new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 11

VDOT: Efficient Unified Video Creation via Optimal Transport Distillation

The rapid development of generative models has significantly advanced image and video applications. Among these, video creation, aimed at generating videos under various conditions, has gained substantial attention. However, existing video creation models either focus solely on a few specific conditions or suffer from excessively long generation times due to complex model inference, making them impractical for real-world applications. To mitigate these issues, we propose an efficient unified video creation model, named VDOT. Concretely, we model the training process with the distribution matching distillation (DMD) paradigm. Instead of using the Kullback-Leibler (KL) minimization, we additionally employ a novel computational optimal transport (OT) technique to optimize the discrepancy between the real and fake score distributions. The OT distance inherently imposes geometric constraints, mitigating potential zero-forcing or gradient collapse issues that may arise during KL-based distillation within the few-step generation scenario, and thus, enhances the efficiency and stability of the distillation process. Further, we integrate a discriminator to enable the model to perceive real video data, thereby enhancing the quality of generated videos. To support training unified video creation models, we propose a fully automated pipeline for video data annotation and filtering that accommodates multiple video creation tasks. Meanwhile, we curate a unified testing benchmark, UVCBench, to standardize evaluation. Experiments demonstrate that our 4-step VDOT outperforms or matches other baselines with 100 denoising steps.

  • 7 authors
·
Dec 7, 2025

Improved Distribution Matching Distillation for Fast Image Synthesis

Recent approaches have shown promises distilling diffusion models into efficient one-step generators. Among them, Distribution Matching Distillation (DMD) produces one-step generators that match their teacher in distribution, without enforcing a one-to-one correspondence with the sampling trajectories of their teachers. However, to ensure stable training, DMD requires an additional regression loss computed using a large set of noise-image pairs generated by the teacher with many steps of a deterministic sampler. This is costly for large-scale text-to-image synthesis and limits the student's quality, tying it too closely to the teacher's original sampling paths. We introduce DMD2, a set of techniques that lift this limitation and improve DMD training. First, we eliminate the regression loss and the need for expensive dataset construction. We show that the resulting instability is due to the fake critic not estimating the distribution of generated samples accurately and propose a two time-scale update rule as a remedy. Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images. This lets us train the student model on real data, mitigating the imperfect real score estimation from the teacher model, and enhancing quality. Lastly, we modify the training procedure to enable multi-step sampling. We identify and address the training-inference input mismatch problem in this setting, by simulating inference-time generator samples during training time. Taken together, our improvements set new benchmarks in one-step image generation, with FID scores of 1.28 on ImageNet-64x64 and 8.35 on zero-shot COCO 2014, surpassing the original teacher despite a 500X reduction in inference cost. Further, we show our approach can generate megapixel images by distilling SDXL, demonstrating exceptional visual quality among few-step methods.

  • 7 authors
·
May 23, 2024 1

From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition

Visual recognition models are prone to learning spurious correlations induced by a biased training set where certain conditions B (\eg, Indoors) are over-represented in certain classes Y (\eg, Big Dogs). Synthetic data from off-the-shelf large-scale generative models offers a promising direction to mitigate this issue by augmenting underrepresented subgroups in the real dataset. However, by using a mixed distribution of real and synthetic data, we introduce another source of bias due to distributional differences between synthetic and real data (\eg synthetic artifacts). As we will show, prior work's approach for using synthetic data to resolve the model's bias toward B do not correct the model's bias toward the pair (B, G), where G denotes whether the sample is real or synthetic. Thus, the model could simply learn signals based on the pair (B, G) (\eg, Synthetic Indoors) to make predictions about Y (\eg, Big Dogs). To address this issue, we propose a simple, easy-to-implement, two-step training pipeline that we call From Fake to Real (FFR). The first step of FFR pre-trains a model on balanced synthetic data to learn robust representations across subgroups. In the second step, FFR fine-tunes the model on real data using ERM or common loss-based bias mitigation methods. By training on real and synthetic data separately, FFR does not expose the model to the statistical differences between real and synthetic data and thus avoids the issue of bias toward the pair (B, G). Our experiments show that FFR improves worst group accuracy over the state-of-the-art by up to 20\% over three datasets. Code available: https://github.com/mqraitem/From-Fake-to-Real

  • 3 authors
·
Aug 8, 2023

So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection

Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.

  • 11 authors
·
May 24, 2025

Seeing Before Reasoning: A Unified Framework for Generalizable and Explainable Fake Image Detection

Detecting AI-generated images with multimodal large language models (MLLMs) has gained increasing attention, due to their rich world knowledge, common-sense reasoning, and potential for explainability. However, naively applying those MLLMs for detection often leads to suboptimal performance. We argue that the root of this failure lies in a fundamental mismatch: MLLMs are asked to reason about fakes before they can truly see them. First, they do not really see: existing MLLMs' vision encoders are primarily optimized for semantic-oriented recognition rather than the perception of low-level signals, leaving them insensitive to subtle forgery traces. Without access to reliable perceptual evidence, the model grounds its judgment on incomplete and limited visual observations. Second, existing finetuning data for detection typically uses narrow, instruction-style formats, which diverge sharply from the diverse, heterogeneous distributions seen in pretraining. In the absence of meaningful visual cues, the model therefore exploits these linguistic shortcuts, resulting in catastrophic forgetting of pretrained knowledge (even the basic dialogue capabilities). In response, we advocate for a new paradigm: seeing before reasoning. We propose that MLLMs should first be trained to perceive artifacts-strengthening their artifact-aware visual perception-so that subsequent reasoning is grounded in actual observations. We therefore propose Forensic-Chat, a generalizable, explainable, and still-conversational (for multi-round dialogue) assistant for fake image detection. We also propose ExplainFake-Bench, a benchmark tailored for the evaluation of the MLLM's explainability for image forensics from five key aspects. Extensive experiments show its superiority of generalization and genuinely reliable explainability.

  • 10 authors
·
Sep 29, 2025

Evading DeepFake Detectors via Adversarial Statistical Consistency

In recent years, as various realistic face forgery techniques known as DeepFake improves by leaps and bounds,more and more DeepFake detection techniques have been proposed. These methods typically rely on detecting statistical differences between natural (i.e., real) and DeepFakegenerated images in both spatial and frequency domains. In this work, we propose to explicitly minimize the statistical differences to evade state-of-the-art DeepFake detectors. To this end, we propose a statistical consistency attack (StatAttack) against DeepFake detectors, which contains two main parts. First, we select several statistical-sensitive natural degradations (i.e., exposure, blur, and noise) and add them to the fake images in an adversarial way. Second, we find that the statistical differences between natural and DeepFake images are positively associated with the distribution shifting between the two kinds of images, and we propose to use a distribution-aware loss to guide the optimization of different degradations. As a result, the feature distributions of generated adversarial examples is close to the natural images.Furthermore, we extend the StatAttack to a more powerful version, MStatAttack, where we extend the single-layer degradation to multi-layer degradations sequentially and use the loss to tune the combination weights jointly. Comprehensive experimental results on four spatial-based detectors and two frequency-based detectors with four datasets demonstrate the effectiveness of our proposed attack method in both white-box and black-box settings.

  • 6 authors
·
Apr 23, 2023

Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks

Recent advancements in image synthesis, particularly with the advent of GAN and Diffusion models, have amplified public concerns regarding the dissemination of disinformation. To address such concerns, numerous AI-generated Image (AIGI) Detectors have been proposed and achieved promising performance in identifying fake images. However, there still lacks a systematic understanding of the adversarial robustness of AIGI detectors. In this paper, we examine the vulnerability of state-of-the-art AIGI detectors against adversarial attack under white-box and black-box settings, which has been rarely investigated so far. To this end, we propose a new method to attack AIGI detectors. First, inspired by the obvious difference between real images and fake images in the frequency domain, we add perturbations under the frequency domain to push the image away from its original frequency distribution. Second, we explore the full posterior distribution of the surrogate model to further narrow this gap between heterogeneous AIGI detectors, e.g., transferring adversarial examples across CNNs and ViTs. This is achieved by introducing a novel post-train Bayesian strategy that turns a single surrogate into a Bayesian one, capable of simulating diverse victim models using one pre-trained surrogate, without the need for re-training. We name our method as Frequency-based Post-train Bayesian Attack, or FPBA. Through FPBA, we demonstrate that adversarial attacks pose a real threat to AIGI detectors. FPBA can deliver successful black-box attacks across various detectors, generators, defense methods, and even evade cross-generator and compressed image detection, which are crucial real-world detection scenarios. Our code is available at https://github.com/onotoa/fpba.

  • 7 authors
·
Jul 30, 2024

What to Remember: Self-Adaptive Continual Learning for Audio Deepfake Detection

The rapid evolution of speech synthesis and voice conversion has raised substantial concerns due to the potential misuse of such technology, prompting a pressing need for effective audio deepfake detection mechanisms. Existing detection models have shown remarkable success in discriminating known deepfake audio, but struggle when encountering new attack types. To address this challenge, one of the emergent effective approaches is continual learning. In this paper, we propose a continual learning approach called Radian Weight Modification (RWM) for audio deepfake detection. The fundamental concept underlying RWM involves categorizing all classes into two groups: those with compact feature distributions across tasks, such as genuine audio, and those with more spread-out distributions, like various types of fake audio. These distinctions are quantified by means of the in-class cosine distance, which subsequently serves as the basis for RWM to introduce a trainable gradient modification direction for distinct data types. Experimental evaluations against mainstream continual learning methods reveal the superiority of RWM in terms of knowledge acquisition and mitigating forgetting in audio deepfake detection. Furthermore, RWM's applicability extends beyond audio deepfake detection, demonstrating its potential significance in diverse machine learning domains such as image recognition.

  • 6 authors
·
Dec 15, 2023

Formalizing and Estimating Distribution Inference Risks

Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning -- namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks. Code is available at https://github.com/iamgroot42/FormEstDistRisks

  • 2 authors
·
Sep 13, 2021

Going Beyond Conventional OOD Detection

Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications. Deep learning models can often misidentify OOD samples as in-distribution (ID) samples. This vulnerability worsens in the presence of spurious correlation in the training set. Likewise, in fine-grained classification settings, detection of fine-grained OOD samples becomes inherently challenging due to their high similarity to ID samples. However, current research on OOD detection has largely ignored these challenging scenarios, focusing instead on relatively easier (conventional) cases. In this work, we present a unified Approach to Spurious, fine-grained, and Conventional OOD Detection (ASCOOD). First, we propose synthesizing virtual outliers from ID data by approximating the destruction of invariant features. To this end, we identify invariant features with the pixel attribution method using the model being learned. This approach eliminates the burden of curating external OOD datasets. Then, we simultaneously incentivize ID classification and predictive uncertainty towards virtual outliers leveraging standardized feature representation. Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes. Extensive experiments across seven datasets demonstrate the merit of ASCOOD in spurious, fine-grained, and conventional settings. The code is available at: https://github.com/sudarshanregmi/ASCOOD/

  • 1 authors
·
Nov 16, 2024

Text-image guided Diffusion Model for generating Deepfake celebrity interactions

Deepfake images are fast becoming a serious concern due to their realism. Diffusion models have recently demonstrated highly realistic visual content generation, which makes them an excellent potential tool for Deepfake generation. To curb their exploitation for Deepfakes, it is imperative to first explore the extent to which diffusion models can be used to generate realistic content that is controllable with convenient prompts. This paper devises and explores a novel method in that regard. Our technique alters the popular stable diffusion model to generate a controllable high-quality Deepfake image with text and image prompts. In addition, the original stable model lacks severely in generating quality images that contain multiple persons. The modified diffusion model is able to address this problem, it add input anchor image's latent at the beginning of inferencing rather than Gaussian random latent as input. Hence, we focus on generating forged content for celebrity interactions, which may be used to spread rumors. We also apply Dreambooth to enhance the realism of our fake images. Dreambooth trains the pairing of center words and specific features to produce more refined and personalized output images. Our results show that with the devised scheme, it is possible to create fake visual content with alarming realism, such that the content can serve as believable evidence of meetings between powerful political figures.

  • 4 authors
·
Sep 26, 2023

Random Sampling Plus Fake Data: Multidimensional Frequency Estimates With Local Differential Privacy

With local differential privacy (LDP), users can privatize their data and thus guarantee privacy properties before transmitting it to the server (a.k.a. the aggregator). One primary objective of LDP is frequency (or histogram) estimation, in which the aggregator estimates the number of users for each possible value. In practice, when a study with rich content on a population is desired, the interest is in the multiple attributes of the population, that is to say, in multidimensional data (d geq 2). However, contrary to the problem of frequency estimation of a single attribute (the majority of the works), the multidimensional aspect imposes to pay particular attention to the privacy budget. This one can indeed grow extremely quickly due to the composition theorem. To the authors' knowledge, two solutions seem to stand out for this task: 1) splitting the privacy budget for each attribute, i.e., send each value with fracε{d}-LDP (Spl), and 2) random sampling a single attribute and spend all the privacy budget to send it with ε-LDP (Smp). Although Smp adds additional sampling error, it has proven to provide higher data utility than the former Spl solution. However, we argue that aggregators (who are also seen as attackers) are aware of the sampled attribute and its LDP value, which is protected by a "less strict" e^ε probability bound (rather than e^{ε/d}). This way, we propose a solution named Random Sampling plus Fake Data (RS+FD), which allows creating uncertainty over the sampled attribute by generating fake data for each non-sampled attribute; RS+FD further benefits from amplification by sampling. We theoretically and experimentally validate our proposed solution on both synthetic and real-world datasets to show that RS+FD achieves nearly the same or better utility than the state-of-the-art Smp solution.

  • 4 authors
·
Sep 15, 2021

WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models

The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.

  • 5 authors
·
Jun 7, 2023 1

Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation

With the rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, synthetic images have become increasingly prevalent in everyday life, posing new challenges for authenticity assessment and detection. Despite the effectiveness of existing methods in evaluating image authenticity and locating forgeries, these approaches often lack human interpretability and do not fully address the growing complexity of synthetic data. To tackle these challenges, we introduce FakeVLM, a specialized large multimodal model designed for both general synthetic image and DeepFake detection tasks. FakeVLM not only excels in distinguishing real from fake images but also provides clear, natural language explanations for image artifacts, enhancing interpretability. Additionally, we present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language. FakeVLM demonstrates performance comparable to expert models while eliminating the need for additional classifiers, making it a robust solution for synthetic data detection. Extensive evaluations across multiple datasets confirm the superiority of FakeVLM in both authenticity classification and artifact explanation tasks, setting a new benchmark for synthetic image detection. The dataset and code will be released in: https://github.com/opendatalab/FakeVLM.

  • 10 authors
·
Mar 19, 2025 3

4.5 Million (Suspected) Fake Stars in GitHub: A Growing Spiral of Popularity Contests, Scams, and Malware

GitHub, the de-facto platform for open-source software development, provides a set of social-media-like features to signal high-quality repositories. Among them, the star count is the most widely used popularity signal, but it is also at risk of being artificially inflated (i.e., faked), decreasing its value as a decision-making signal and posing a security risk to all GitHub users. In this paper, we present a systematic, global, and longitudinal measurement study of fake stars in GitHub. To this end, we build StarScout, a scalable tool able to detect anomalous starring behaviors (i.e., low activity and lockstep) across the entire GitHub metadata. Analyzing the data collected using StarScout, we find that: (1) fake-star-related activities have rapidly surged since 2024; (2) the user profile characteristics of fake stargazers are not distinct from average GitHub users, but many of them have highly abnormal activity patterns; (3) the majority of fake stars are used to promote short-lived malware repositories masquerading as pirating software, game cheats, or cryptocurrency bots; (4) some repositories may have acquired fake stars for growth hacking, but fake stars only have a promotion effect in the short term (i.e., less than two months) and become a burden in the long term. Our study has implications for platform moderators, open-source practitioners, and supply chain security researchers.

  • 6 authors
·
Dec 17, 2024

Meta OOD Learning for Continuously Adaptive OOD Detection

Out-of-distribution (OOD) detection is crucial to modern deep learning applications by identifying and alerting about the OOD samples that should not be tested or used for making predictions. Current OOD detection methods have made significant progress when in-distribution (ID) and OOD samples are drawn from static distributions. However, this can be unrealistic when applied to real-world systems which often undergo continuous variations and shifts in ID and OOD distributions over time. Therefore, for an effective application in real-world systems, the development of OOD detection methods that can adapt to these dynamic and evolving distributions is essential. In this paper, we propose a novel and more realistic setting called continuously adaptive out-of-distribution (CAOOD) detection which targets on developing an OOD detection model that enables dynamic and quick adaptation to a new arriving distribution, with insufficient ID samples during deployment time. To address CAOOD, we develop meta OOD learning (MOL) by designing a learning-to-adapt diagram such that a good initialized OOD detection model is learned during the training process. In the testing process, MOL ensures OOD detection performance over shifting distributions by quickly adapting to new distributions with a few adaptations. Extensive experiments on several OOD benchmarks endorse the effectiveness of our method in preserving both ID classification accuracy and OOD detection performance on continuously shifting distributions.

  • 4 authors
·
Sep 20, 2023