new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 29

MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation

Text-to-image generation has achieved astonishing results, yet precise spatial controllability and prompt fidelity remain highly challenging. This limitation is typically addressed through cumbersome prompt engineering, scene layout conditioning, or image editing techniques which often require hand drawn masks. Nonetheless, pre-existing works struggle to take advantage of the natural instance-level compositionality of scenes due to the typically flat nature of rasterized RGB output images. Towards adressing this challenge, we introduce MuLAn: a novel dataset comprising over 44K MUlti-Layer ANnotations of RGB images as multilayer, instance-wise RGBA decompositions, and over 100K instance images. To build MuLAn, we developed a training free pipeline which decomposes a monocular RGB image into a stack of RGBA layers comprising of background and isolated instances. We achieve this through the use of pretrained general-purpose models, and by developing three modules: image decomposition for instance discovery and extraction, instance completion to reconstruct occluded areas, and image re-assembly. We use our pipeline to create MuLAn-COCO and MuLAn-LAION datasets, which contain a variety of image decompositions in terms of style, composition and complexity. With MuLAn, we provide the first photorealistic resource providing instance decomposition and occlusion information for high quality images, opening up new avenues for text-to-image generative AI research. With this, we aim to encourage the development of novel generation and editing technology, in particular layer-wise solutions. MuLAn data resources are available at https://MuLAn-dataset.github.io/.

  • 8 authors
·
Apr 3, 2024

Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration

Image quality is a critical factor in delivering visually appealing content on web platforms. However, images often suffer from degradation due to lossy operations applied by online social networks (OSNs), negatively affecting user experience. Image restoration is the process of recovering a clean high-quality image from a given degraded input. Recently, multi-task (all-in-one) image restoration models have gained significant attention, due to their ability to simultaneously handle different types of image degradations. However, these models often come with an excessively high number of trainable parameters, making them computationally inefficient. In this paper, we propose a strategy for compressing multi-task image restoration models. We aim to discover highly sparse subnetworks within overparameterized deep models that can match or even surpass the performance of their dense counterparts. The proposed model, namely MIR-L, utilizes an iterative pruning strategy that removes low-magnitude weights across multiple rounds, while resetting the remaining weights to their original initialization. This iterative process is important for the multi-task image restoration model's optimization, effectively uncovering "winning tickets" that maintain or exceed state-of-the-art performance at high sparsity levels. Experimental evaluation on benchmark datasets for the deraining, dehazing, and denoising tasks shows that MIR-L retains only 10% of the trainable parameters while maintaining high image restoration performance. Our code, datasets and pre-trained models are made publicly available at https://github.com/Thomkat/MIR-L.

  • 2 authors
·
Oct 16, 2025 2

Painting Outside as Inside: Edge Guided Image Outpainting via Bidirectional Rearrangement with Progressive Step Learning

Image outpainting is a very intriguing problem as the outside of a given image can be continuously filled by considering as the context of the image. This task has two main challenges. The first is to maintain the spatial consistency in contents of generated regions and the original input. The second is to generate a high-quality large image with a small amount of adjacent information. Conventional image outpainting methods generate inconsistent, blurry, and repeated pixels. To alleviate the difficulty of an outpainting problem, we propose a novel image outpainting method using bidirectional boundary region rearrangement. We rearrange the image to benefit from the image inpainting task by reflecting more directional information. The bidirectional boundary region rearrangement enables the generation of the missing region using bidirectional information similar to that of the image inpainting task, thereby generating the higher quality than the conventional methods using unidirectional information. Moreover, we use the edge map generator that considers images as original input with structural information and hallucinates the edges of unknown regions to generate the image. Our proposed method is compared with other state-of-the-art outpainting and inpainting methods both qualitatively and quantitatively. We further compared and evaluated them using BRISQUE, one of the No-Reference image quality assessment (IQA) metrics, to evaluate the naturalness of the output. The experimental results demonstrate that our method outperforms other methods and generates new images with 360{\deg}panoramic characteristics.

  • 6 authors
·
Oct 5, 2020

Assembler: Scalable 3D Part Assembly via Anchor Point Diffusion

We present Assembler, a scalable and generalizable framework for 3D part assembly that reconstructs complete objects from input part meshes and a reference image. Unlike prior approaches that mostly rely on deterministic part pose prediction and category-specific training, Assembler is designed to handle diverse, in-the-wild objects with varying part counts, geometries, and structures. It addresses the core challenges of scaling to general 3D part assembly through innovations in task formulation, representation, and data. First, Assembler casts part assembly as a generative problem and employs diffusion models to sample plausible configurations, effectively capturing ambiguities arising from symmetry, repeated parts, and multiple valid assemblies. Second, we introduce a novel shape-centric representation based on sparse anchor point clouds, enabling scalable generation in Euclidean space rather than SE(3) pose prediction. Third, we construct a large-scale dataset of over 320K diverse part-object assemblies using a synthesis and filtering pipeline built on existing 3D shape repositories. Assembler achieves state-of-the-art performance on PartNet and is the first to demonstrate high-quality assembly for complex, real-world objects. Based on Assembler, we further introduce an interesting part-aware 3D modeling system that generates high-resolution, editable objects from images, demonstrating potential for interactive and compositional design. Project page: https://assembler3d.github.io

  • 5 authors
·
Jun 20, 2025

Old Photo Restoration via Deep Latent Space Translation

We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with apartial nonlocal block targeting to the structured defects, such as scratches and dust spots, and a local branch targeting to the unstructured defects, such as noises and blurriness. Two branches are fused in the latent space, leading to improved capability to restore old photos from multiple defects. Furthermore, we apply another face refinement network to recover fine details of faces in the old photos, thus ultimately generating photos with enhanced perceptual quality. With comprehensive experiments, the proposed pipeline demonstrates superior performance over state-of-the-art methods as well as existing commercial tools in terms of visual quality for old photos restoration.

  • 7 authors
·
Sep 14, 2020

MICo-150K: A Comprehensive Dataset Advancing Multi-Image Composition

In controllable image generation, synthesizing coherent and consistent images from multiple reference inputs, i.e., Multi-Image Composition (MICo), remains a challenging problem, partly hindered by the lack of high-quality training data. To bridge this gap, we conduct a systematic study of MICo, categorizing it into 7 representative tasks and curate a large-scale collection of high-quality source images and construct diverse MICo prompts. Leveraging powerful proprietary models, we synthesize a rich amount of balanced composite images, followed by human-in-the-loop filtering and refinement, resulting in MICo-150K, a comprehensive dataset for MICo with identity consistency. We further build a Decomposition-and-Recomposition (De&Re) subset, where 11K real-world complex images are decomposed into components and recomposed, enabling both real and synthetic compositions. To enable comprehensive evaluation, we construct MICo-Bench with 100 cases per task and 300 challenging De&Re cases, and further introduce a new metric, Weighted-Ref-VIEScore, specifically tailored for MICo evaluation. Finally, we fine-tune multiple models on MICo-150K and evaluate them on MICo-Bench. The results show that MICo-150K effectively equips models without MICo capability and further enhances those with existing skills. Notably, our baseline model, Qwen-MICo, fine-tuned from Qwen-Image-Edit, matches Qwen-Image-2509 in 3-image composition while supporting arbitrary multi-image inputs beyond the latter's limitation. Our dataset, benchmark, and baseline collectively offer valuable resources for further research on Multi-Image Composition.

  • 8 authors
·
Dec 8, 2025

MonetGPT: Solving Puzzles Enhances MLLMs' Image Retouching Skills

Retouching is an essential task in post-manipulation of raw photographs. Generative editing, guided by text or strokes, provides a new tool accessible to users but can easily change the identity of the original objects in unacceptable and unpredictable ways. In contrast, although traditional procedural edits, as commonly supported by photoediting tools (e.g., Gimp, Lightroom), are conservative, they are still preferred by professionals. Unfortunately, professional quality retouching involves many individual procedural editing operations that is challenging to plan for most novices. In this paper, we ask if a multimodal large language model (MLLM) can be taught to critique raw photographs, suggest suitable remedies, and finally realize them with a given set of pre-authored procedural image operations. We demonstrate that MLLMs can be first made aware of the underlying image processing operations, by training them to solve specially designed visual puzzles. Subsequently, such an operation-aware MLLM can both plan and propose edit sequences. To facilitate training, given a set of expert-edited photos, we synthesize a reasoning dataset by procedurally manipulating the expert edits and then grounding a pretrained LLM on the visual adjustments, to synthesize reasoning for finetuning. The proposed retouching operations are, by construction, understandable by the users, preserve object details and resolution, and can be optionally overridden. We evaluate our setup on a variety of test examples and show advantages, in terms of explainability and identity preservation, over existing generative and other procedural alternatives. Code, data, models, and supplementary results can be found via our project website at https://monetgpt.github.io.

  • 3 authors
·
May 9, 2025 2

Re-Imagen: Retrieval-Augmented Text-to-Image Generator

Research on text-to-image generation has witnessed significant progress in generating diverse and photo-realistic images, driven by diffusion and auto-regressive models trained on large-scale image-text data. Though state-of-the-art models can generate high-quality images of common entities, they often have difficulty generating images of uncommon entities, such as `Chortai (dog)' or `Picarones (food)'. To tackle this issue, we present the Retrieval-Augmented Text-to-Image Generator (Re-Imagen), a generative model that uses retrieved information to produce high-fidelity and faithful images, even for rare or unseen entities. Given a text prompt, Re-Imagen accesses an external multi-modal knowledge base to retrieve relevant (image, text) pairs and uses them as references to generate the image. With this retrieval step, Re-Imagen is augmented with the knowledge of high-level semantics and low-level visual details of the mentioned entities, and thus improves its accuracy in generating the entities' visual appearances. We train Re-Imagen on a constructed dataset containing (image, text, retrieval) triples to teach the model to ground on both text prompt and retrieval. Furthermore, we develop a new sampling strategy to interleave the classifier-free guidance for text and retrieval conditions to balance the text and retrieval alignment. Re-Imagen achieves significant gain on FID score over COCO and WikiImage. To further evaluate the capabilities of the model, we introduce EntityDrawBench, a new benchmark that evaluates image generation for diverse entities, from frequent to rare, across multiple object categories including dogs, foods, landmarks, birds, and characters. Human evaluation on EntityDrawBench shows that Re-Imagen can significantly improve the fidelity of generated images, especially on less frequent entities.

  • 4 authors
·
Sep 28, 2022

A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends

Image restoration (IR) seeks to recover high-quality images from degraded observations caused by a wide range of factors, including noise, blur, compression, and adverse weather. While traditional IR methods have made notable progress by targeting individual degradation types, their specialization often comes at the cost of generalization, leaving them ill-equipped to handle the multifaceted distortions encountered in real-world applications. In response to this challenge, the all-in-one image restoration (AiOIR) paradigm has recently emerged, offering a unified framework that adeptly addresses multiple degradation types. These innovative models enhance the convenience and versatility by adaptively learning degradation-specific features while simultaneously leveraging shared knowledge across diverse corruptions. In this survey, we provide the first in-depth and systematic overview of AiOIR, delivering a structured taxonomy that categorizes existing methods by architectural designs, learning paradigms, and their core innovations. We systematically categorize current approaches and assess the challenges these models encounter, outlining research directions to propel this rapidly evolving field. To facilitate the evaluation of existing methods, we also consolidate widely-used datasets, evaluation protocols, and implementation practices, and compare and summarize the most advanced open-source models. As the first comprehensive review dedicated to AiOIR, this paper aims to map the conceptual landscape, synthesize prevailing techniques, and ignite further exploration toward more intelligent, unified, and adaptable visual restoration systems. A curated code repository is available at https://github.com/Harbinzzy/All-in-One-Image-Restoration-Survey.

  • 5 authors
·
Oct 19, 2024

InstructRestore: Region-Customized Image Restoration with Human Instructions

Despite the significant progress in diffusion prior-based image restoration, most existing methods apply uniform processing to the entire image, lacking the capability to perform region-customized image restoration according to user instructions. In this work, we propose a new framework, namely InstructRestore, to perform region-adjustable image restoration following human instructions. To achieve this, we first develop a data generation engine to produce training triplets, each consisting of a high-quality image, the target region description, and the corresponding region mask. With this engine and careful data screening, we construct a comprehensive dataset comprising 536,945 triplets to support the training and evaluation of this task. We then examine how to integrate the low-quality image features under the ControlNet architecture to adjust the degree of image details enhancement. Consequently, we develop a ControlNet-like model to identify the target region and allocate different integration scales to the target and surrounding regions, enabling region-customized image restoration that aligns with user instructions. Experimental results demonstrate that our proposed InstructRestore approach enables effective human-instructed image restoration, such as images with bokeh effects and user-instructed local enhancement. Our work advances the investigation of interactive image restoration and enhancement techniques. Data, code, and models will be found at https://github.com/shuaizhengliu/InstructRestore.git.

  • 5 authors
·
Mar 31, 2025

Object-aware Inversion and Reassembly for Image Editing

By comparing the original and target prompts in editing task, we can obtain numerous editing pairs, each comprising an object and its corresponding editing target. To allow editability while maintaining fidelity to the input image, existing editing methods typically involve a fixed number of inversion steps that project the whole input image to its noisier latent representation, followed by a denoising process guided by the target prompt. However, we find that the optimal number of inversion steps for achieving ideal editing results varies significantly among different editing pairs, owing to varying editing difficulties. Therefore, the current literature, which relies on a fixed number of inversion steps, produces sub-optimal generation quality, especially when handling multiple editing pairs in a natural image. To this end, we propose a new image editing paradigm, dubbed Object-aware Inversion and Reassembly (OIR), to enable object-level fine-grained editing. Specifically, we design a new search metric, which determines the optimal inversion steps for each editing pair, by jointly considering the editability of the target and the fidelity of the non-editing region. We use our search metric to find the optimal inversion step for each editing pair when editing an image. We then edit these editing pairs separately to avoid concept mismatch. Subsequently, we propose an additional reassembly step to seamlessly integrate the respective editing results and the non-editing region to obtain the final edited image. To systematically evaluate the effectiveness of our method, we collect two datasets for benchmarking single- and multi-object editing, respectively. Experiments demonstrate that our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.

  • 6 authors
·
Oct 18, 2023

INRetouch: Context Aware Implicit Neural Representation for Photography Retouching

Professional photo editing remains challenging, requiring extensive knowledge of imaging pipelines and significant expertise. With the ubiquity of smartphone photography, there is an increasing demand for accessible yet sophisticated image editing solutions. While recent deep learning approaches, particularly style transfer methods, have attempted to automate this process, they often struggle with output fidelity, editing control, and complex retouching capabilities. We propose a novel retouch transfer approach that learns from professional edits through before-after image pairs, enabling precise replication of complex editing operations. To facilitate this research direction, we introduce a comprehensive Photo Retouching Dataset comprising 100,000 high-quality images edited using over 170 professional Adobe Lightroom presets. We develop a context-aware Implicit Neural Representation that learns to apply edits adaptively based on image content and context, requiring no pretraining and capable of learning from a single example. Our method extracts implicit transformations from reference edits and adaptively applies them to new images. Through extensive evaluation, we demonstrate that our approach not only surpasses existing methods in photo retouching but also enhances performance in related image reconstruction tasks like Gamut Mapping and Raw Reconstruction. By bridging the gap between professional editing capabilities and automated solutions, our work presents a significant step toward making sophisticated photo editing more accessible while maintaining high-fidelity results. Check the Project Page at https://omaralezaby.github.io/inretouch for more Results and information about Code and Dataset availability.

  • 4 authors
·
Dec 4, 2024

GPT-IMAGE-EDIT-1.5M: A Million-Scale, GPT-Generated Image Dataset

Recent advancements in large multimodal models like GPT-4o have set a new standard for high-fidelity, instruction-guided image editing. However, the proprietary nature of these models and their training data creates a significant barrier for open-source research. To bridge this gap, we introduce GPT-IMAGE-EDIT-1.5M, a publicly available, large-scale image-editing corpus containing more than 1.5 million high-quality triplets (instruction, source image, edited image). We systematically construct this dataset by leveraging the versatile capabilities of GPT-4o to unify and refine three popular image-editing datasets: OmniEdit, HQ-Edit, and UltraEdit. Specifically, our methodology involves 1) regenerating output images to enhance visual quality and instruction alignment, and 2) selectively rewriting prompts to improve semantic clarity. To validate the efficacy of our dataset, we fine-tune advanced open-source models on GPT-IMAGE-EDIT-1.5M. The empirical results are exciting, e.g., the fine-tuned FluxKontext achieves highly competitive performance across a comprehensive suite of benchmarks, including 7.24 on GEdit-EN, 3.80 on ImgEdit-Full, and 8.78 on Complex-Edit, showing stronger instruction following and higher perceptual quality while maintaining identity. These scores markedly exceed all previously published open-source methods and substantially narrow the gap to leading proprietary models. We hope the full release of GPT-IMAGE-EDIT-1.5M can help to catalyze further open research in instruction-guided image editing.

  • 7 authors
·
Jul 28, 2025 2

Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels

ImageNet has been arguably the most popular image classification benchmark, but it is also the one with a significant level of label noise. Recent studies have shown that many samples contain multiple classes, despite being assumed to be a single-label benchmark. They have thus proposed to turn ImageNet evaluation into a multi-label task, with exhaustive multi-label annotations per image. However, they have not fixed the training set, presumably because of a formidable annotation cost. We argue that the mismatch between single-label annotations and effectively multi-label images is equally, if not more, problematic in the training setup, where random crops are applied. With the single-label annotations, a random crop of an image may contain an entirely different object from the ground truth, introducing noisy or even incorrect supervision during training. We thus re-label the ImageNet training set with multi-labels. We address the annotation cost barrier by letting a strong image classifier, trained on an extra source of data, generate the multi-labels. We utilize the pixel-wise multi-label predictions before the final pooling layer, in order to exploit the additional location-specific supervision signals. Training on the re-labeled samples results in improved model performances across the board. ResNet-50 attains the top-1 classification accuracy of 78.9% on ImageNet with our localized multi-labels, which can be further boosted to 80.2% with the CutMix regularization. We show that the models trained with localized multi-labels also outperforms the baselines on transfer learning to object detection and instance segmentation tasks, and various robustness benchmarks. The re-labeled ImageNet training set, pre-trained weights, and the source code are available at {https://github.com/naver-ai/relabel_imagenet}.

  • 6 authors
·
Jan 13, 2021

Backward-Compatible Aligned Representations via an Orthogonal Transformation Layer

Visual retrieval systems face significant challenges when updating models with improved representations due to misalignment between the old and new representations. The costly and resource-intensive backfilling process involves recalculating feature vectors for images in the gallery set whenever a new model is introduced. To address this, prior research has explored backward-compatible training methods that enable direct comparisons between new and old representations without backfilling. Despite these advancements, achieving a balance between backward compatibility and the performance of independently trained models remains an open problem. In this paper, we address it by expanding the representation space with additional dimensions and learning an orthogonal transformation to achieve compatibility with old models and, at the same time, integrate new information. This transformation preserves the original feature space's geometry, ensuring that our model aligns with previous versions while also learning new data. Our Orthogonal Compatible Aligned (OCA) approach eliminates the need for re-indexing during model updates and ensures that features can be compared directly across different model updates without additional mapping functions. Experimental results on CIFAR-100 and ImageNet-1k demonstrate that our method not only maintains compatibility with previous models but also achieves state-of-the-art accuracy, outperforming several existing methods.

  • 4 authors
·
Aug 16, 2024 2

TransRef: Multi-Scale Reference Embedding Transformer for Reference-Guided Image Inpainting

Image inpainting for completing complicated semantic environments and diverse hole patterns of corrupted images is challenging even for state-of-the-art learning-based inpainting methods trained on large-scale data. A reference image capturing the same scene of a corrupted image offers informative guidance for completing the corrupted image as it shares similar texture and structure priors to that of the holes of the corrupted image. In this work, we propose a transformer-based encoder-decoder network, named TransRef, for reference-guided image inpainting. Specifically, the guidance is conducted progressively through a reference embedding procedure, in which the referencing features are subsequently aligned and fused with the features of the corrupted image. For precise utilization of the reference features for guidance, a reference-patch alignment (Ref-PA) module is proposed to align the patch features of the reference and corrupted images and harmonize their style differences, while a reference-patch transformer (Ref-PT) module is proposed to refine the embedded reference feature. Moreover, to facilitate the research of reference-guided image restoration tasks, we construct a publicly accessible benchmark dataset containing 50K pairs of input and reference images. Both quantitative and qualitative evaluations demonstrate the efficacy of the reference information and the proposed method over the state-of-the-art methods in completing complex holes. Code and dataset can be accessed at https://github.com/Cameltr/TransRef.

  • 7 authors
·
Jun 20, 2023

Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models

Diffusion models have revitalized the image generation domain, playing crucial roles in both academic research and artistic expression. With the emergence of new diffusion models, assessing the performance of text-to-image models has become increasingly important. Current metrics focus on directly matching the input text with the generated image, but due to cross-modal information asymmetry, this leads to unreliable or incomplete assessment results. Motivated by this, we introduce the Image Regeneration task in this study to assess text-to-image models by tasking the T2I model with generating an image according to the reference image. We use GPT4V to bridge the gap between the reference image and the text input for the T2I model, allowing T2I models to understand image content. This evaluation process is simplified as comparisons between the generated image and the reference image are straightforward. Two regeneration datasets spanning content-diverse and style-diverse evaluation dataset are introduced to evaluate the leading diffusion models currently available. Additionally, we present ImageRepainter framework to enhance the quality of generated images by improving content comprehension via MLLM guided iterative generation and revision. Our comprehensive experiments have showcased the effectiveness of this framework in assessing the generative capabilities of models. By leveraging MLLM, we have demonstrated that a robust T2M can produce images more closely resembling the reference image.

  • 6 authors
·
Nov 14, 2024

Edit2Restore:Few-Shot Image Restoration via Parameter-Efficient Adaptation of Pre-trained Editing Models

Image restoration has traditionally required training specialized models on thousands of paired examples per degradation type. We challenge this paradigm by demonstrating that powerful pre-trained text-conditioned image editing models can be efficiently adapted for multiple restoration tasks through parameter-efficient fine-tuning with remarkably few examples. Our approach fine-tunes LoRA adapters on FLUX.1 Kontext, a state-of-the-art 12B parameter flow matching model for image-to-image translation, using only 16-128 paired images per task, guided by simple text prompts that specify the restoration operation. Unlike existing methods that train specialized restoration networks from scratch with thousands of samples, we leverage the rich visual priors already encoded in large-scale pre-trained editing models, dramatically reducing data requirements while maintaining high perceptual quality. A single unified LoRA adapter, conditioned on task-specific text prompts, effectively handles multiple degradations including denoising, deraining, and dehazing. Through comprehensive ablation studies, we analyze: (i) the impact of training set size on restoration quality, (ii) trade-offs between task-specific versus unified multi-task adapters, (iii) the role of text encoder fine-tuning, and (iv) zero-shot baseline performance. While our method prioritizes perceptual quality over pixel-perfect reconstruction metrics like PSNR/SSIM, our results demonstrate that pre-trained image editing models, when properly adapted, offer a compelling and data-efficient alternative to traditional image restoration approaches, opening new avenues for few-shot, prompt-guided image enhancement. The code to reproduce our results are available at: https://github.com/makinyilmaz/Edit2Restore

  • 4 authors
·
Jan 6

Making Images Real Again: A Comprehensive Survey on Deep Image Composition

As a common image editing operation, image composition (object insertion) aims to combine the foreground from one image and another background image, resulting in a composite image. However, there are many issues that could make the composite images unrealistic. These issues can be summarized as the inconsistency between foreground and background, which includes appearance inconsistency (e.g., incompatible illumination), geometry inconsistency (e.g., unreasonable size), and semantic inconsistency (e.g., mismatched semantic context). Image composition task could be decomposed into multiple sub-tasks, in which each sub-task targets at one or more issues. Specifically, object placement aims to find reasonable scale, location, and shape for the foreground. Image blending aims to address the unnatural boundary between foreground and background. Image harmonization aims to adjust the illumination statistics of foreground. Shadow (resp., reflection) generation aims to generate plausible shadow (resp., reflection) for the foreground. These sub-tasks can be executed sequentially or parallelly to acquire realistic composite images. To the best of our knowledge, there is no previous survey on image composition (object insertion). In this paper, we conduct comprehensive survey over the sub-tasks and combinatorial task of image composition (object insertion). For each one, we summarize the existing methods, available datasets, and common evaluation metrics. We have also contributed the first image composition toolbox libcom, which assembles 10+ image composition related functions (e.g., image blending, image harmonization, object placement, shadow generation, generative composition). The ultimate goal of this toolbox is solving all the problems related to image composition with simple `import libcom'.

  • 7 authors
·
Jun 28, 2021 1

MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration

Recent advancements in Mamba have shown promising results in image restoration. These methods typically flatten 2D images into multiple distinct 1D sequences along rows and columns, process each sequence independently using selective scan operation, and recombine them to form the outputs. However, such a paradigm overlooks two vital aspects: i) the local relationships and spatial continuity inherent in natural images, and ii) the discrepancies among sequences unfolded through totally different ways. To overcome the drawbacks, we explore two problems in Mamba-based restoration methods: i) how to design a scanning strategy preserving both locality and continuity while facilitating restoration, and ii) how to aggregate the distinct sequences unfolded in totally different ways. To address these problems, we propose a novel Mamba-based Image Restoration model (MaIR), which consists of Nested S-shaped Scanning strategy (NSS) and Sequence Shuffle Attention block (SSA). Specifically, NSS preserves locality and continuity of the input images through the stripe-based scanning region and the S-shaped scanning path, respectively. SSA aggregates sequences through calculating attention weights within the corresponding channels of different sequences. Thanks to NSS and SSA, MaIR surpasses 40 baselines across 14 challenging datasets, achieving state-of-the-art performance on the tasks of image super-resolution, denoising, deblurring and dehazing. The code is available at https://github.com/XLearning-SCU/2025-CVPR-MaIR.

  • 6 authors
·
Dec 28, 2024

VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement

Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.

  • 4 authors
·
Nov 22, 2024 3

3D-RE-GEN: 3D Reconstruction of Indoor Scenes with a Generative Framework

Recent advances in 3D scene generation produce visually appealing output, but current representations hinder artists' workflows that require modifiable 3D textured mesh scenes for visual effects and game development. Despite significant advances, current textured mesh scene reconstruction methods are far from artist ready, suffering from incorrect object decomposition, inaccurate spatial relationships, and missing backgrounds. We present 3D-RE-GEN, a compositional framework that reconstructs a single image into textured 3D objects and a background. We show that combining state of the art models from specific domains achieves state of the art scene reconstruction performance, addressing artists' requirements. Our reconstruction pipeline integrates models for asset detection, reconstruction, and placement, pushing certain models beyond their originally intended domains. Obtaining occluded objects is treated as an image editing task with generative models to infer and reconstruct with scene level reasoning under consistent lighting and geometry. Unlike current methods, 3D-RE-GEN generates a comprehensive background that spatially constrains objects during optimization and provides a foundation for realistic lighting and simulation tasks in visual effects and games. To obtain physically realistic layouts, we employ a novel 4-DoF differentiable optimization that aligns reconstructed objects with the estimated ground plane. 3D-RE-GEN~achieves state of the art performance in single image 3D scene reconstruction, producing coherent, modifiable scenes through compositional generation guided by precise camera recovery and spatial optimization.

  • 3 authors
·
Dec 19, 2025 2

FreeEdit: Mask-free Reference-based Image Editing with Multi-modal Instruction

Introducing user-specified visual concepts in image editing is highly practical as these concepts convey the user's intent more precisely than text-based descriptions. We propose FreeEdit, a novel approach for achieving such reference-based image editing, which can accurately reproduce the visual concept from the reference image based on user-friendly language instructions. Our approach leverages the multi-modal instruction encoder to encode language instructions to guide the editing process. This implicit way of locating the editing area eliminates the need for manual editing masks. To enhance the reconstruction of reference details, we introduce the Decoupled Residual ReferAttention (DRRA) module. This module is designed to integrate fine-grained reference features extracted by a detail extractor into the image editing process in a residual way without interfering with the original self-attention. Given that existing datasets are unsuitable for reference-based image editing tasks, particularly due to the difficulty in constructing image triplets that include a reference image, we curate a high-quality dataset, FreeBench, using a newly developed twice-repainting scheme. FreeBench comprises the images before and after editing, detailed editing instructions, as well as a reference image that maintains the identity of the edited object, encompassing tasks such as object addition, replacement, and deletion. By conducting phased training on FreeBench followed by quality tuning, FreeEdit achieves high-quality zero-shot editing through convenient language instructions. We conduct extensive experiments to evaluate the effectiveness of FreeEdit across multiple task types, demonstrating its superiority over existing methods. The code will be available at: https://freeedit.github.io/.

  • 9 authors
·
Sep 26, 2024

Refaçade: Editing Object with Given Reference Texture

Recent advances in diffusion models have brought remarkable progress in image and video editing, yet some tasks remain underexplored. In this paper, we introduce a new task, Object Retexture, which transfers local textures from a reference object to a target object in images or videos. To perform this task, a straightforward solution is to use ControlNet conditioned on the source structure and the reference texture. However, this approach suffers from limited controllability for two reasons: conditioning on the raw reference image introduces unwanted structural information, and it fails to disentangle the visual texture and structure information of the source. To address this problem, we propose Refaçade, a method that consists of two key designs to achieve precise and controllable texture transfer in both images and videos. First, we employ a texture remover trained on paired textured/untextured 3D mesh renderings to remove appearance information while preserving the geometry and motion of source videos. Second, we disrupt the reference global layout using a jigsaw permutation, encouraging the model to focus on local texture statistics rather than the global layout of the object. Extensive experiments demonstrate superior visual quality, precise editing, and controllability, outperforming strong baselines in both quantitative and human evaluations. Code is available at https://github.com/fishZe233/Refacade.

  • 6 authors
·
Dec 4, 2025

Generating Coherent Sequences of Visual Illustrations for Real-World Manual Tasks

Multistep instructions, such as recipes and how-to guides, greatly benefit from visual aids, such as a series of images that accompany the instruction steps. While Large Language Models (LLMs) have become adept at generating coherent textual steps, Large Vision/Language Models (LVLMs) are less capable of generating accompanying image sequences. The most challenging aspect is that each generated image needs to adhere to the relevant textual step instruction, as well as be visually consistent with earlier images in the sequence. To address this problem, we propose an approach for generating consistent image sequences, which integrates a Latent Diffusion Model (LDM) with an LLM to transform the sequence into a caption to maintain the semantic coherence of the sequence. In addition, to maintain the visual coherence of the image sequence, we introduce a copy mechanism to initialise reverse diffusion processes with a latent vector iteration from a previously generated image from a relevant step. Both strategies will condition the reverse diffusion process on the sequence of instruction steps and tie the contents of the current image to previous instruction steps and corresponding images. Experiments show that the proposed approach is preferred by humans in 46.6% of the cases against 26.6% for the second best method. In addition, automatic metrics showed that the proposed method maintains semantic coherence and visual consistency across steps in both domains.

  • 8 authors
·
May 16, 2024

Paint by Inpaint: Learning to Add Image Objects by Removing Them First

Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to the utilization of segmentation mask datasets alongside inpainting models that inpaint within these masks. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones; moreover, it maintains consistency between source and target by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. We show that the trained model surpasses existing ones both qualitatively and quantitatively, and release the large-scale dataset alongside the trained models for the community.

  • 4 authors
·
Apr 28, 2024 6

Bridging the Gap Between Computational Photography and Visual Recognition

What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step to improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG^2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG^2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.

  • 24 authors
·
Jan 27, 2019

A Picture is Worth a Thousand Words: Principled Recaptioning Improves Image Generation

Text-to-image diffusion models achieved a remarkable leap in capabilities over the last few years, enabling high-quality and diverse synthesis of images from a textual prompt. However, even the most advanced models often struggle to precisely follow all of the directions in their prompts. The vast majority of these models are trained on datasets consisting of (image, caption) pairs where the images often come from the web, and the captions are their HTML alternate text. A notable example is the LAION dataset, used by Stable Diffusion and other models. In this work we observe that these captions are often of low quality, and argue that this significantly affects the model's capability to understand nuanced semantics in the textual prompts. We show that by relabeling the corpus with a specialized automatic captioning model and training a text-to-image model on the recaptioned dataset, the model benefits substantially across the board. First, in overall image quality: e.g. FID 14.84 vs. the baseline of 17.87, and 64.3% improvement in faithful image generation according to human evaluation. Second, in semantic alignment, e.g. semantic object accuracy 84.34 vs. 78.90, counting alignment errors 1.32 vs. 1.44 and positional alignment 62.42 vs. 57.60. We analyze various ways to relabel the corpus and provide evidence that this technique, which we call RECAP, both reduces the train-inference discrepancy and provides the model with more information per example, increasing sample efficiency and allowing the model to better understand the relations between captions and images.

  • 5 authors
·
Oct 25, 2023 1

PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions

This paper presents a versatile image-to-image visual assistant, PixWizard, designed for image generation, manipulation, and translation based on free-from language instructions. To this end, we tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning Dataset. By constructing detailed instruction templates in natural language, we comprehensively include a large set of diverse vision tasks such as text-to-image generation, image restoration, image grounding, dense image prediction, image editing, controllable generation, inpainting/outpainting, and more. Furthermore, we adopt Diffusion Transformers (DiT) as our foundation model and extend its capabilities with a flexible any resolution mechanism, enabling the model to dynamically process images based on the aspect ratio of the input, closely aligning with human perceptual processes. The model also incorporates structure-aware and semantic-aware guidance to facilitate effective fusion of information from the input image. Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions. The code and related resources are available at https://github.com/AFeng-x/PixWizard

  • 10 authors
·
Sep 23, 2024 2

Learning Enriched Features for Real Image Restoration and Enhancement

With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for a variety of image processing tasks, including image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.

  • 7 authors
·
Mar 15, 2020

RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors

In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.

  • 6 authors
·
Mar 13, 2025

SynC: Synthetic Image Caption Dataset Refinement with One-to-many Mapping for Zero-shot Image Captioning

Zero-shot Image Captioning (ZIC) increasingly utilizes synthetic datasets generated by text-to-image (T2I) models to mitigate the need for costly manual annotation. However, these T2I models often produce images that exhibit semantic misalignments with their corresponding input captions (e.g., missing objects, incorrect attributes), resulting in noisy synthetic image-caption pairs that can hinder model training. Existing dataset pruning techniques are largely designed for removing noisy text in web-crawled data. However, these methods are ill-suited for the distinct challenges of synthetic data, where captions are typically well-formed, but images may be inaccurate representations. To address this gap, we introduce SynC, a novel framework specifically designed to refine synthetic image-caption datasets for ZIC. Instead of conventional filtering or regeneration, SynC focuses on reassigning captions to the most semantically aligned images already present within the synthetic image pool. Our approach employs a one-to-many mapping strategy by initially retrieving multiple relevant candidate images for each caption. We then apply a cycle-consistency-inspired alignment scorer that selects the best image by verifying its ability to retrieve the original caption via image-to-text retrieval. Extensive evaluations demonstrate that SynC consistently and significantly improves performance across various ZIC models on standard benchmarks (MS-COCO, Flickr30k, NoCaps), achieving state-of-the-art results in several scenarios. SynC offers an effective strategy for curating refined synthetic data to enhance ZIC.

  • 6 authors
·
Jul 24, 2025

FALCON: Resolving Visual Redundancy and Fragmentation in High-resolution Multimodal Large Language Models via Visual Registers

The incorporation of high-resolution visual input equips multimodal large language models (MLLMs) with enhanced visual perception capabilities for real-world tasks. However, most existing high-resolution MLLMs rely on a cropping-based approach to process images, which leads to fragmented visual encoding and a sharp increase in redundant tokens. To tackle these issues, we propose the FALCON model. FALCON introduces a novel visual register technique to simultaneously: 1) Eliminate redundant tokens at the stage of visual encoding. To directly address the visual redundancy present in the output of vision encoder, we propose a Register-based Representation Compacting (ReCompact) mechanism. This mechanism introduces a set of learnable visual registers designed to adaptively aggregate essential information while discarding redundancy. It enables the encoder to produce a more compact visual representation with a minimal number of output tokens, thus eliminating the need for an additional compression module. 2) Ensure continuity in visual encoding. To address the potential encoding errors caused by fragmented visual inputs, we develop a Register Interactive Attention (ReAtten) module. This module facilitates effective and efficient information exchange across sub-images by enabling interactions between visual registers. It ensures the continuity of visual semantics throughout the encoding. We conduct comprehensive experiments with FALCON on high-resolution benchmarks across a wide range of scenarios. FALCON demonstrates superior performance with a remarkable 9-fold reduction in visual tokens.

  • 7 authors
·
Jan 27, 2025

ReCamMaster: Camera-Controlled Generative Rendering from A Single Video

Camera control has been actively studied in text or image conditioned video generation tasks. However, altering camera trajectories of a given video remains under-explored, despite its importance in the field of video creation. It is non-trivial due to the extra constraints of maintaining multiple-frame appearance and dynamic synchronization. To address this, we present ReCamMaster, a camera-controlled generative video re-rendering framework that reproduces the dynamic scene of an input video at novel camera trajectories. The core innovation lies in harnessing the generative capabilities of pre-trained text-to-video models through a simple yet powerful video conditioning mechanism -- its capability often overlooked in current research. To overcome the scarcity of qualified training data, we construct a comprehensive multi-camera synchronized video dataset using Unreal Engine 5, which is carefully curated to follow real-world filming characteristics, covering diverse scenes and camera movements. It helps the model generalize to in-the-wild videos. Lastly, we further improve the robustness to diverse inputs through a meticulously designed training strategy. Extensive experiments tell that our method substantially outperforms existing state-of-the-art approaches and strong baselines. Our method also finds promising applications in video stabilization, super-resolution, and outpainting. Project page: https://jianhongbai.github.io/ReCamMaster/

  • 11 authors
·
Mar 14, 2025 6

Screentone-Preserved Manga Retargeting

As a popular comic style, manga offers a unique impression by utilizing a rich set of bitonal patterns, or screentones, for illustration. However, screentones can easily be contaminated with visual-unpleasant aliasing and/or blurriness after resampling, which harms its visualization on displays of diverse resolutions. To address this problem, we propose the first manga retargeting method that synthesizes a rescaled manga image while retaining the screentone in each screened region. This is a non-trivial task as accurate region-wise segmentation remains challenging. Fortunately, the rescaled manga shares the same region-wise screentone correspondences with the original manga, which enables us to simplify the screentone synthesis problem as an anchor-based proposals selection and rearrangement problem. Specifically, we design a novel manga sampling strategy to generate aliasing-free screentone proposals, based on hierarchical grid-based anchors that connect the correspondences between the original and the target rescaled manga. Furthermore, a Recurrent Proposal Selection Module (RPSM) is proposed to adaptively integrate these proposals for target screentone synthesis. Besides, to deal with the translation insensitivity nature of screentones, we propose a translation-invariant screentone loss to facilitate the training convergence. Extensive qualitative and quantitative experiments are conducted to verify the effectiveness of our method, and notably compelling results are achieved compared to existing alternative techniques.

  • 4 authors
·
Mar 7, 2022

ToonAging: Face Re-Aging upon Artistic Portrait Style Transfer

Face re-aging is a prominent field in computer vision and graphics, with significant applications in photorealistic domains such as movies, advertising, and live streaming. Recently, the need to apply face re-aging to non-photorealistic images, like comics, illustrations, and animations, has emerged as an extension in various entertainment sectors. However, the absence of a network capable of seamlessly editing the apparent age on NPR images means that these tasks have been confined to a naive approach, applying each task sequentially. This often results in unpleasant artifacts and a loss of facial attributes due to domain discrepancies. In this paper, we introduce a novel one-stage method for face re-aging combined with portrait style transfer, executed in a single generative step. We leverage existing face re-aging and style transfer networks, both trained within the same PR domain. Our method uniquely fuses distinct latent vectors, each responsible for managing aging-related attributes and NPR appearance. Adopting an exemplar-based approach, our method offers greater flexibility than domain-level fine-tuning approaches, which typically require separate training or fine-tuning for each domain. This effectively addresses the limitation of requiring paired datasets for re-aging and domain-level, data-driven approaches for stylization. Our experiments show that our model can effortlessly generate re-aged images while simultaneously transferring the style of examples, maintaining both natural appearance and controllability.

  • 4 authors
·
Feb 5, 2024

DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation

Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets. To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model. GenIR, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation & filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images. Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address. Our exhaustive experiments confirm DreamClear's superior performance, underlining the efficacy of our dual strategy for real-world image restoration. Code and pre-trained models will be available at: https://github.com/shallowdream204/DreamClear.

  • 7 authors
·
Oct 24, 2024 3

FRAP: Faithful and Realistic Text-to-Image Generation with Adaptive Prompt Weighting

Text-to-image (T2I) diffusion models have demonstrated impressive capabilities in generating high-quality images given a text prompt. However, ensuring the prompt-image alignment remains a considerable challenge, i.e., generating images that faithfully align with the prompt's semantics. Recent works attempt to improve the faithfulness by optimizing the latent code, which potentially could cause the latent code to go out-of-distribution and thus produce unrealistic images. In this paper, we propose FRAP, a simple, yet effective approach based on adaptively adjusting the per-token prompt weights to improve prompt-image alignment and authenticity of the generated images. We design an online algorithm to adaptively update each token's weight coefficient, which is achieved by minimizing a unified objective function that encourages object presence and the binding of object-modifier pairs. Through extensive evaluations, we show FRAP generates images with significantly higher prompt-image alignment to prompts from complex datasets, while having a lower average latency compared to recent latent code optimization methods, e.g., 4 seconds faster than D&B on the COCO-Subject dataset. Furthermore, through visual comparisons and evaluation on the CLIP-IQA-Real metric, we show that FRAP not only improves prompt-image alignment but also generates more authentic images with realistic appearances. We also explore combining FRAP with prompt rewriting LLM to recover their degraded prompt-image alignment, where we observe improvements in both prompt-image alignment and image quality.

  • 7 authors
·
Aug 21, 2024 2

Robust Image Stitching with Optimal Plane

We present RopStitch, an unsupervised deep image stitching framework with both robustness and naturalness. To ensure the robustness of RopStitch, we propose to incorporate the universal prior of content perception into the image stitching model by a dual-branch architecture. It separately captures coarse and fine features and integrates them to achieve highly generalizable performance across diverse unseen real-world scenes. Concretely, the dual-branch model consists of a pretrained branch to capture semantically invariant representations and a learnable branch to extract fine-grained discriminative features, which are then merged into a whole by a controllable factor at the correlation level. Besides, considering that content alignment and structural preservation are often contradictory to each other, we propose a concept of virtual optimal planes to relieve this conflict. To this end, we model this problem as a process of estimating homography decomposition coefficients, and design an iterative coefficient predictor and minimal semantic distortion constraint to identify the optimal plane. This scheme is finally incorporated into RopStitch by warping both views onto the optimal plane bidirectionally. Extensive experiments across various datasets demonstrate that RopStitch significantly outperforms existing methods, particularly in scene robustness and content naturalness. The code is available at {redhttps://github.com/MmelodYy/RopStitch}.

  • 6 authors
·
Aug 7, 2025

Large-scale Training Data Search for Object Re-identification

We consider a scenario where we have access to the target domain, but cannot afford on-the-fly training data annotation, and instead would like to construct an alternative training set from a large-scale data pool such that a competitive model can be obtained. We propose a search and pruning (SnP) solution to this training data search problem, tailored to object re-identification (re-ID), an application aiming to match the same object captured by different cameras. Specifically, the search stage identifies and merges clusters of source identities which exhibit similar distributions with the target domain. The second stage, subject to a budget, then selects identities and their images from the Stage I output, to control the size of the resulting training set for efficient training. The two steps provide us with training sets 80\% smaller than the source pool while achieving a similar or even higher re-ID accuracy. These training sets are also shown to be superior to a few existing search methods such as random sampling and greedy sampling under the same budget on training data size. If we release the budget, training sets resulting from the first stage alone allow even higher re-ID accuracy. We provide interesting discussions on the specificity of our method to the re-ID problem and particularly its role in bridging the re-ID domain gap. The code is available at https://github.com/yorkeyao/SnP.

  • 4 authors
·
Mar 28, 2023

How Stable is Stable Diffusion under Recursive InPainting (RIP)?

Generative Artificial Intelligence image models have achieved outstanding performance in text-to-image generation and other tasks, such as inpainting that completes images with missing fragments. The performance of inpainting can be accurately measured by taking an image, removing some fragments, performing the inpainting to restore them, and comparing the results with the original image. Interestingly, inpainting can also be applied recursively, starting from an image, removing some parts, applying inpainting to reconstruct the image, and then starting the inpainting process again on the reconstructed image, and so forth. This process of recursively applying inpainting can lead to an image that is similar or completely different from the original one, depending on the fragments that are removed and the ability of the model to reconstruct them. Intuitively, stability, understood as the capability to recover an image that is similar to the original one even after many recursive inpainting operations, is a desirable feature and can be used as an additional performance metric for inpainting. The concept of stability is also being studied in the context of recursive training of generative AI models with their own data. Recursive inpainting is an inference-only recursive process whose understanding may complement ongoing efforts to study the behavior of generative AI models under training recursion. In this paper, the impact of recursive inpainting is studied for one of the most widely used image models: Stable Diffusion. The results show that recursive inpainting can lead to image collapse, so ending with a nonmeaningful image, and that the outcome depends on several factors such as the type of image, the size of the inpainting masks, and the number of iterations.

  • 6 authors
·
Jun 27, 2024

DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction

Self-driving industries usually employ professional artists to build exquisite 3D cars. However, it is expensive to craft large-scale digital assets. Since there are already numerous datasets available that contain a vast number of images of cars, we focus on reconstructing high-quality 3D car models from these datasets. However, these datasets only contain one side of cars in the forward-moving scene. We try to use the existing generative models to provide more supervision information, but they struggle to generalize well in cars since they are trained on synthetic datasets not car-specific. In addition, The reconstructed 3D car texture misaligns due to a large error in camera pose estimation when dealing with in-the-wild images. These restrictions make it challenging for previous methods to reconstruct complete 3D cars. To address these problems, we propose a novel method, named DreamCar, which can reconstruct high-quality 3D cars given a few images even a single image. To generalize the generative model, we collect a car dataset, named Car360, with over 5,600 vehicles. With this dataset, we make the generative model more robust to cars. We use this generative prior specific to the car to guide its reconstruction via Score Distillation Sampling. To further complement the supervision information, we utilize the geometric and appearance symmetry of cars. Finally, we propose a pose optimization method that rectifies poses to tackle texture misalignment. Extensive experiments demonstrate that our method significantly outperforms existing methods in reconstructing high-quality 3D cars. https://xiaobiaodu.github.io/dreamcar-project/{Our code is available.}

  • 5 authors
·
Jul 24, 2024 2

FreeCustom: Tuning-Free Customized Image Generation for Multi-Concept Composition

Benefiting from large-scale pre-trained text-to-image (T2I) generative models, impressive progress has been achieved in customized image generation, which aims to generate user-specified concepts. Existing approaches have extensively focused on single-concept customization and still encounter challenges when it comes to complex scenarios that involve combining multiple concepts. These approaches often require retraining/fine-tuning using a few images, leading to time-consuming training processes and impeding their swift implementation. Furthermore, the reliance on multiple images to represent a singular concept increases the difficulty of customization. To this end, we propose FreeCustom, a novel tuning-free method to generate customized images of multi-concept composition based on reference concepts, using only one image per concept as input. Specifically, we introduce a new multi-reference self-attention (MRSA) mechanism and a weighted mask strategy that enables the generated image to access and focus more on the reference concepts. In addition, MRSA leverages our key finding that input concepts are better preserved when providing images with context interactions. Experiments show that our method's produced images are consistent with the given concepts and better aligned with the input text. Our method outperforms or performs on par with other training-based methods in terms of multi-concept composition and single-concept customization, but is simpler. Codes can be found at https://github.com/aim-uofa/FreeCustom.

  • 7 authors
·
May 22, 2024

CIE XYZ Net: Unprocessing Images for Low-Level Computer Vision Tasks

Cameras currently allow access to two image states: (i) a minimally processed linear raw-RGB image state (i.e., raw sensor data) or (ii) a highly-processed nonlinear image state (e.g., sRGB). There are many computer vision tasks that work best with a linear image state, such as image deblurring and image dehazing. Unfortunately, the vast majority of images are saved in the nonlinear image state. Because of this, a number of methods have been proposed to "unprocess" nonlinear images back to a raw-RGB state. However, existing unprocessing methods have a drawback because raw-RGB images are sensor-specific. As a result, it is necessary to know which camera produced the sRGB output and use a method or network tailored for that sensor to properly unprocess it. This paper addresses this limitation by exploiting another camera image state that is not available as an output, but it is available inside the camera pipeline. In particular, cameras apply a colorimetric conversion step to convert the raw-RGB image to a device-independent space based on the CIE XYZ color space before they apply the nonlinear photo-finishing. Leveraging this canonical image state, we propose a deep learning framework, CIE XYZ Net, that can unprocess a nonlinear image back to the canonical CIE XYZ image. This image can then be processed by any low-level computer vision operator and re-rendered back to the nonlinear image. We demonstrate the usefulness of the CIE XYZ Net on several low-level vision tasks and show significant gains that can be obtained by this processing framework. Code and dataset are publicly available at https://github.com/mahmoudnafifi/CIE_XYZ_NET.

  • 5 authors
·
Jun 22, 2020 1