Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAIDE: A Vision-Driven Multi-View, Multi-Modal, Multi-Tasking Dataset for Assistive Driving Perception
Driver distraction has become a significant cause of severe traffic accidents over the past decade. Despite the growing development of vision-driven driver monitoring systems, the lack of comprehensive perception datasets restricts road safety and traffic security. In this paper, we present an AssIstive Driving pErception dataset (AIDE) that considers context information both inside and outside the vehicle in naturalistic scenarios. AIDE facilitates holistic driver monitoring through three distinctive characteristics, including multi-view settings of driver and scene, multi-modal annotations of face, body, posture, and gesture, and four pragmatic task designs for driving understanding. To thoroughly explore AIDE, we provide experimental benchmarks on three kinds of baseline frameworks via extensive methods. Moreover, two fusion strategies are introduced to give new insights into learning effective multi-stream/modal representations. We also systematically investigate the importance and rationality of the key components in AIDE and benchmarks. The project link is https://github.com/ydk122024/AIDE.
DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation
Domain-specific QA systems require not just generative fluency but high factual accuracy grounded in structured expert knowledge. While recent Retrieval-Augmented Generation (RAG) frameworks improve context recall, they struggle with integrating heterogeneous data and maintaining reasoning consistency. To address these challenges, we propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval. Our system employs a novel agentic chain-of-thought architecture to extract structured relationships from unstructured, multimodal documents, constructing dynamic knowledge graphs that enhance retrieval precision. At query time, DO-RAG fuses graph and vector retrieval results to generate context-aware responses, followed by hallucination mitigation via grounded refinement. Experimental evaluations in the database and electrical domains show near-perfect recall and over 94% answer relevancy, with DO-RAG outperforming baseline frameworks by up to 33.38%. By combining traceability, adaptability, and performance efficiency, DO-RAG offers a reliable foundation for multi-domain, high-precision QA at scale.
GoalfyMax: A Protocol-Driven Multi-Agent System for Intelligent Experience Entities
Modern enterprise environments demand intelligent systems capable of handling complex, dynamic, and multi-faceted tasks with high levels of autonomy and adaptability. However, traditional single-purpose AI systems often lack sufficient coordination, memory reuse, and task decomposition capabilities, limiting their scalability in realistic settings. To address these challenges, we present GoalfyMax, a protocol-driven framework for end-to-end multi-agent collaboration. GoalfyMax introduces a standardized Agent-to-Agent (A2A) communication layer built on the Model Context Protocol (MCP), allowing independent agents to coordinate through asynchronous, protocol-compliant interactions. It incorporates the Experience Pack (XP) architecture, a layered memory system that preserves both task rationales and execution traces, enabling structured knowledge retention and continual learning. Moreover, our system integrates advanced features including multi-turn contextual dialogue, long-short term memory modules, and dynamic safety validation, supporting robust, real-time strategy adaptation. Empirical results on complex task orchestration benchmarks and case study demonstrate that GoalfyMax achieves superior adaptability, coordination, and experience reuse compared to baseline frameworks. These findings highlight its potential as a scalable, future-ready foundation for multi-agent intelligent systems.
An Empirical Study of Testing Practices in Open Source AI Agent Frameworks and Agentic Applications
Foundation model (FM)-based AI agents are rapidly gaining adoption across diverse domains, but their inherent non-determinism and non-reproducibility pose testing and quality assurance challenges. While recent benchmarks provide task-level evaluations, there is limited understanding of how developers verify the internal correctness of these agents during development. To address this gap, we conduct the first large-scale empirical study of testing practices in the AI agent ecosystem, analyzing 39 open-source agent frameworks and 439 agentic applications. We identify ten distinct testing patterns and find that novel, agent-specific methods like DeepEval are seldom used (around 1%), while traditional patterns like negative and membership testing are widely adapted to manage FM uncertainty. By mapping these patterns to canonical architectural components of agent frameworks and agentic applications, we uncover a fundamental inversion of testing effort: deterministic components like Resource Artifacts (tools) and Coordination Artifacts (workflows) consume over 70% of testing effort, while the FM-based Plan Body receives less than 5%. Crucially, this reveals a critical blind spot, as the Trigger component (prompts) remains neglected, appearing in around 1% of all tests. Our findings offer the first empirical testing baseline in FM-based agent frameworks and agentic applications, revealing a rational but incomplete adaptation to non-determinism. To address it, framework developers should improve support for novel testing methods, application developers must adopt prompt regression testing, and researchers should explore barriers to adoption. Strengthening these practices is vital for building more robust and dependable AI agents.
CrowdHuman: A Benchmark for Detecting Human in a Crowd
Human detection has witnessed impressive progress in recent years. However, the occlusion issue of detecting human in highly crowded environments is far from solved. To make matters worse, crowd scenarios are still under-represented in current human detection benchmarks. In this paper, we introduce a new dataset, called CrowdHuman, to better evaluate detectors in crowd scenarios. The CrowdHuman dataset is large, rich-annotated and contains high diversity. There are a total of 470K human instances from the train and validation subsets, and ~22.6 persons per image, with various kinds of occlusions in the dataset. Each human instance is annotated with a head bounding-box, human visible-region bounding-box and human full-body bounding-box. Baseline performance of state-of-the-art detection frameworks on CrowdHuman is presented. The cross-dataset generalization results of CrowdHuman dataset demonstrate state-of-the-art performance on previous dataset including Caltech-USA, CityPersons, and Brainwash without bells and whistles. We hope our dataset will serve as a solid baseline and help promote future research in human detection tasks.
DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models
We introduce DA-Code, a code generation benchmark specifically designed to assess LLMs on agent-based data science tasks. This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks and demanding advanced coding skills in grounding and planning. Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks. Third, to solve the tasks, the models must utilize complex data science programming languages, to perform intricate data processing and derive the answers. We set up the benchmark in a controllable and executable environment that aligns with real-world data analysis scenarios and is scalable. The annotators meticulously design the evaluation suite to ensure the accuracy and robustness of the evaluation. We develop the DA-Agent baseline. Experiments show that although the baseline performs better than other existing frameworks, using the current best LLMs achieves only 30.5% accuracy, leaving ample room for improvement. We release our benchmark at https://da-code-bench.github.io.
MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks
Automatically generating scripts (i.e. sequences of key steps described in text) from video demonstrations and reasoning about the subsequent steps are crucial to the modern AI virtual assistants to guide humans to complete everyday tasks, especially unfamiliar ones. However, current methods for generative script learning rely heavily on well-structured preceding steps described in text and/or images or are limited to a certain domain, resulting in a disparity with real-world user scenarios. To address these limitations, we present a new benchmark challenge -- MultiScript, with two new tasks on task-oriented multimodal script learning: (1) multimodal script generation, and (2) subsequent step prediction. For both tasks, the input consists of a target task name and a video illustrating what has been done to complete the target task, and the expected output is (1) a sequence of structured step descriptions in text based on the demonstration video, and (2) a single text description for the subsequent step, respectively. Built from WikiHow, MultiScript covers multimodal scripts in videos and text descriptions for over 6,655 human everyday tasks across 19 diverse domains. To establish baseline performance on MultiScript, we propose two knowledge-guided multimodal generative frameworks that incorporate the task-related knowledge prompted from large language models such as Vicuna. Experimental results show that our proposed approaches significantly improve over the competitive baselines.
Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection
We propose an embarrassingly simple method -- instance-aware repeat factor sampling (IRFS) to address the problem of imbalanced data in long-tailed object detection. Imbalanced datasets in real-world object detection often suffer from a large disparity in the number of instances for each class. To improve the generalization performance of object detection models on rare classes, various data sampling techniques have been proposed. Repeat factor sampling (RFS) has shown promise due to its simplicity and effectiveness. Despite its efficiency, RFS completely neglects the instance counts and solely relies on the image count during re-sampling process. However, instance count may immensely vary for different classes with similar image counts. Such variation highlights the importance of both image and instance for addressing the long-tail distributions. Thus, we propose IRFS which unifies instance and image counts for the re-sampling process to be aware of different perspectives of the imbalance in long-tailed datasets. Our method shows promising results on the challenging LVIS v1.0 benchmark dataset over various architectures and backbones, demonstrating their effectiveness in improving the performance of object detection models on rare classes with a relative +50% average precision (AP) improvement over counterpart RFS. IRFS can serve as a strong baseline and be easily incorporated into existing long-tailed frameworks.
Deciphering GunType Hierarchy through Acoustic Analysis of Gunshot Recordings
The escalating rates of gun-related violence and mass shootings represent a significant threat to public safety. Timely and accurate information for law enforcement agencies is crucial in mitigating these incidents. Current commercial gunshot detection systems, while effective, often come with prohibitive costs. This research explores a cost-effective alternative by leveraging acoustic analysis of gunshot recordings, potentially obtainable from ubiquitous devices like cell phones, to not only detect gunshots but also classify the type of firearm used. This paper details a study on deciphering gun type hierarchies using a curated dataset of 3459 recordings. We investigate the fundamental acoustic characteristics of gunshots, including muzzle blasts and shockwaves, which vary based on firearm type, ammunition, and shooting direction. We propose and evaluate machine learning frameworks, including Support Vector Machines (SVMs) as a baseline and a more advanced Convolutional Neural Network (CNN) architecture for joint gunshot detection and gun type classification. Results indicate that our deep learning approach achieves a mean average precision (mAP) of 0.58 on clean labeled data, outperforming the SVM baseline (mAP 0.39). Challenges related to data quality, environmental noise, and the generalization capabilities when using noisy web-sourced data (mAP 0.35) are also discussed. The long-term vision is to develop a highly accurate, real-time system deployable on common recording devices, significantly reducing detection costs and providing critical intelligence to first responders.
CineScale: Free Lunch in High-Resolution Cinematic Visual Generation
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.
Draft Model Knows When to Stop: A Self-Verification Length Policy for Speculative Decoding
Speculative Decoding (SD) has become an important technique in accelerating the inference speed of large language models. Conventional SD methods employ a fixed draft length, which ignores the token generation difficulty across tasks. Consequently, in this paper, we address such an issue and introduce SVIP - a difficulty-aware dynamic draft length policy for speculative decoding systems. Based on a theoretical lower bound of draft token acceptance rate and its inference-time approximation, SVIP adaptively determines the lengths of draft sequences based on the entropy of each draft token distribution. Experimental results on mainstream SD benchmarks and frameworks demonstrate the superior performance of SVIP, achieving up to 20\% walltime speedup on SpecBench over baseline SD methods and 60\% speedup on MT-Bench for long-form generation of up to 8K tokens. Moreover, SVIP is totally training-free and compatible with any existing SD methods that generate draft tokens autoregressively. Experimental results also show that SVIP yields consistent walltime improvement on top of GliDe & CaPE and EAGLE-2.
TradingAgents: Multi-Agents LLM Financial Trading Framework
Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, the multi-agent systems' potential to replicate real-world trading firms' collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. TradingAgents is available at https://github.com/TauricResearch/TradingAgents.
DiffusionInst: Diffusion Model for Instance Segmentation
Diffusion frameworks have achieved comparable performance with previous state-of-the-art image generation models. Researchers are curious about its variants in discriminative tasks because of its powerful noise-to-image denoising pipeline. This paper proposes DiffusionInst, a novel framework that represents instances as instance-aware filters and formulates instance segmentation as a noise-to-filter denoising process. The model is trained to reverse the noisy groundtruth without any inductive bias from RPN. During inference, it takes a randomly generated filter as input and outputs mask in one-step or multi-step denoising. Extensive experimental results on COCO and LVIS show that DiffusionInst achieves competitive performance compared to existing instance segmentation models with various backbones, such as ResNet and Swin Transformers. We hope our work could serve as a strong baseline, which could inspire designing more efficient diffusion frameworks for challenging discriminative tasks. Our code is available in https://github.com/chenhaoxing/DiffusionInst.
Data Splits and Metrics for Method Benchmarking on Surgical Action Triplet Datasets
In addition to generating data and annotations, devising sensible data splitting strategies and evaluation metrics is essential for the creation of a benchmark dataset. This practice ensures consensus on the usage of the data, homogeneous assessment, and uniform comparison of research methods on the dataset. This study focuses on CholecT50, which is a 50 video surgical dataset that formalizes surgical activities as triplets of <instrument, verb, target>. In this paper, we introduce the standard splits for the CholecT50 and CholecT45 datasets and show how they compare with existing use of the dataset. CholecT45 is the first public release of 45 videos of CholecT50 dataset. We also develop a metrics library, ivtmetrics, for model evaluation on surgical triplets. Furthermore, we conduct a benchmark study by reproducing baseline methods in the most predominantly used deep learning frameworks (PyTorch and TensorFlow) to evaluate them using the proposed data splits and metrics and release them publicly to support future research. The proposed data splits and evaluation metrics will enable global tracking of research progress on the dataset and facilitate optimal model selection for further deployment.
LucidDreaming: Controllable Object-Centric 3D Generation
With the recent development of generative models, Text-to-3D generations have also seen significant growth. Nonetheless, achieving precise control over 3D generation continues to be an arduous task, as using text to control often leads to missing objects and imprecise locations. Contemporary strategies for enhancing controllability in 3D generation often entail the introduction of additional parameters, such as customized diffusion models. This often induces hardness in adapting to different diffusion models or creating distinct objects. In this paper, we present LucidDreaming as an effective pipeline capable of fine-grained control over 3D generation. It requires only minimal input of 3D bounding boxes, which can be deduced from a simple text prompt using a Large Language Model. Specifically, we propose clipped ray sampling to separately render and optimize objects with user specifications. We also introduce object-centric density blob bias, fostering the separation of generated objects. With individual rendering and optimizing of objects, our method excels not only in controlled content generation from scratch but also within the pre-trained NeRF scenes. In such scenarios, existing generative approaches often disrupt the integrity of the original scene, and current editing methods struggle to synthesize new content in empty spaces. We show that our method exhibits remarkable adaptability across a spectrum of mainstream Score Distillation Sampling-based 3D generation frameworks, and achieves superior alignment of 3D content when compared to baseline approaches. We also provide a dataset of prompts with 3D bounding boxes, benchmarking 3D spatial controllability.
OV-VG: A Benchmark for Open-Vocabulary Visual Grounding
Open-vocabulary learning has emerged as a cutting-edge research area, particularly in light of the widespread adoption of vision-based foundational models. Its primary objective is to comprehend novel concepts that are not encompassed within a predefined vocabulary. One key facet of this endeavor is Visual Grounding, which entails locating a specific region within an image based on a corresponding language description. While current foundational models excel at various visual language tasks, there's a noticeable absence of models specifically tailored for open-vocabulary visual grounding. This research endeavor introduces novel and challenging OV tasks, namely Open-Vocabulary Visual Grounding and Open-Vocabulary Phrase Localization. The overarching aim is to establish connections between language descriptions and the localization of novel objects. To facilitate this, we have curated a comprehensive annotated benchmark, encompassing 7,272 OV-VG images and 1,000 OV-PL images. In our pursuit of addressing these challenges, we delved into various baseline methodologies rooted in existing open-vocabulary object detection, VG, and phrase localization frameworks. Surprisingly, we discovered that state-of-the-art methods often falter in diverse scenarios. Consequently, we developed a novel framework that integrates two critical components: Text-Image Query Selection and Language-Guided Feature Attention. These modules are designed to bolster the recognition of novel categories and enhance the alignment between visual and linguistic information. Extensive experiments demonstrate the efficacy of our proposed framework, which consistently attains SOTA performance across the OV-VG task. Additionally, ablation studies provide further evidence of the effectiveness of our innovative models. Codes and datasets will be made publicly available at https://github.com/cv516Buaa/OV-VG.
LibriBrain: Over 50 Hours of Within-Subject MEG to Improve Speech Decoding Methods at Scale
LibriBrain represents the largest single-subject MEG dataset to date for speech decoding, with over 50 hours of recordings -- 5times larger than the next comparable dataset and 50times larger than most. This unprecedented `depth' of within-subject data enables exploration of neural representations at a scale previously unavailable with non-invasive methods. LibriBrain comprises high-quality MEG recordings together with detailed annotations from a single participant listening to naturalistic spoken English, covering nearly the full Sherlock Holmes canon. Designed to support advances in neural decoding, LibriBrain comes with a Python library for streamlined integration with deep learning frameworks, standard data splits for reproducibility, and baseline results for three foundational decoding tasks: speech detection, phoneme classification, and word classification. Baseline experiments demonstrate that increasing training data yields substantial improvements in decoding performance, highlighting the value of scaling up deep, within-subject datasets. By releasing this dataset, we aim to empower the research community to advance speech decoding methodologies and accelerate the development of safe, effective clinical brain-computer interfaces.
A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models
Recent studies have highlighted their proficiency in some simple tasks like writing and coding through various reasoning strategies. However, LLM agents still struggle with tasks that require comprehensive planning, a process that challenges current models and remains a critical research issue. In this study, we concentrate on travel planning, a Multi-Phases planning problem, that involves multiple interconnected stages, such as outlining, information gathering, and planning, often characterized by the need to manage various constraints and uncertainties. Existing reasoning approaches have struggled to effectively address this complex task. Our research aims to address this challenge by developing a human-like planning framework for LLM agents, i.e., guiding the LLM agent to simulate various steps that humans take when solving Multi-Phases problems. Specifically, we implement several strategies to enable LLM agents to generate a coherent outline for each travel query, mirroring human planning patterns. Additionally, we integrate Strategy Block and Knowledge Block into our framework: Strategy Block facilitates information collection, while Knowledge Block provides essential information for detailed planning. Through our extensive experiments, we demonstrate that our framework significantly improves the planning capabilities of LLM agents, enabling them to tackle the travel planning task with improved efficiency and effectiveness. Our experimental results showcase the exceptional performance of the proposed framework; when combined with GPT-4-Turbo, it attains 10times the performance gains in comparison to the baseline framework deployed on GPT-4-Turbo.
A Preliminary Study for GPT-4o on Image Restoration
OpenAI's GPT-4o model, integrating multi-modal inputs and outputs within an autoregressive architecture, has demonstrated unprecedented performance in image generation. In this work, we investigate its potential impact on the image restoration community. We present the first systematic evaluation of GPT-4o across diverse restoration tasks. Our experiments reveal that, although restoration outputs from GPT-4o are visually appealing, they often suffer from pixel-level structural fidelity when compared to ground-truth images. Common issues are variations in image proportions, shifts in object positions and quantities, and changes in viewpoint.To address it, taking image dehazing, derainning, and low-light enhancement as representative case studies, we show that GPT-4o's outputs can serve as powerful visual priors, substantially enhancing the performance of existing dehazing networks. It offers practical guidelines and a baseline framework to facilitate the integration of GPT-4o into future image restoration pipelines. We hope the study on GPT-4o image restoration will accelerate innovation in the broader field of image generation areas. To support further research, we will release GPT-4o-restored images from over 10 widely used image restoration datasets.
EmbodiedScan: A Holistic Multi-Modal 3D Perception Suite Towards Embodied AI
In the realm of computer vision and robotics, embodied agents are expected to explore their environment and carry out human instructions. This necessitates the ability to fully understand 3D scenes given their first-person observations and contextualize them into language for interaction. However, traditional research focuses more on scene-level input and output setups from a global view. To address the gap, we introduce EmbodiedScan, a multi-modal, ego-centric 3D perception dataset and benchmark for holistic 3D scene understanding. It encompasses over 5k scans encapsulating 1M ego-centric RGB-D views, 1M language prompts, 160k 3D-oriented boxes spanning over 760 categories, some of which partially align with LVIS, and dense semantic occupancy with 80 common categories. Building upon this database, we introduce a baseline framework named Embodied Perceptron. It is capable of processing an arbitrary number of multi-modal inputs and demonstrates remarkable 3D perception capabilities, both within the two series of benchmarks we set up, i.e., fundamental 3D perception tasks and language-grounded tasks, and in the wild. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
TITAN: Query-Token based Domain Adaptive Adversarial Learning
We focus on the source-free domain adaptive object detection (SF-DAOD) problem when source data is unavailable during adaptation and the model must adapt to an unlabeled target domain. The majority of approaches for the problem employ a self-supervised approach using a student-teacher (ST) framework where pseudo-labels are generated via a source-pretrained model for further fine-tuning. We observe that the performance of a student model often degrades drastically, due to the collapse of the teacher model, primarily caused by high noise in pseudo-labels, resulting from domain bias, discrepancies, and a significant domain shift across domains. To obtain reliable pseudo-labels, we propose a Target-based Iterative Query-Token Adversarial Network (TITAN), which separates the target images into two subsets: those similar to the source (easy) and those dissimilar (hard). We propose a strategy to estimate variance to partition the target domain. This approach leverages the insight that higher detection variances correspond to higher recall and greater similarity to the source domain. Also, we incorporate query-token-based adversarial modules into a student-teacher baseline framework to reduce the domain gaps between two feature representations. Experiments conducted on four natural imaging datasets and two challenging medical datasets have substantiated the superior performance of TITAN compared to existing state-of-the-art (SOTA) methodologies. We report an mAP improvement of +22.7, +22.2, +21.1, and +3.7 percent over the current SOTA on C2F, C2B, S2C, and K2C benchmarks, respectively.
TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.
SMTPD: A New Benchmark for Temporal Prediction of Social Media Popularity
Social media popularity prediction task aims to predict the popularity of posts on social media platforms, which has a positive driving effect on application scenarios such as content optimization, digital marketing and online advertising. Though many studies have made significant progress, few of them pay much attention to the integration between popularity prediction with temporal alignment. In this paper, with exploring YouTube's multilingual and multi-modal content, we construct a new social media temporal popularity prediction benchmark, namely SMTPD, and suggest a baseline framework for temporal popularity prediction. Through data analysis and experiments, we verify that temporal alignment and early popularity play crucial roles in social media popularity prediction for not only deepening the understanding of temporal dynamics of popularity in social media but also offering a suggestion about developing more effective prediction models in this field. Code is available at https://github.com/zhuwei321/SMTPD.
Godot Reinforcement Learning Agents
We present Godot Reinforcement Learning (RL) Agents, an open-source interface for developing environments and agents in the Godot Game Engine. The Godot RL Agents interface allows the design, creation and learning of agent behaviors in challenging 2D and 3D environments with various on-policy and off-policy Deep RL algorithms. We provide a standard Gym interface, with wrappers for learning in the Ray RLlib and Stable Baselines RL frameworks. This allows users access to over 20 state of the art on-policy, off-policy and multi-agent RL algorithms. The framework is a versatile tool that allows researchers and game designers the ability to create environments with discrete, continuous and mixed action spaces. The interface is relatively performant, with 12k interactions per second on a high end laptop computer, when parallized on 4 CPU cores. An overview video is available here: https://youtu.be/g1MlZSFqIj4
