To mitigate these, we developed a prediction-based early rejection policy. Experiments show that Mooncake excels in long-context scenarios. Compared to the baseline method, Mooncake can achieve up to a 525% increase in throughput in certain simulated scenarios while adhering to SLOs. Under real workloads, Mooncake's innovative architecture enables Kimi to handle 75% more requests.
Mixture of Attentions For Speculative Decoding
The growth in the number of parameters of Large Language Models (LLMs) has led to a significant surge in computational requirements, making them challenging and costly to deploy. Speculative decoding (SD) leverages smaller models to efficiently propose future tokens, which are then verified by the LLM in parallel. Small models that utilise activations from the LLM currently achieve the fastest decoding speeds. However, we identify several limitations of SD models including the lack of on-policyness during training and partial observability. To address these shortcomings, we propose a more grounded architecture for small models by introducing a Mixture of Attentions for SD. Our novel architecture can be applied in two scenarios: a conventional single device deployment and a novel client-server deployment where the small model is hosted on a consumer device and the LLM on a server. In a single-device scenario, we demonstrate state-of-the-art speedups improving EAGLE-2 by 9.5% and its acceptance length by 25%. In a client-server setting, our experiments demonstrate: 1) state-of-the-art latencies with minimal calls to the server for different network conditions, and 2) in the event of a complete disconnection, our approach can maintain higher accuracy compared to other SD methods and demonstrates advantages over API calls to LLMs, which would otherwise be unable to continue the generation process.
Hardware Acceleration of Neural Graphics
Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.
DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors
Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-Low Power (PULP) IoT processors. These compute- and memory-constrained parallel architectures need to run efficiently a wide range of algorithms, including key Non-Neural ML kernels that compete favorably with Deep Neural Networks (DNNs) in terms of accuracy under severe resource constraints. In this paper, we focus on enabling efficient parallel execution of Non-Neural ML algorithms on two RISCV-based PULP platforms, namely GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to maximize the speedup, considering two alternative Floating-Point (FP) emulation libraries on GAP8 and the native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can lead to an average 1.61x runtime improvement and 37% energy reduction compared to a standard emulation library, while the native FPU support reaches up to 32.09x and 99%, respectively. In terms of parallel speedup, our design improves the sequential execution by 7.04x on average on the targeted octa-core platforms leading to energy and latency decrease up to 87%. Lastly, we present a comparison with the ARM Cortex-M4 microcontroller (MCU), a widely adopted commercial solution for edge deployments, which is 12.87x slower and 98% less energy-efficient than PULP-OPEN.
Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer
The landscape of high-performance image generation models is currently dominated by proprietary systems, such as Nano Banana Pro and Seedream 4.0. Leading open-source alternatives, including Qwen-Image, Hunyuan-Image-3.0 and FLUX.2, are characterized by massive parameter counts (20B to 80B), making them impractical for inference, and fine-tuning on consumer-grade hardware. To address this gap, we propose Z-Image, an efficient 6B-parameter foundation generative model built upon a Scalable Single-Stream Diffusion Transformer (S3-DiT) architecture that challenges the "scale-at-all-costs" paradigm. By systematically optimizing the entire model lifecycle -- from a curated data infrastructure to a streamlined training curriculum -- we complete the full training workflow in just 314K H800 GPU hours (approx. $630K). Our few-step distillation scheme with reward post-training further yields Z-Image-Turbo, offering both sub-second inference latency on an enterprise-grade H800 GPU and compatibility with consumer-grade hardware (<16GB VRAM). Additionally, our omni-pre-training paradigm also enables efficient training of Z-Image-Edit, an editing model with impressive instruction-following capabilities. Both qualitative and quantitative experiments demonstrate that our model achieves performance comparable to or surpassing that of leading competitors across various dimensions. Most notably, Z-Image exhibits exceptional capabilities in photorealistic image generation and bilingual text rendering, delivering results that rival top-tier commercial models, thereby demonstrating that state-of-the-art results are achievable with significantly reduced computational overhead. We publicly release our code, weights, and online demo to foster the development of accessible, budget-friendly, yet state-of-the-art generative models.
Comparative Study of Large Language Model Architectures on Frontier
Large language models (LLMs) have garnered significant attention in both the AI community and beyond. Among these, the Generative Pre-trained Transformer (GPT) has emerged as the dominant architecture, spawning numerous variants. However, these variants have undergone pre-training under diverse conditions, including variations in input data, data preprocessing, and training methodologies, resulting in a lack of controlled comparative studies. Here we meticulously examine two prominent open-sourced GPT architectures, GPT-NeoX and LLaMA, leveraging the computational power of Frontier, the world's first Exascale supercomputer. Employing the same materials science text corpus and a comprehensive end-to-end pipeline, we conduct a comparative analysis of their training and downstream performance. Our efforts culminate in achieving state-of-the-art performance on a challenging materials science benchmark. Furthermore, we investigate the computation and energy efficiency, and propose a computationally efficient method for architecture design. To our knowledge, these pre-trained models represent the largest available for materials science. Our findings provide practical guidance for building LLMs on HPC platforms.
MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods).
HD3C: Efficient Medical Data Classification for Embedded Devices
Energy-efficient medical data classification is essential for modern disease screening, particularly in home and field healthcare where embedded devices are prevalent. While deep learning models achieve state-of-the-art accuracy, their substantial energy consumption and reliance on GPUs limit deployment on such platforms. We present Hyperdimensional Computing with Class-Wise Clustering (HD3C), a lightweight classification framework designed for low-power environments. HD3C encodes data into high-dimensional hypervectors, aggregates them into multiple cluster-specific prototypes, and performs classification through similarity search in hyperspace. We evaluate HD3C across three medical classification tasks; on heart sound classification, HD3C is 350times more energy-efficient than Bayesian ResNet with less than 1% accuracy difference. Moreover, HD3C demonstrates exceptional robustness to noise, limited training data, and hardware error, supported by both theoretical analysis and empirical results, highlighting its potential for reliable deployment in real-world settings. Code is available at https://github.com/jianglanwei/HD3C.
Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations
This paper proposes the paradigm of large convolutional kernels in designing modern Convolutional Neural Networks (ConvNets). We establish that employing a few large kernels, instead of stacking multiple smaller ones, can be a superior design strategy. Our work introduces a set of architecture design guidelines for large-kernel ConvNets that optimize their efficiency and performance. We propose the UniRepLKNet architecture, which offers systematical architecture design principles specifically crafted for large-kernel ConvNets, emphasizing their unique ability to capture extensive spatial information without deep layer stacking. This results in a model that not only surpasses its predecessors with an ImageNet accuracy of 88.0%, an ADE20K mIoU of 55.6%, and a COCO box AP of 56.4% but also demonstrates impressive scalability and performance on various modalities such as time-series forecasting, audio, point cloud, and video recognition. These results indicate the universal modeling abilities of large-kernel ConvNets with faster inference speed compared with vision transformers. Our findings reveal that large-kernel ConvNets possess larger effective receptive fields and a higher shape bias, moving away from the texture bias typical of smaller-kernel CNNs. All codes and models are publicly available at https://github.com/AILab-CVC/UniRepLKNet promoting further research and development in the community.
LatentMoE: Toward Optimal Accuracy per FLOP and Parameter in Mixture of Experts
Mixture of Experts (MoEs) have become a central component of many state-of-the-art open-source and proprietary large language models. Despite their widespread adoption, it remains unclear how close existing MoE architectures are to optimal with respect to inference cost, as measured by accuracy per floating-point operation and per parameter. In this work, we revisit MoE design from a hardware-software co-design perspective, grounded in empirical and theoretical considerations. We characterize key performance bottlenecks across diverse deployment regimes, spanning offline high-throughput execution and online, latency-critical inference. Guided by these insights, we introduce LatentMoE, a new model architecture resulting from systematic design exploration and optimized for maximal accuracy per unit of compute. Empirical design space exploration at scales of up to 95B parameters and over a 1T-token training horizon, together with supporting theoretical analysis, shows that LatentMoE consistently outperforms standard MoE architectures in terms of accuracy per FLOP and per parameter. Given its strong performance, the LatentMoE architecture has been adopted by the flagship Nemotron-3 Super and Ultra models and scaled to substantially larger regimes, including longer token horizons and larger model sizes, as reported in Nvidia et al. (arXiv:2512.20856).
Modeling Data Reuse in Deep Neural Networks by Taking Data-Types into Cognizance
In recent years, researchers have focused on reducing the model size and number of computations (measured as "multiply-accumulate" or MAC operations) of DNNs. The energy consumption of a DNN depends on both the number of MAC operations and the energy efficiency of each MAC operation. The former can be estimated at design time; however, the latter depends on the intricate data reuse patterns and underlying hardware architecture. Hence, estimating it at design time is challenging. This work shows that the conventional approach to estimate the data reuse, viz. arithmetic intensity, does not always correctly estimate the degree of data reuse in DNNs since it gives equal importance to all the data types. We propose a novel model, termed "data type aware weighted arithmetic intensity" (DI), which accounts for the unequal importance of different data types in DNNs. We evaluate our model on 25 state-of-the-art DNNs on two GPUs. We show that our model accurately models data-reuse for all possible data reuse patterns for different types of convolution and different types of layers. We show that our model is a better indicator of the energy efficiency of DNNs. We also show its generality using the central limit theorem.
A Survey on Hardware Accelerators for Large Language Models
Large Language Models (LLMs) have emerged as powerful tools for natural language processing tasks, revolutionizing the field with their ability to understand and generate human-like text. As the demand for more sophisticated LLMs continues to grow, there is a pressing need to address the computational challenges associated with their scale and complexity. This paper presents a comprehensive survey on hardware accelerators designed to enhance the performance and energy efficiency of Large Language Models. By examining a diverse range of accelerators, including GPUs, FPGAs, and custom-designed architectures, we explore the landscape of hardware solutions tailored to meet the unique computational demands of LLMs. The survey encompasses an in-depth analysis of architecture, performance metrics, and energy efficiency considerations, providing valuable insights for researchers, engineers, and decision-makers aiming to optimize the deployment of LLMs in real-world applications.
Flash Invariant Point Attention
Invariant Point Attention (IPA) is a key algorithm for geometry-aware modeling in structural biology, central to many protein and RNA models. However, its quadratic complexity limits the input sequence length. We introduce FlashIPA, a factorized reformulation of IPA that leverages hardware-efficient FlashAttention to achieve linear scaling in GPU memory and wall-clock time with sequence length. FlashIPA matches or exceeds standard IPA performance while substantially reducing computational costs. FlashIPA extends training to previously unattainable lengths, and we demonstrate this by re-training generative models without length restrictions and generating structures of thousands of residues. FlashIPA is available at https://github.com/flagshippioneering/flash_ipa.
SpikingBrain Technical Report: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models significantly improve long-sequence training efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Training remains stable for weeks on hundreds of MetaX C550 GPUs, with the 7B model reaching a Model FLOPs Utilization of 23.4 percent. The proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
Scope is all you need: Transforming LLMs for HPC Code
With easier access to powerful compute resources, there is a growing trend in the field of AI for software development to develop larger and larger language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size (e.g., billions of parameters) and demand expensive compute resources for training. We found this design choice confusing - why do we need large LLMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question design choices made by existing LLMs by developing smaller LLMs for specific domains - we call them domain-specific LLMs. Specifically, we start off with HPC as a domain and propose a novel tokenizer named Tokompiler, designed specifically for preprocessing code in HPC and compilation-centric tasks. Tokompiler leverages knowledge of language primitives to generate language-oriented tokens, providing a context-aware understanding of code structure while avoiding human semantics attributed to code structures completely. We applied Tokompiler to pre-train two state-of-the-art models, SPT-Code and Polycoder, for a Fortran code corpus mined from GitHub. We evaluate the performance of these models against the conventional LLMs. Results demonstrate that Tokompiler significantly enhances code completion accuracy and semantic understanding compared to traditional tokenizers in normalized-perplexity tests, down to ~1 perplexity score. This research opens avenues for further advancements in domain-specific LLMs, catering to the unique demands of HPC and compilation tasks.
Deploying Machine Learning Models to Ahead-of-Time Runtime on Edge Using MicroTVM
In the past few years, more and more AI applications have been applied to edge devices. However, models trained by data scientists with machine learning frameworks, such as PyTorch or TensorFlow, can not be seamlessly executed on edge. In this paper, we develop an end-to-end code generator parsing a pre-trained model to C source libraries for the backend using MicroTVM, a machine learning compiler framework extension addressing inference on bare metal devices. An analysis shows that specific compute-intensive operators can be easily offloaded to the dedicated accelerator with a Universal Modular Accelerator (UMA) interface, while others are processed in the CPU cores. By using the automatically generated ahead-of-time C runtime, we conduct a hand gesture recognition experiment on an ARM Cortex M4F core.
Barbarians at the Gate: How AI is Upending Systems Research
Artificial Intelligence (AI) is starting to transform the research process as we know it by automating the discovery of new solutions. Given a task, the typical AI-driven approach is (i) to generate a set of diverse solutions, and then (ii) to verify these solutions and select one that solves the problem. Crucially, this approach assumes the existence of a reliable verifier, i.e., one that can accurately determine whether a solution solves the given problem. We argue that systems research, long focused on designing and evaluating new performance-oriented algorithms, is particularly well-suited for AI-driven solution discovery. This is because system performance problems naturally admit reliable verifiers: solutions are typically implemented in real systems or simulators, and verification reduces to running these software artifacts against predefined workloads and measuring performance. We term this approach as AI-Driven Research for Systems (ADRS), which iteratively generates, evaluates, and refines solutions. Using penEvolve, an existing open-source ADRS instance, we present case studies across diverse domains, including load balancing for multi-region cloud scheduling, Mixture-of-Experts inference, LLM-based SQL queries, and transaction scheduling. In multiple instances, ADRS discovers algorithms that outperform state-of-the-art human designs (e.g., achieving up to 5.0x runtime improvements or 50% cost reductions). We distill best practices for guiding algorithm evolution, from prompt design to evaluator construction, for existing frameworks. We then discuss the broader implications for the systems community: as AI assumes a central role in algorithm design, we argue that human researchers will increasingly focus on problem formulation and strategic guidance. Our results highlight both the disruptive potential and the urgent need to adapt systems research practices in the age of AI.
EBJR: Energy-Based Joint Reasoning for Adaptive Inference
State-of-the-art deep learning models have achieved significant performance levels on various benchmarks. However, the excellent performance comes at a cost of inefficient computational cost. Light-weight architectures, on the other hand, achieve moderate accuracies, but at a much more desirable latency. This paper presents a new method of jointly using the large accurate models together with the small fast ones. To this end, we propose an Energy-Based Joint Reasoning (EBJR) framework that adaptively distributes the samples between shallow and deep models to achieve an accuracy close to the deep model, but latency close to the shallow one. Our method is applicable to out-of-the-box pre-trained models as it does not require an architecture change nor re-training. Moreover, it is easy to use and deploy, especially for cloud services. Through a comprehensive set of experiments on different down-stream tasks, we show that our method outperforms strong state-of-the-art approaches with a considerable margin. In addition, we propose specialized EBJR, an extension of our method where we create a smaller specialized side model that performs the target task only partially, but yields an even higher accuracy and faster inference. We verify the strengths of our methods with both theoretical and experimental evaluations.
SpikePoint: An Efficient Point-based Spiking Neural Network for Event Cameras Action Recognition
Event cameras are bio-inspired sensors that respond to local changes in light intensity and feature low latency, high energy efficiency, and high dynamic range. Meanwhile, Spiking Neural Networks (SNNs) have gained significant attention due to their remarkable efficiency and fault tolerance. By synergistically harnessing the energy efficiency inherent in event cameras and the spike-based processing capabilities of SNNs, their integration could enable ultra-low-power application scenarios, such as action recognition tasks. However, existing approaches often entail converting asynchronous events into conventional frames, leading to additional data mapping efforts and a loss of sparsity, contradicting the design concept of SNNs and event cameras. To address this challenge, we propose SpikePoint, a novel end-to-end point-based SNN architecture. SpikePoint excels at processing sparse event cloud data, effectively extracting both global and local features through a singular-stage structure. Leveraging the surrogate training method, SpikePoint achieves high accuracy with few parameters and maintains low power consumption, specifically employing the identity mapping feature extractor on diverse datasets. SpikePoint achieves state-of-the-art (SOTA) performance on four event-based action recognition datasets using only 16 timesteps, surpassing other SNN methods. Moreover, it also achieves SOTA performance across all methods on three datasets, utilizing approximately 0.3\% of the parameters and 0.5\% of power consumption employed by artificial neural networks (ANNs). These results emphasize the significance of Point Cloud and pave the way for many ultra-low-power event-based data processing applications.
