4 Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench. 7 authors · May 20, 2025 2
- XTRUST: On the Multilingual Trustworthiness of Large Language Models Large language models (LLMs) have demonstrated remarkable capabilities across a range of natural language processing (NLP) tasks, capturing the attention of both practitioners and the broader public. A key question that now preoccupies the AI community concerns the capabilities and limitations of these models, with trustworthiness emerging as a central issue, particularly as LLMs are increasingly applied in sensitive fields like healthcare and finance, where errors can have serious consequences. However, most previous studies on the trustworthiness of LLMs have been limited to a single language, typically the predominant one in the dataset, such as English. In response to the growing global deployment of LLMs, we introduce XTRUST, the first comprehensive multilingual trustworthiness benchmark. XTRUST encompasses a diverse range of topics, including illegal activities, hallucination, out-of-distribution (OOD) robustness, physical and mental health, toxicity, fairness, misinformation, privacy, and machine ethics, across 10 different languages. Using XTRUST, we conduct an empirical evaluation of the multilingual trustworthiness of five widely used LLMs, offering an in-depth analysis of their performance across languages and tasks. Our results indicate that many LLMs struggle with certain low-resource languages, such as Arabic and Russian, highlighting the considerable room for improvement in the multilingual trustworthiness of current language models. The code is available at https://github.com/LluckyYH/XTRUST. 4 authors · Sep 24, 2024
- CSSBench: Evaluating the Safety of Lightweight LLMs against Chinese-Specific Adversarial Patterns Large language models (LLMs) are increasingly deployed in cost-sensitive and on-device scenarios, and safety guardrails have advanced mainly in English. However, real-world Chinese malicious queries typically conceal intent via homophones, pinyin, symbol-based splitting, and other Chinese-specific patterns. These Chinese-specific adversarial patterns create the safety evaluation gap that is not well captured by existing benchmarks focused on English. This gap is particularly concerning for lightweight models, which may be more vulnerable to such specific adversarial perturbations. To bridge this gap, we introduce the Chinese-Specific Safety Benchmark (CSSBench) that emphasizes these adversarial patterns and evaluates the safety of lightweight LLMs in Chinese. Our benchmark covers six domains that are common in real Chinese scenarios, including illegal activities and compliance, privacy leakage, health and medical misinformation, fraud and hate, adult content, and public and political safety, and organizes queries into multiple task types. We evaluate a set of popular lightweight LLMs and measure over-refusal behavior to assess safety-induced performance degradation. Our results show that the Chinese-specific adversarial pattern is a critical challenge for lightweight LLMs. This benchmark offers a comprehensive evaluation of LLM safety in Chinese, assisting robust deployments in practice. 6 authors · Jan 2
- WildFake: A Large-scale Challenging Dataset for AI-Generated Images Detection The extraordinary ability of generative models enabled the generation of images with such high quality that human beings cannot distinguish Artificial Intelligence (AI) generated images from real-life photographs. The development of generation techniques opened up new opportunities but concurrently introduced potential risks to privacy, authenticity, and security. Therefore, the task of detecting AI-generated imagery is of paramount importance to prevent illegal activities. To assess the generalizability and robustness of AI-generated image detection, we present a large-scale dataset, referred to as WildFake, comprising state-of-the-art generators, diverse object categories, and real-world applications. WildFake dataset has the following advantages: 1) Rich Content with Wild collection: WildFake collects fake images from the open-source community, enriching its diversity with a broad range of image classes and image styles. 2) Hierarchical structure: WildFake contains fake images synthesized by different types of generators from GANs, diffusion models, to other generative models. These key strengths enhance the generalization and robustness of detectors trained on WildFake, thereby demonstrating WildFake's considerable relevance and effectiveness for AI-generated detectors in real-world scenarios. Moreover, our extensive evaluation experiments are tailored to yield profound insights into the capabilities of different levels of generative models, a distinctive advantage afforded by WildFake's unique hierarchical structure. 2 authors · Feb 19, 2024
5 Cross-Modality Safety Alignment As Artificial General Intelligence (AGI) becomes increasingly integrated into various facets of human life, ensuring the safety and ethical alignment of such systems is paramount. Previous studies primarily focus on single-modality threats, which may not suffice given the integrated and complex nature of cross-modality interactions. We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment. Specifically, it considers cases where single modalities are safe independently but could potentially lead to unsafe or unethical outputs when combined. To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations. Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, such as GPT-4V and LLaVA, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios. 8 authors · Jun 21, 2024 1
- AraTrust: An Evaluation of Trustworthiness for LLMs in Arabic The swift progress and widespread acceptance of artificial intelligence (AI) systems highlight a pressing requirement to comprehend both the capabilities and potential risks associated with AI. Given the linguistic complexity, cultural richness, and underrepresented status of Arabic in AI research, there is a pressing need to focus on Large Language Models (LLMs) performance and safety for Arabic-related tasks. Despite some progress in their development, there is a lack of comprehensive trustworthiness evaluation benchmarks, which presents a major challenge in accurately assessing and improving the safety of LLMs when prompted in Arabic. In this paper, we introduce AraTrust, the first comprehensive trustworthiness benchmark for LLMs in Arabic. AraTrust comprises 522 human-written multiple-choice questions addressing diverse dimensions related to truthfulness, ethics, safety, physical health, mental health, unfairness, illegal activities, privacy, and offensive language. We evaluated a set of LLMs against our benchmark to assess their trustworthiness. GPT-4 was the most trustworthy LLM, while open-source models, particularly AceGPT 7B and Jais 13B, struggled to achieve a score of 60% in our benchmark. 6 authors · Mar 13, 2024
3 Competition Report: Finding Universal Jailbreak Backdoors in Aligned LLMs Large language models are aligned to be safe, preventing users from generating harmful content like misinformation or instructions for illegal activities. However, previous work has shown that the alignment process is vulnerable to poisoning attacks. Adversaries can manipulate the safety training data to inject backdoors that act like a universal sudo command: adding the backdoor string to any prompt enables harmful responses from models that, otherwise, behave safely. Our competition, co-located at IEEE SaTML 2024, challenged participants to find universal backdoors in several large language models. This report summarizes the key findings and promising ideas for future research. 7 authors · Apr 22, 2024
- Global Trends in Cryptocurrency Regulation: An Overview Cryptocurrencies have evolved into an important asset class, providing a variety of benefits. However, they also present significant risks, such as market volatility and the potential for misuse in illegal activities. These risks underline the urgent need for a comprehensive regulatory framework to ensure consumer protection, market integrity, and financial stability. Yet, the global landscape of cryptocurrency regulation remains complex, marked by substantial variations in regulatory frameworks among different countries. This paper aims to study these differences by investigating the regulatory landscapes across various jurisdictions. We first discuss regulatory challenges and considerations, and then conduct a comparative analysis of international regulatory stances, approaches, and measures. We hope our study offers practical insights to enhance the understanding of global trends in cryptocurrency regulation. 2 authors · Apr 24, 2024
- GPTFUZZER: Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety. 4 authors · Sep 18, 2023
- Datasets of Fire and Crime Incidents in Pampanga, Philippines The fire and crime incident datasets were requested and collected from two Philippine regional agencies (i.e., the Bureau of Fire Protection and the Philippine National Police). The datasets were used to initially analyze and map both fire and crime incidents within the province of Pampanga for a specific time frame. Several data preparation, normalization, and data cleaning steps were implemented to properly map and identify patterns within the datasets. The initial results also indicate the leading causes of fire and crimes are rubbish and acts against property. Fires mostly occur during the dry season in the province. Crime is particularly high during December, and most of the fire and crime incidents occur during the time when people are most active. The dataset was able to present the temporal characteristics of the fire and crime incidents that occurred in the province of Pampanga. Merge the existing dataset with the other datasets from other related agencies to get a bigger picture and produce more objective results that could be used for decision-making. 3 authors · Nov 1, 2022