new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 6

GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks

The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large Global, multi-Technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.

  • 18 authors
·
Sep 20, 2024

Chest ImaGenome Dataset for Clinical Reasoning

Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findings. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global "weak" labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe 242,072 images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) 1,256 combinations of relation annotations between 29 CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over 670,000 localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from 500 unique patients.

  • 12 authors
·
Jul 31, 2021

Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels

ImageNet has been arguably the most popular image classification benchmark, but it is also the one with a significant level of label noise. Recent studies have shown that many samples contain multiple classes, despite being assumed to be a single-label benchmark. They have thus proposed to turn ImageNet evaluation into a multi-label task, with exhaustive multi-label annotations per image. However, they have not fixed the training set, presumably because of a formidable annotation cost. We argue that the mismatch between single-label annotations and effectively multi-label images is equally, if not more, problematic in the training setup, where random crops are applied. With the single-label annotations, a random crop of an image may contain an entirely different object from the ground truth, introducing noisy or even incorrect supervision during training. We thus re-label the ImageNet training set with multi-labels. We address the annotation cost barrier by letting a strong image classifier, trained on an extra source of data, generate the multi-labels. We utilize the pixel-wise multi-label predictions before the final pooling layer, in order to exploit the additional location-specific supervision signals. Training on the re-labeled samples results in improved model performances across the board. ResNet-50 attains the top-1 classification accuracy of 78.9% on ImageNet with our localized multi-labels, which can be further boosted to 80.2% with the CutMix regularization. We show that the models trained with localized multi-labels also outperforms the baselines on transfer learning to object detection and instance segmentation tasks, and various robustness benchmarks. The re-labeled ImageNet training set, pre-trained weights, and the source code are available at {https://github.com/naver-ai/relabel_imagenet}.

  • 6 authors
·
Jan 13, 2021

Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels

Many existing FL methods assume clients with fully-labeled data, while in realistic settings, clients have limited labels due to the expensive and laborious process of labeling. Limited labeled local data of the clients often leads to their local model having poor generalization abilities to their larger unlabeled local data, such as having class-distribution mismatch with the unlabeled data. As a result, clients may instead look to benefit from the global model trained across clients to leverage their unlabeled data, but this also becomes difficult due to data heterogeneity across clients. In our work, we propose FedLabel where clients selectively choose the local or global model to pseudo-label their unlabeled data depending on which is more of an expert of the data. We further utilize both the local and global models' knowledge via global-local consistency regularization which minimizes the divergence between the two models' outputs when they have identical pseudo-labels for the unlabeled data. Unlike other semi-supervised FL baselines, our method does not require additional experts other than the local or global model, nor require additional parameters to be communicated. We also do not assume any server-labeled data or fully labeled clients. For both cross-device and cross-silo settings, we show that FedLabel outperforms other semi-supervised FL baselines by 8-24%, and even outperforms standard fully supervised FL baselines (100% labeled data) with only 5-20% of labeled data.

  • 3 authors
·
Jul 17, 2023

RoofNet: A Global Multimodal Dataset for Roof Material Classification

Natural disasters are increasing in frequency and severity, causing hundreds of billions of dollars in damage annually and posing growing threats to infrastructure and human livelihoods. Accurate data on roofing materials is critical for modeling building vulnerability to natural hazards such as earthquakes, floods, wildfires, and hurricanes, yet such data remain unavailable. To address this gap, we introduce RoofNet, the largest and most geographically diverse novel multimodal dataset to date, comprising over 51,500 samples from 184 geographically diverse sites pairing high-resolution Earth Observation (EO) imagery with curated text annotations for global roof material classification. RoofNet includes geographically diverse satellite imagery labeled with 14 key roofing types -- such as asphalt shingles, clay tiles, and metal sheets -- and is designed to enhance the fidelity of global exposure datasets through vision-language modeling (VLM). We sample EO tiles from climatically and architecturally distinct regions to construct a representative dataset. A subset of 6,000 images was annotated in collaboration with domain experts to fine-tune a VLM. We used geographic- and material-aware prompt tuning to enhance class separability. The fine-tuned model was then applied to the remaining EO tiles, with predictions refined through rule-based and human-in-the-loop verification. In addition to material labels, RoofNet provides rich metadata including roof shape, footprint area, solar panel presence, and indicators of mixed roofing materials (e.g., HVAC systems). RoofNet supports scalable, AI-driven risk assessment and serves as a downstream benchmark for evaluating model generalization across regions -- offering actionable insights for insurance underwriting, disaster preparedness, and infrastructure policy planning.

  • 2 authors
·
May 25, 2025

Image Labels Are All You Need for Coarse Seagrass Segmentation

Seagrass meadows serve as critical carbon sinks, but accurately estimating the amount of carbon they store requires knowledge of the seagrass species present. Using underwater and surface vehicles equipped with machine learning algorithms can help to accurately estimate the composition and extent of seagrass meadows at scale. However, previous approaches for seagrass detection and classification have required full supervision from patch-level labels. In this paper, we reframe seagrass classification as a weakly supervised coarse segmentation problem where image-level labels are used during training (25 times fewer labels compared to patch-level labeling) and patch-level outputs are obtained at inference time. To this end, we introduce SeaFeats, an architecture that uses unsupervised contrastive pretraining and feature similarity to separate background and seagrass patches, and SeaCLIP, a model that showcases the effectiveness of large language models as a supervisory signal in domain-specific applications. We demonstrate that an ensemble of SeaFeats and SeaCLIP leads to highly robust performance, with SeaCLIP conservatively predicting the background class to avoid false seagrass misclassifications in blurry or dark patches. Our method outperforms previous approaches that require patch-level labels on the multi-species 'DeepSeagrass' dataset by 6.8% (absolute) for the class-weighted F1 score, and by 12.1% (absolute) F1 score for seagrass presence/absence on the 'Global Wetlands' dataset. We also present two case studies for real-world deployment: outlier detection on the Global Wetlands dataset, and application of our method on imagery collected by FloatyBoat, an autonomous surface vehicle.

  • 5 authors
·
Mar 2, 2023

GTPBD: A Fine-Grained Global Terraced Parcel and Boundary Dataset

Agricultural parcels serve as basic units for conducting agricultural practices and applications, which is vital for land ownership registration, food security assessment, soil erosion monitoring, etc. However, existing agriculture parcel extraction studies only focus on mid-resolution mapping or regular plain farmlands while lacking representation of complex terraced terrains due to the demands of precision agriculture.In this paper, we introduce a more fine-grained terraced parcel dataset named GTPBD (Global Terraced Parcel and Boundary Dataset), which is the first fine-grained dataset covering major worldwide terraced regions with more than 200,000 complex terraced parcels with manual annotation. GTPBD comprises 47,537 high-resolution images with three-level labels, including pixel-level boundary labels, mask labels, and parcel labels. It covers seven major geographic zones in China and transcontinental climatic regions around the world.Compared to the existing datasets, the GTPBD dataset brings considerable challenges due to the: (1) terrain diversity; (2) complex and irregular parcel objects; and (3) multiple domain styles. Our proposed GTPBD dataset is suitable for four different tasks, including semantic segmentation, edge detection, terraced parcel extraction, and unsupervised domain adaptation (UDA) tasks.Accordingly, we benchmark the GTPBD dataset on eight semantic segmentation methods, four edge extraction methods, three parcel extraction methods, and five UDA methods, along with a multi-dimensional evaluation framework integrating pixel-level and object-level metrics. GTPBD fills a critical gap in terraced remote sensing research, providing a basic infrastructure for fine-grained agricultural terrain analysis and cross-scenario knowledge transfer.

  • 7 authors
·
Jul 19, 2025

ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language Geo-Foundation Models

An in-depth comprehension of global land cover is essential in Earth observation, forming the foundation for a multitude of applications. Although remote sensing technology has advanced rapidly, leading to a proliferation of satellite imagery, the inherent complexity of these images often makes them difficult for non-expert users to understand. Natural language, as a carrier of human knowledge, can be a bridge between common users and complicated satellite imagery. In this context, we introduce a global-scale, high-quality image-text dataset for remote sensing, providing natural language descriptions for Sentinel-2 data to facilitate the understanding of satellite imagery for common users. Specifically, we utilize Sentinel-2 data for its global coverage as the foundational image source, employing semantic segmentation labels from the European Space Agency's (ESA) WorldCover project to enrich the descriptions of land covers. By conducting in-depth semantic analysis, we formulate detailed prompts to elicit rich descriptions from ChatGPT. To enhance the dataset's quality, we introduce the manual verification process. This step involves manual inspection and correction to refine the dataset, thus significantly improving its accuracy and quality. Finally, we offer the community ChatEarthNet, a large-scale image-text dataset characterized by global coverage, high quality, wide-ranging diversity, and detailed descriptions. ChatEarthNet consists of 163,488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10,000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training vision-language geo-foundation models and evaluating large vision-language models for remote sensing. The dataset will be made publicly available.

  • 4 authors
·
Feb 17, 2024

Histopathological Image Classification based on Self-Supervised Vision Transformer and Weak Labels

Whole Slide Image (WSI) analysis is a powerful method to facilitate the diagnosis of cancer in tissue samples. Automating this diagnosis poses various issues, most notably caused by the immense image resolution and limited annotations. WSIs commonly exhibit resolutions of 100Kx100K pixels. Annotating cancerous areas in WSIs on the pixel level is prohibitively labor-intensive and requires a high level of expert knowledge. Multiple instance learning (MIL) alleviates the need for expensive pixel-level annotations. In MIL, learning is performed on slide-level labels, in which a pathologist provides information about whether a slide includes cancerous tissue. Here, we propose Self-ViT-MIL, a novel approach for classifying and localizing cancerous areas based on slide-level annotations, eliminating the need for pixel-wise annotated training data. Self-ViT- MIL is pre-trained in a self-supervised setting to learn rich feature representation without relying on any labels. The recent Vision Transformer (ViT) architecture builds the feature extractor of Self-ViT-MIL. For localizing cancerous regions, a MIL aggregator with global attention is utilized. To the best of our knowledge, Self-ViT- MIL is the first approach to introduce self-supervised ViTs in MIL-based WSI analysis tasks. We showcase the effectiveness of our approach on the common Camelyon16 dataset. Self-ViT-MIL surpasses existing state-of-the-art MIL-based approaches in terms of accuracy and area under the curve (AUC).

  • 6 authors
·
Oct 17, 2022

So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification

Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named "So2Sat LCZ42," which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from http://doi.org/10.14459/2018mp1483140.

  • 17 authors
·
Dec 19, 2019

DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features

Image Retrieval is a fundamental task of obtaining images similar to the query one from a database. A common image retrieval practice is to firstly retrieve candidate images via similarity search using global image features and then re-rank the candidates by leveraging their local features. Previous learning-based studies mainly focus on either global or local image representation learning to tackle the retrieval task. In this paper, we abandon the two-stage paradigm and seek to design an effective single-stage solution by integrating local and global information inside images into compact image representations. Specifically, we propose a Deep Orthogonal Local and Global (DOLG) information fusion framework for end-to-end image retrieval. It attentively extracts representative local information with multi-atrous convolutions and self-attention at first. Components orthogonal to the global image representation are then extracted from the local information. At last, the orthogonal components are concatenated with the global representation as a complementary, and then aggregation is performed to generate the final representation. The whole framework is end-to-end differentiable and can be trained with image-level labels. Extensive experimental results validate the effectiveness of our solution and show that our model achieves state-of-the-art image retrieval performances on Revisited Oxford and Paris datasets.

  • 8 authors
·
Aug 5, 2021

Positive Label Is All You Need for Multi-Label Classification

Multi-label classification (MLC) suffers from the inevitable label noise in training data due to the difficulty in annotating various semantic labels in each image. To mitigate the influence of noisy labels, existing methods mainly devote to identifying and correcting the label mistakes via a trained MLC model. However, these methods still involve annoying noisy labels in training, which can result in imprecise recognition of noisy labels and weaken the performance. In this paper, considering that the negative labels are substantially more than positive labels, and most noisy labels are from the negative labels, we directly discard all the negative labels in the dataset, and propose a new method dubbed positive and unlabeled multi-label classification (PU-MLC). By extending positive-unlabeled learning into MLC task, our method trains model with only positive labels and unlabeled data, and introduces adaptive re-balance factor and adaptive temperature coefficient in the loss function to alleviate the catastrophic imbalance in label distribution and over-smoothing of probabilities in training. Furthermore, to capture both local and global dependencies in the image, we also introduce a local-global convolution module, which supplements global information into existing convolution layers with no retraining of backbone required. Our PU-MLC is simple and effective, and it is applicable to both MLC and MLC with partial labels (MLC-PL) tasks. Extensive experiments on MS-COCO and PASCAL VOC datasets demonstrate that our PU-MLC achieves significantly improvements on both MLC and MLC-PL settings with even fewer annotations. Code will be released.

  • 3 authors
·
Jun 28, 2023

BEVPlace++: Fast, Robust, and Lightweight LiDAR Global Localization for Unmanned Ground Vehicles

This article introduces BEVPlace++, a novel, fast, and robust LiDAR global localization method for unmanned ground vehicles. It uses lightweight convolutional neural networks (CNNs) on Bird's Eye View (BEV) image-like representations of LiDAR data to achieve accurate global localization through place recognition, followed by 3-DoF pose estimation. Our detailed analyses reveal an interesting fact that CNNs are inherently effective at extracting distinctive features from LiDAR BEV images. Remarkably, keypoints of two BEV images with large translations can be effectively matched using CNN-extracted features. Building on this insight, we design a Rotation Equivariant Module (REM) to obtain distinctive features while enhancing robustness to rotational changes. A Rotation Equivariant and Invariant Network (REIN) is then developed by cascading REM and a descriptor generator, NetVLAD, to sequentially generate rotation equivariant local features and rotation invariant global descriptors. The global descriptors are used first to achieve robust place recognition, and then local features are used for accurate pose estimation. Experimental results on seven public datasets and our UGV platform demonstrate that BEVPlace++, even when trained on a small dataset (3000 frames of KITTI) only with place labels, generalizes well to unseen environments, performs consistently across different days and years, and adapts to various types of LiDAR scanners. BEVPlace++ achieves state-of-the-art performance in multiple tasks, including place recognition, loop closure detection, and global localization. Additionally, BEVPlace++ is lightweight, runs in real-time, and does not require accurate pose supervision, making it highly convenient for deployment. \revise{The source codes are publicly available at https://github.com/zjuluolun/BEVPlace2.

  • 7 authors
·
Aug 3, 2024

A Global Context Mechanism for Sequence Labeling

Global sentence information is crucial for sequence labeling tasks, where each word in a sentence must be assigned a label. While BiLSTM models are widely used, they often fail to capture sufficient global context for inner words. Previous work has proposed various RNN variants to integrate global sentence information into word representations. However, these approaches suffer from three key limitations: (1) they are slower in both inference and training compared to the original BiLSTM, (2) they cannot effectively supplement global information for transformer-based models, and (3) the high time cost associated with reimplementing and integrating these customized RNNs into existing architectures. In this study, we introduce a simple yet effective mechanism that addresses these limitations. Our approach efficiently supplements global sentence information for both BiLSTM and transformer-based models, with minimal degradation in inference and training speed, and is easily pluggable into current architectures. We demonstrate significant improvements in F1 scores across seven popular benchmarks, including Named Entity Recognition (NER) tasks such as Conll2003, Wnut2017 , and the Chinese named-entity recognition task Weibo, as well as End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) benchmarks such as Laptop14, Restaurant14, Restaurant15, and Restaurant16. With out any extra strategy, we achieve third highest score on weibo NER benchmark. Compared to CRF, one of the most popular frameworks for sequence labeling, our mechanism achieves competitive F1 scores while offering superior inference and training speed. Code is available at: https://github.com/conglei2XU/Global-Context-Mechanism

  • 4 authors
·
May 31, 2023

Online hierarchical partitioning of the output space in extreme multi-label data stream

Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.

  • 4 authors
·
Jul 28, 2025

ConR: Contrastive Regularizer for Deep Imbalanced Regression

Imbalanced distributions are ubiquitous in real-world data. They create constraints on Deep Neural Networks to represent the minority labels and avoid bias towards majority labels. The extensive body of imbalanced approaches address categorical label spaces but fail to effectively extend to regression problems where the label space is continuous. Local and global correlations among continuous labels provide valuable insights towards effectively modelling relationships in feature space. In this work, we propose ConR, a contrastive regularizer that models global and local label similarities in feature space and prevents the features of minority samples from being collapsed into their majority neighbours. ConR discerns the disagreements between the label space and feature space and imposes a penalty on these disagreements. ConR addresses the continuous nature of label space with two main strategies in a contrastive manner: incorrect proximities are penalized proportionate to the label similarities and the correct ones are encouraged to model local similarities. ConR consolidates essential considerations into a generic, easy-to-integrate, and efficient method that effectively addresses deep imbalanced regression. Moreover, ConR is orthogonal to existing approaches and smoothly extends to uni- and multi-dimensional label spaces. Our comprehensive experiments show that ConR significantly boosts the performance of all the state-of-the-art methods on four large-scale deep imbalanced regression benchmarks. Our code is publicly available in https://github.com/BorealisAI/ConR.

  • 3 authors
·
Sep 12, 2023

PacGDC: Label-Efficient Generalizable Depth Completion with Projection Ambiguity and Consistency

Generalizable depth completion enables the acquisition of dense metric depth maps for unseen environments, offering robust perception capabilities for various downstream tasks. However, training such models typically requires large-scale datasets with metric depth labels, which are often labor-intensive to collect. This paper presents PacGDC, a label-efficient technique that enhances data diversity with minimal annotation effort for generalizable depth completion. PacGDC builds on novel insights into inherent ambiguities and consistencies in object shapes and positions during 2D-to-3D projection, allowing the synthesis of numerous pseudo geometries for the same visual scene. This process greatly broadens available geometries by manipulating scene scales of the corresponding depth maps. To leverage this property, we propose a new data synthesis pipeline that uses multiple depth foundation models as scale manipulators. These models robustly provide pseudo depth labels with varied scene scales, affecting both local objects and global layouts, while ensuring projection consistency that supports generalization. To further diversify geometries, we incorporate interpolation and relocation strategies, as well as unlabeled images, extending the data coverage beyond the individual use of foundation models. Extensive experiments show that PacGDC achieves remarkable generalizability across multiple benchmarks, excelling in diverse scene semantics/scales and depth sparsity/patterns under both zero-shot and few-shot settings. Code: https://github.com/Wang-xjtu/PacGDC.

  • 5 authors
·
Jul 9, 2025

Feature Distribution Matching for Federated Domain Generalization

Multi-source domain adaptation has been intensively studied. The distribution shift in features inherent to specific domains causes the negative transfer problem, degrading a model's generality to unseen tasks. In Federated Learning (FL), learned model parameters are shared to train a global model that leverages the underlying knowledge across client models trained on separate data domains. Nonetheless, the data confidentiality of FL hinders the effectiveness of traditional domain adaptation methods that require prior knowledge of different domain data. We propose a new federated domain generalization method called Federated Knowledge Alignment (FedKA). FedKA leverages feature distribution matching in a global workspace such that the global model can learn domain-invariant client features under the constraint of unknown client data. FedKA employs a federated voting mechanism that generates target domain pseudo-labels based on the consensus from clients to facilitate global model fine-tuning. We performed extensive experiments, including an ablation study, to evaluate the effectiveness of the proposed method in both image and text classification tasks using different model architectures. The empirical results show that FedKA achieves performance gains of 8.8% and 3.5% in Digit-Five and Office-Caltech10, respectively, and a gain of 0.7% in Amazon Review with extremely limited training data. Moreover, we studied the effectiveness of FedKA in alleviating the negative transfer of FL based on a new criterion called Group Effect. The results show that FedKA can reduce negative transfer, improving the performance gain via model aggregation by 4 times.

  • 3 authors
·
Mar 22, 2022

Learning to Ground Instructional Articles in Videos through Narrations

In this paper we present an approach for localizing steps of procedural activities in narrated how-to videos. To deal with the scarcity of labeled data at scale, we source the step descriptions from a language knowledge base (wikiHow) containing instructional articles for a large variety of procedural tasks. Without any form of manual supervision, our model learns to temporally ground the steps of procedural articles in how-to videos by matching three modalities: frames, narrations, and step descriptions. Specifically, our method aligns steps to video by fusing information from two distinct pathways: i) {\em direct} alignment of step descriptions to frames, ii) {\em indirect} alignment obtained by composing steps-to-narrations with narrations-to-video correspondences. Notably, our approach performs global temporal grounding of all steps in an article at once by exploiting order information, and is trained with step pseudo-labels which are iteratively refined and aggressively filtered. In order to validate our model we introduce a new evaluation benchmark -- HT-Step -- obtained by manually annotating a 124-hour subset of HowTo100MA test server is accessible at \url{https://eval.ai/web/challenges/challenge-page/2082.} with steps sourced from wikiHow articles. Experiments on this benchmark as well as zero-shot evaluations on CrossTask demonstrate that our multi-modality alignment yields dramatic gains over several baselines and prior works. Finally, we show that our inner module for matching narration-to-video outperforms by a large margin the state of the art on the HTM-Align narration-video alignment benchmark.

  • 3 authors
·
Jun 6, 2023

FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding

As CLIP's global alignment limits its ability to capture fine-grained details, recent efforts have focused on enhancing its region-text alignment. However, current remote sensing (RS)-specific CLIP variants still inherit this limited spatial awareness. We identify two key limitations behind this: (1) current RS image-text datasets generate global captions from object-level labels, leaving the original object-level supervision underutilized; (2) despite the success of region-text alignment methods in general domain, their direct application to RS data often leads to performance degradation. To address these, we construct the first multi-granularity RS image-text dataset, MGRS-200k, featuring rich object-level textual supervision for RS region-category alignment. We further investigate existing fine-grained CLIP tuning strategies and find that current explicit region-text alignment methods, whether in a direct or indirect way, underperform due to severe degradation of CLIP's semantic coherence. Building on these, we propose FarSLIP, a Fine-grained Aligned RS Language-Image Pretraining framework. Rather than the commonly used patch-to-CLS self-distillation, FarSLIP employs patch-to-patch distillation to align local and global visual cues, which improves feature discriminability while preserving semantic coherence. Additionally, to effectively utilize region-text supervision, it employs simple CLS token-based region-category alignment rather than explicit patch-level alignment, further enhancing spatial awareness. FarSLIP features improved fine-grained vision-language alignment in RS domain and sets a new state of the art not only on RS open-vocabulary semantic segmentation, but also on image-level tasks such as zero-shot classification and image-text retrieval. Our dataset, code, and models are available at https://github.com/NJU-LHRS/FarSLIP.

  • 7 authors
·
Nov 18, 2025

CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification

This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.

  • 3 authors
·
Aug 5, 2025

Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous Data

Clustering is a widely deployed unsupervised learning tool. Model-based clustering is a flexible framework to tackle data heterogeneity when the clusters have different shapes. Likelihood-based inference for mixture distributions often involves non-convex and high-dimensional objective functions, imposing difficult computational and statistical challenges. The classic expectation-maximization (EM) algorithm is a computationally thrifty iterative method that maximizes a surrogate function minorizing the log-likelihood of observed data in each iteration, which however suffers from bad local maxima even in the special case of the standard Gaussian mixture model with common isotropic covariance matrices. On the other hand, recent studies reveal that the unique global solution of a semidefinite programming (SDP) relaxed K-means achieves the information-theoretically sharp threshold for perfectly recovering the cluster labels under the standard Gaussian mixture model. In this paper, we extend the SDP approach to a general setting by integrating cluster labels as model parameters and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the exact observed likelihood in the presence of data heterogeneity. By lifting the cluster assignment to group-specific membership matrices, iLA-SDP avoids centroids estimation -- a key feature that allows exact recovery under well-separateness of centroids without being trapped by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to initialization and more stable on high-dimensional data. Our numeric experiments demonstrate that iLA-SDP can achieve lower mis-clustering errors over several widely used clustering methods including K-means, SDP and EM algorithms.

  • 3 authors
·
Sep 29, 2022

Think-Before-Draw: Decomposing Emotion Semantics & Fine-Grained Controllable Expressive Talking Head Generation

Emotional talking-head generation has emerged as a pivotal research area at the intersection of computer vision and multimodal artificial intelligence, with its core value lying in enhancing human-computer interaction through immersive and empathetic engagement.With the advancement of multimodal large language models, the driving signals for emotional talking-head generation has shifted from audio and video to more flexible text. However, current text-driven methods rely on predefined discrete emotion label texts, oversimplifying the dynamic complexity of real facial muscle movements and thus failing to achieve natural emotional expressiveness.This study proposes the Think-Before-Draw framework to address two key challenges: (1) In-depth semantic parsing of emotions--by innovatively introducing Chain-of-Thought (CoT), abstract emotion labels are transformed into physiologically grounded facial muscle movement descriptions, enabling the mapping from high-level semantics to actionable motion features; and (2) Fine-grained expressiveness optimization--inspired by artists' portrait painting process, a progressive guidance denoising strategy is proposed, employing a "global emotion localization--local muscle control" mechanism to refine micro-expression dynamics in generated videos.Our experiments demonstrate that our approach achieves state-of-the-art performance on widely-used benchmarks, including MEAD and HDTF. Additionally, we collected a set of portrait images to evaluate our model's zero-shot generation capability.

  • 6 authors
·
Jul 16, 2025

From scratch to silver: Creating trustworthy training data for patent-SDG classification using Large Language Models

Classifying patents by their relevance to the UN Sustainable Development Goals (SDGs) is crucial for tracking how innovation addresses global challenges. However, the absence of a large, labeled dataset limits the use of supervised learning. Existing methods, such as keyword searches, transfer learning, and citation-based heuristics, lack scalability and generalizability. This paper frames patent-to-SDG classification as a weak supervision problem, using citations from patents to SDG-tagged scientific publications (NPL citations) as a noisy initial signal. To address its sparsity and noise, we develop a composite labeling function (LF) that uses large language models (LLMs) to extract structured concepts, namely functions, solutions, and applications, from patents and SDG papers based on a patent ontology. Cross-domain similarity scores are computed and combined using a rank-based retrieval approach. The LF is calibrated via a custom positive-only loss that aligns with known NPL-SDG links without penalizing discovery of new SDG associations. The result is a silver-standard, soft multi-label dataset mapping patents to SDGs, enabling the training of effective multi-label regression models. We validate our approach through two complementary strategies: (1) internal validation against held-out NPL-based labels, where our method outperforms several baselines including transformer-based models, and zero-shot LLM; and (2) external validation using network modularity in patent citation, co-inventor, and co-applicant graphs, where our labels reveal greater thematic, cognitive, and organizational coherence than traditional technological classifications. These results show that weak supervision and semantic alignment can enhance SDG classification at scale.

  • 2 authors
·
Sep 11, 2025

A region-wide, multi-year set of crop field boundary labels for Africa

African agriculture is undergoing rapid transformation. Annual maps of crop fields are key to understanding the nature of this transformation, but such maps are currently lacking and must be developed using advanced machine learning models trained on high resolution remote sensing imagery. To enable the development of such models, we delineated field boundaries in 33,746 Planet images captured between 2017 and 2023 across the continent using a custom labeling platform with built-in procedures for assessing and mitigating label error. We collected 42,403 labels, including 7,204 labels arising from tasks dedicated to assessing label quality (Class 1 labels), 32,167 from sites mapped once by a single labeller (Class 2) and 3,032 labels from sites where 3 or more labellers were tasked to map the same location (Class 4). Class 1 labels were used to calculate labeller-specific quality scores, while Class 1 and 4 sites mapped by at least 3 labellers were used to further evaluate label uncertainty using a Bayesian risk metric. Quality metrics showed that label quality was moderately high (0.75) for measures of total field extent, but low regarding the number of individual fields delineated (0.33), and the position of field edges (0.05). These values are expected when delineating small-scale fields in 3-5 m resolution imagery, which can be too coarse to reliably distinguish smaller fields, particularly in dense croplands, and therefore requires substantial labeller judgement. Nevertheless, previous work shows that such labels can train effective field mapping models. Furthermore, this large, probabilistic sample on its own provides valuable insight into regional agricultural characteristics, highlighting variations in the median field size and density. The imagery and vectorized labels along with quality information is available for download from two public repositories.

  • 30 authors
·
Dec 24, 2024

Chest X-ray Foundation Model with Global and Local Representations Integration

Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources. We propose a Global and Local Representations Integration (GLoRI) module for downstream adaptations, by incorporating disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibits superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on new tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation and mortality prediction. These results highlight CheXFound's strong generalization capabilities, enabling diverse adaptations with improved label efficiency. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.

  • 6 authors
·
Feb 7, 2025

HuBERTopic: Enhancing Semantic Representation of HuBERT through Self-supervision Utilizing Topic Model

Recently, the usefulness of self-supervised representation learning (SSRL) methods has been confirmed in various downstream tasks. Many of these models, as exemplified by HuBERT and WavLM, use pseudo-labels generated from spectral features or the model's own representation features. From previous studies, it is known that the pseudo-labels contain semantic information. However, the masked prediction task, the learning criterion of HuBERT, focuses on local contextual information and may not make effective use of global semantic information such as speaker, theme of speech, and so on. In this paper, we propose a new approach to enrich the semantic representation of HuBERT. We apply topic model to pseudo-labels to generate a topic label for each utterance. An auxiliary topic classification task is added to HuBERT by using topic labels as teachers. This allows additional global semantic information to be incorporated in an unsupervised manner. Experimental results demonstrate that our method achieves comparable or better performance than the baseline in most tasks, including automatic speech recognition and five out of the eight SUPERB tasks. Moreover, we find that topic labels include various information about utterance, such as gender, speaker, and its theme. This highlights the effectiveness of our approach in capturing multifaceted semantic nuances.

  • 5 authors
·
Oct 5, 2023

The Dataset Nutrition Label: A Framework To Drive Higher Data Quality Standards

Artificial intelligence (AI) systems built on incomplete or biased data will often exhibit problematic outcomes. Current methods of data analysis, particularly before model development, are costly and not standardized. The Dataset Nutrition Label (the Label) is a diagnostic framework that lowers the barrier to standardized data analysis by providing a distilled yet comprehensive overview of dataset "ingredients" before AI model development. Building a Label that can be applied across domains and data types requires that the framework itself be flexible and adaptable; as such, the Label is comprised of diverse qualitative and quantitative modules generated through multiple statistical and probabilistic modelling backends, but displayed in a standardized format. To demonstrate and advance this concept, we generated and published an open source prototype with seven sample modules on the ProPublica Dollars for Docs dataset. The benefits of the Label are manyfold. For data specialists, the Label will drive more robust data analysis practices, provide an efficient way to select the best dataset for their purposes, and increase the overall quality of AI models as a result of more robust training datasets and the ability to check for issues at the time of model development. For those building and publishing datasets, the Label creates an expectation of explanation, which will drive better data collection practices. We also explore the limitations of the Label, including the challenges of generalizing across diverse datasets, and the risk of using "ground truth" data as a comparison dataset. We discuss ways to move forward given the limitations identified. Lastly, we lay out future directions for the Dataset Nutrition Label project, including research and public policy agendas to further advance consideration of the concept.

  • 5 authors
·
May 9, 2018

Label Anything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts

Few-shot semantic segmentation aims to segment objects from previously unseen classes using only a limited number of labeled examples. In this paper, we introduce Label Anything, a novel transformer-based architecture designed for multi-prompt, multi-way few-shot semantic segmentation. Our approach leverages diverse visual prompts -- points, bounding boxes, and masks -- to create a highly flexible and generalizable framework that significantly reduces annotation burden while maintaining high accuracy. Label Anything makes three key contributions: (i) we introduce a new task formulation that relaxes conventional few-shot segmentation constraints by supporting various types of prompts, multi-class classification, and enabling multiple prompts within a single image; (ii) we propose a novel architecture based on transformers and attention mechanisms; and (iii) we design a versatile training procedure allowing our model to operate seamlessly across different N-way K-shot and prompt-type configurations with a single trained model. Our extensive experimental evaluation on the widely used COCO-20^i benchmark demonstrates that Label Anything achieves state-of-the-art performance among existing multi-way few-shot segmentation methods, while significantly outperforming leading single-class models when evaluated in multi-class settings. Code and trained models are available at https://github.com/pasqualedem/LabelAnything.

  • 7 authors
·
Jul 2, 2024

TnT-LLM: Text Mining at Scale with Large Language Models

Transforming unstructured text into structured and meaningful forms, organized by useful category labels, is a fundamental step in text mining for downstream analysis and application. However, most existing methods for producing label taxonomies and building text-based label classifiers still rely heavily on domain expertise and manual curation, making the process expensive and time-consuming. This is particularly challenging when the label space is under-specified and large-scale data annotations are unavailable. In this paper, we address these challenges with Large Language Models (LLMs), whose prompt-based interface facilitates the induction and use of large-scale pseudo labels. We propose TnT-LLM, a two-phase framework that employs LLMs to automate the process of end-to-end label generation and assignment with minimal human effort for any given use-case. In the first phase, we introduce a zero-shot, multi-stage reasoning approach which enables LLMs to produce and refine a label taxonomy iteratively. In the second phase, LLMs are used as data labelers that yield training samples so that lightweight supervised classifiers can be reliably built, deployed, and served at scale. We apply TnT-LLM to the analysis of user intent and conversational domain for Bing Copilot (formerly Bing Chat), an open-domain chat-based search engine. Extensive experiments using both human and automatic evaluation metrics demonstrate that TnT-LLM generates more accurate and relevant label taxonomies when compared against state-of-the-art baselines, and achieves a favorable balance between accuracy and efficiency for classification at scale. We also share our practical experiences and insights on the challenges and opportunities of using LLMs for large-scale text mining in real-world applications.

  • 14 authors
·
Mar 18, 2024 2

Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations

Learning with reduced labeling standards, such as noisy label, partial label, and multiple label candidates, which we generically refer to as imprecise labels, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables.Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.

  • 9 authors
·
May 22, 2023

Active Generalized Category Discovery

Generalized Category Discovery (GCD) is a pragmatic and challenging open-world task, which endeavors to cluster unlabeled samples from both novel and old classes, leveraging some labeled data of old classes. Given that knowledge learned from old classes is not fully transferable to new classes, and that novel categories are fully unlabeled, GCD inherently faces intractable problems, including imbalanced classification performance and inconsistent confidence between old and new classes, especially in the low-labeling regime. Hence, some annotations of new classes are deemed necessary. However, labeling new classes is extremely costly. To address this issue, we take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD). The goal is to improve the performance of GCD by actively selecting a limited amount of valuable samples for labeling from the oracle. To solve this problem, we devise an adaptive sampling strategy, which jointly considers novelty, informativeness and diversity to adaptively select novel samples with proper uncertainty. However, owing to the varied orderings of label indices caused by the clustering of novel classes, the queried labels are not directly applicable to subsequent training. To overcome this issue, we further propose a stable label mapping algorithm that transforms ground truth labels to the label space of the classifier, thereby ensuring consistent training across different active selection stages. Our method achieves state-of-the-art performance on both generic and fine-grained datasets. Our code is available at https://github.com/mashijie1028/ActiveGCD

  • 5 authors
·
Mar 7, 2024

PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification

Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.

  • 7 authors
·
Jul 18, 2023

Label-free Node Classification on Graphs with Large Language Models (LLMS)

In recent years, there have been remarkable advancements in node classification achieved by Graph Neural Networks (GNNs). However, they necessitate abundant high-quality labels to ensure promising performance. In contrast, Large Language Models (LLMs) exhibit impressive zero-shot proficiency on text-attributed graphs. Yet, they face challenges in efficiently processing structural data and suffer from high inference costs. In light of these observations, this work introduces a label-free node classification on graphs with LLMs pipeline, LLM-GNN. It amalgamates the strengths of both GNNs and LLMs while mitigating their limitations. Specifically, LLMs are leveraged to annotate a small portion of nodes and then GNNs are trained on LLMs' annotations to make predictions for the remaining large portion of nodes. The implementation of LLM-GNN faces a unique challenge: how can we actively select nodes for LLMs to annotate and consequently enhance the GNN training? How can we leverage LLMs to obtain annotations of high quality, representativeness, and diversity, thereby enhancing GNN performance with less cost? To tackle this challenge, we develop an annotation quality heuristic and leverage the confidence scores derived from LLMs to advanced node selection. Comprehensive experimental results validate the effectiveness of LLM-GNN. In particular, LLM-GNN can achieve an accuracy of 74.9% on a vast-scale dataset \products with a cost less than 1 dollar.

  • 8 authors
·
Oct 6, 2023

Learning from Label Proportions: Bootstrapping Supervised Learners via Belief Propagation

Learning from Label Proportions (LLP) is a learning problem where only aggregate level labels are available for groups of instances, called bags, during training, and the aim is to get the best performance at the instance-level on the test data. This setting arises in domains like advertising and medicine due to privacy considerations. We propose a novel algorithmic framework for this problem that iteratively performs two main steps. For the first step (Pseudo Labeling) in every iteration, we define a Gibbs distribution over binary instance labels that incorporates a) covariate information through the constraint that instances with similar covariates should have similar labels and b) the bag level aggregated label. We then use Belief Propagation (BP) to marginalize the Gibbs distribution to obtain pseudo labels. In the second step (Embedding Refinement), we use the pseudo labels to provide supervision for a learner that yields a better embedding. Further, we iterate on the two steps again by using the second step's embeddings as new covariates for the next iteration. In the final iteration, a classifier is trained using the pseudo labels. Our algorithm displays strong gains against several SOTA baselines (up to 15%) for the LLP Binary Classification problem on various dataset types - tabular and Image. We achieve these improvements with minimal computational overhead above standard supervised learning due to Belief Propagation, for large bag sizes, even for a million samples.

  • 5 authors
·
Oct 12, 2023

Local Graph Clustering with Noisy Labels

The growing interest in machine learning problems over graphs with additional node information such as texts, images, or labels has popularized methods that require the costly operation of processing the entire graph. Yet, little effort has been made to the development of fast local methods (i.e. without accessing the entire graph) that extract useful information from such data. To that end, we propose a study of local graph clustering using noisy node labels as a proxy for additional node information. In this setting, nodes receive initial binary labels based on cluster affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently, a fraction of these labels is flipped. We investigate the benefits of incorporating noisy labels for local graph clustering. By constructing a weighted graph with such labels, we study the performance of graph diffusion-based local clustering method on both the original and the weighted graphs. From a theoretical perspective, we consider recovering an unknown target cluster with a single seed node in a random graph with independent noisy node labels. We provide sufficient conditions on the label noise under which, with high probability, using diffusion in the weighted graph yields a more accurate recovery of the target cluster. This approach proves more effective than using the given labels alone or using diffusion in the label-free original graph. Empirically, we show that reliable node labels can be obtained with just a few samples from an attributed graph. Moreover, utilizing these labels via diffusion in the weighted graph leads to significantly better local clustering performance across several real-world datasets, improving F1 scores by up to 13%.

  • 3 authors
·
Oct 12, 2023

Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning

Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR

  • 4 authors
·
Mar 9, 2025

Thinking Like an Annotator: Generation of Dataset Labeling Instructions

Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.

  • 5 authors
·
Jun 24, 2023 1

Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation

Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.

  • 2 authors
·
Nov 22, 2024

Towards Open-Ended Visual Recognition with Large Language Model

Localizing and recognizing objects in the open-ended physical world poses a long-standing challenge within the domain of machine perception. Recent methods have endeavored to address the issue by employing a class-agnostic mask (or box) proposal model, complemented by an open-vocabulary classifier (e.g., CLIP) using pre-extracted text embeddings. However, it is worth noting that these open-vocabulary recognition models still exhibit limitations in practical applications. On one hand, they rely on the provision of class names during testing, where the recognition performance heavily depends on this predefined set of semantic classes by users. On the other hand, when training with multiple datasets, human intervention is required to alleviate the label definition conflict between them. In this paper, we introduce the OmniScient Model (OSM), a novel Large Language Model (LLM) based mask classifier, as a straightforward and effective solution to the aforementioned challenges. Specifically, OSM predicts class labels in a generative manner, thus removing the supply of class names during both training and testing. It also enables cross-dataset training without any human interference, exhibiting robust generalization capabilities due to the world knowledge acquired from the LLM. By combining OSM with an off-the-shelf mask proposal model, we present promising results on various benchmarks, and demonstrate its effectiveness in handling novel concepts. Code/model are available at https://github.com/bytedance/OmniScient-Model.

  • 3 authors
·
Nov 14, 2023

Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.

  • 4 authors
·
Sep 21, 2023

Coarse-to-Fine: Learning Compact Discriminative Representation for Single-Stage Image Retrieval

Image retrieval targets to find images from a database that are visually similar to the query image. Two-stage methods following retrieve-and-rerank paradigm have achieved excellent performance, but their separate local and global modules are inefficient to real-world applications. To better trade-off retrieval efficiency and accuracy, some approaches fuse global and local feature into a joint representation to perform single-stage image retrieval. However, they are still challenging due to various situations to tackle, e.g., background, occlusion and viewpoint. In this work, we design a Coarse-to-Fine framework to learn Compact Discriminative representation (CFCD) for end-to-end single-stage image retrieval-requiring only image-level labels. Specifically, we first design a novel adaptive softmax-based loss which dynamically tunes its scale and margin within each mini-batch and increases them progressively to strengthen supervision during training and intra-class compactness. Furthermore, we propose a mechanism which attentively selects prominent local descriptors and infuse fine-grained semantic relations into the global representation by a hard negative sampling strategy to optimize inter-class distinctiveness at a global scale. Extensive experimental results have demonstrated the effectiveness of our method, which achieves state-of-the-art single-stage image retrieval performance on benchmarks such as Revisited Oxford and Revisited Paris. Code is available at https://github.com/bassyess/CFCD.

  • 5 authors
·
Aug 7, 2023

KeNet:Knowledge-enhanced Doc-Label Attention Network for Multi-label text classification

Multi-Label Text Classification (MLTC) is a fundamental task in the field of Natural Language Processing (NLP) that involves the assignment of multiple labels to a given text. MLTC has gained significant importance and has been widely applied in various domains such as topic recognition, recommendation systems, sentiment analysis, and information retrieval. However, traditional machine learning and Deep neural network have not yet addressed certain issues, such as the fact that some documents are brief but have a large number of labels and how to establish relationships between the labels. It is imperative to additionally acknowledge that the significance of knowledge is substantiated in the realm of MLTC. To address this issue, we provide a novel approach known as Knowledge-enhanced Doc-Label Attention Network (KeNet). Specifically, we design an Attention Network that incorporates external knowledge, label embedding, and a comprehensive attention mechanism. In contrast to conventional methods, we use comprehensive representation of documents, knowledge and labels to predict all labels for each single text. Our approach has been validated by comprehensive research conducted on three multi-label datasets. Experimental results demonstrate that our method outperforms state-of-the-art MLTC method. Additionally, a case study is undertaken to illustrate the practical implementation of KeNet.

  • 3 authors
·
Mar 4, 2024

G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models

Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose G3, a novel framework based on Retrieval-Augmented Generation (RAG). In particular, G3 consists of three steps, i.e., Geo-alignment, Geo-diversification, and Geo-verification to optimize both retrieval and generation phases of worldwide geolocalization. During Geo-alignment, our solution jointly learns expressive multi-modal representations for images, GPS and textual descriptions, which allows us to capture location-aware semantics for retrieving nearby images for a given query. During Geo-diversification, we leverage a prompt ensembling method that is robust to inconsistent retrieval performance for different image queries. Finally, we combine both retrieved and generated GPS candidates in Geo-verification for location prediction. Experiments on two well-established datasets IM2GPS3k and YFCC4k verify the superiority of G3 compared to other state-of-the-art methods.

  • 10 authors
·
May 23, 2024

LaSO: Label-Set Operations networks for multi-label few-shot learning

Example synthesis is one of the leading methods to tackle the problem of few-shot learning, where only a small number of samples per class are available. However, current synthesis approaches only address the scenario of a single category label per image. In this work, we propose a novel technique for synthesizing samples with multiple labels for the (yet unhandled) multi-label few-shot classification scenario. We propose to combine pairs of given examples in feature space, so that the resulting synthesized feature vectors will correspond to examples whose label sets are obtained through certain set operations on the label sets of the corresponding input pairs. Thus, our method is capable of producing a sample containing the intersection, union or set-difference of labels present in two input samples. As we show, these set operations generalize to labels unseen during training. This enables performing augmentation on examples of novel categories, thus, facilitating multi-label few-shot classifier learning. We conduct numerous experiments showing promising results for the label-set manipulation capabilities of the proposed approach, both directly (using the classification and retrieval metrics), and in the context of performing data augmentation for multi-label few-shot learning. We propose a benchmark for this new and challenging task and show that our method compares favorably to all the common baselines.

  • 8 authors
·
Feb 26, 2019

Unsupervised Learning under Latent Label Shift

What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.

  • 4 authors
·
Jul 26, 2022

Multi-Label Logo Recognition and Retrieval based on Weighted Fusion of Neural Features

Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colors. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, color, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analyzed, such as the incomplete labeling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (7 times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labeling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.

  • 3 authors
·
May 11, 2022 1

Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance

NLP benchmarks rely on standardized datasets for training and evaluating models and are crucial for advancing the field. Traditionally, expert annotations ensure high-quality labels; however, the cost of expert annotation does not scale well with the growing demand for larger datasets required by modern models. While crowd-sourcing provides a more scalable solution, it often comes at the expense of annotation precision and consistency. Recent advancements in large language models (LLMs) offer new opportunities to enhance the annotation process, particularly for detecting label errors in existing datasets. In this work, we consider the recent approach of LLM-as-a-judge, leveraging an ensemble of LLMs to flag potentially mislabeled examples. Through a case study of four datasets from the TRUE benchmark, covering different tasks and domains, we empirically analyze the labeling quality of existing datasets, and compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency, demonstrating the strengths and limitations of each annotation method. Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance. This suggests that many of the LLMs so-called mistakes are due to label errors rather than genuine model failures. Additionally, we discuss the implications of mislabeled data and propose methods to mitigate them in training to improve model performance.

  • 5 authors
·
Oct 24, 2024 2

Constrained Decoding for Cross-lingual Label Projection

Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data. However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods. Therefore, it is common to exploit translation and label projection to further improve the performance by (1) translating training data that is available in a high-resource language (e.g., English) together with the gold labels into low-resource languages, and/or (2) translating test data in low-resource languages to a high-source language to run inference on, then projecting the predicted span-level labels back onto the original test data. However, state-of-the-art marker-based label projection methods suffer from translation quality degradation due to the extra label markers injected in the input to the translation model. In this work, we explore a new direction that leverages constrained decoding for label projection to overcome the aforementioned issues. Our new method not only can preserve the quality of translated texts but also has the versatility of being applicable to both translating training and translating test data strategies. This versatility is crucial as our experiments reveal that translating test data can lead to a considerable boost in performance compared to translating only training data. We evaluate on two cross-lingual transfer tasks, namely Named Entity Recognition and Event Argument Extraction, spanning 20 languages. The results demonstrate that our approach outperforms the state-of-the-art marker-based method by a large margin and also shows better performance than other label projection methods that rely on external word alignment.

  • 4 authors
·
Feb 5, 2024

Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation

Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.

  • 23 authors
·
Dec 4, 2024 2

ERASE: Error-Resilient Representation Learning on Graphs for Label Noise Tolerance

Deep learning has achieved remarkable success in graph-related tasks, yet this accomplishment heavily relies on large-scale high-quality annotated datasets. However, acquiring such datasets can be cost-prohibitive, leading to the practical use of labels obtained from economically efficient sources such as web searches and user tags. Unfortunately, these labels often come with noise, compromising the generalization performance of deep networks. To tackle this challenge and enhance the robustness of deep learning models against label noise in graph-based tasks, we propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE). The core idea of ERASE is to learn representations with error tolerance by maximizing coding rate reduction. Particularly, we introduce a decoupled label propagation method for learning representations. Before training, noisy labels are pre-corrected through structural denoising. During training, ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience, which significantly improves the generalization performance in node classification. The proposed method allows us to more effectively withstand errors caused by mislabeled nodes, thereby strengthening the robustness of deep networks in handling noisy graph data. Extensive experimental results show that our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability. Codes are released at https://github.com/eraseai/erase.

  • 8 authors
·
Dec 13, 2023