Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOne Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos
We introduce VideoLISA, a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos. Leveraging the reasoning capabilities and world knowledge of large language models, and augmented by the Segment Anything Model, VideoLISA generates temporally consistent segmentation masks in videos based on language instructions. Existing image-based methods, such as LISA, struggle with video tasks due to the additional temporal dimension, which requires temporal dynamic understanding and consistent segmentation across frames. VideoLISA addresses these challenges by integrating a Sparse Dense Sampling strategy into the video-LLM, which balances temporal context and spatial detail within computational constraints. Additionally, we propose a One-Token-Seg-All approach using a specially designed <TRK> token, enabling the model to segment and track objects across multiple frames. Extensive evaluations on diverse benchmarks, including our newly introduced ReasonVOS benchmark, demonstrate VideoLISA's superior performance in video object segmentation tasks involving complex reasoning, temporal understanding, and object tracking. While optimized for videos, VideoLISA also shows promising generalization to image segmentation, revealing its potential as a unified foundation model for language-instructed object segmentation. Code and model will be available at: https://github.com/showlab/VideoLISA.
Single-stage TTS with Masked Audio Token Modeling and Semantic Knowledge Distillation
Audio token modeling has become a powerful framework for speech synthesis, with two-stage approaches employing semantic tokens remaining prevalent. In this paper, we aim to simplify this process by introducing a semantic knowledge distillation method that enables high-quality speech generation in a single stage. Our proposed model improves speech quality, intelligibility, and speaker similarity compared to a single-stage baseline. Although two-stage systems still lead in intelligibility, our model significantly narrows the gap while delivering comparable speech quality. These findings showcase the potential of single-stage models to achieve efficient, high-quality TTS with a more compact and streamlined architecture.
Stabilizing Knowledge, Promoting Reasoning: Dual-Token Constraints for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has become an effective post-training method for improving the reasoning abilities of Large Language Models (LLMs), mainly by shaping higher-order behaviors such as reflection and planning. However, previous RLVR algorithms often apply uniform training signals to all tokens, without considering the different roles of low-entropy knowledge-related tokens and high-entropy reasoning-related tokens. Some recent methods try to separate these token types by gradient masking or asynchronous updates, but these approaches may break semantic dependencies in the model output and hinder effective learning. In this work, we propose Archer, an entropy-aware RLVR approach with dual-token constraints and synchronous updates. Specifically, our method applies weaker KL regularization and higher clipping thresholds to reasoning tokens to encourage exploration, while using stronger constraints on knowledge tokens to maintain factual knowledge. Experimental results on several mathematical reasoning and code generation benchmarks show that our approach significantly outperforms previous RLVR methods, reaching or exceeding state-of-the-art performance among models of comparable size. The code is available at https://github.com/wizard-III/ArcherCodeR.
Hyperspherical Latents Improve Continuous-Token Autoregressive Generation
Autoregressive (AR) models are promising for image generation, yet continuous-token AR variants often trail latent diffusion and masked-generation models. The core issue is heterogeneous variance in VAE latents, which is amplified during AR decoding, especially under classifier-free guidance (CFG), and can cause variance collapse. We propose SphereAR to address this issue. Its core design is to constrain all AR inputs and outputs -- including after CFG -- to lie on a fixed-radius hypersphere (constant ell_2 norm), leveraging hyperspherical VAEs. Our theoretical analysis shows that hyperspherical constraint removes the scale component (the primary cause of variance collapse), thereby stabilizing AR decoding. Empirically, on ImageNet generation, SphereAR-H (943M) sets a new state of the art for AR models, achieving FID 1.34. Even at smaller scales, SphereAR-L (479M) reaches FID 1.54 and SphereAR-B (208M) reaches 1.92, matching or surpassing much larger baselines such as MAR-H (943M, 1.55) and VAR-d30 (2B, 1.92). To our knowledge, this is the first time a pure next-token AR image generator with raster order surpasses diffusion and masked-generation models at comparable parameter scales.
Biomedical knowledge graph-optimized prompt generation for large language models
Large Language Models (LLMs) are being adopted at an unprecedented rate, yet still face challenges in knowledge-intensive domains like biomedicine. Solutions such as pre-training and domain-specific fine-tuning add substantial computational overhead, requiring further domain expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) framework by leveraging a massive biomedical KG (SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo and GPT-4, to generate meaningful biomedical text rooted in established knowledge. Compared to the existing RAG technique for Knowledge Graphs, the proposed method utilizes minimal graph schema for context extraction and uses embedding methods for context pruning. This optimization in context extraction results in more than 50% reduction in token consumption without compromising the accuracy, making a cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG consistently enhanced the performance of LLMs across diverse biomedical prompts by generating responses rooted in established knowledge, accompanied by accurate provenance and statistical evidence (if available) to substantiate the claims. Further benchmarking on human curated datasets, such as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the framework's capacity to empower open-source models with fewer parameters for domain specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 and GPT-4. In summary, the proposed framework combines explicit and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective fashion.
From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Large language models (LLMs) excel at generation but dominant autoregressive (AR) decoding is inherently sequential, creating a throughput bottleneck. Diffusion Language Models (DLMs)--especially block-wise variants--enable parallel generation and intra-block bidirectional reasoning, yet training large DLMs from scratch is costly and wastes the knowledge in mature AR checkpoints. Prior "adaptation" attempts either modify logits or randomly grow attention masks to full-sequence diffusion, or simply transplant AR weights into a block-diffusion recipe, leaving a fundamental mismatch between AR causality and block-wise bidirectionality unaddressed. We reframe adaptation as a intra-paradigm path from AR to Block-Diffusion by viewing AR as Block-Diffusion with blocksize=1. Concretely, we design the pathway of adaptation as follows: we use a context-causal attention mask (causal in context, bidirectional only within the active block), an efficient parallel adaptation procedure, an auxiliary AR loss to maximize data utilization and retain pretrained knowledge, and gradual increment of the generation block size. The recipe integrates cleanly with masked block-diffusion and maintains train-inference consistency. Built on these components, NBDiff-7B (Base and Instruct) could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs, delivering strong gains on general-knowledge, math, and code benchmarks over strong baselines. These results demonstrate that principled AR-to-block-diffusion adaptation is an effective and compute-efficient alternative to training DLMs from scratch. Codes: https://github.com/YuchuanTian/NBDiff.
ViT-Linearizer: Distilling Quadratic Knowledge into Linear-Time Vision Models
Vision Transformers (ViTs) have delivered remarkable progress through global self-attention, yet their quadratic complexity can become prohibitive for high-resolution inputs. In this work, we present ViT-Linearizer, a cross-architecture distillation framework that transfers rich ViT representations into a linear-time, recurrent-style model. Our approach leverages 1) activation matching, an intermediate constraint that encourages student to align its token-wise dependencies with those produced by the teacher, and 2) masked prediction, a contextual reconstruction objective that requires the student to predict the teacher's representations for unseen (masked) tokens, to effectively distill the quadratic self-attention knowledge into the student while maintaining efficient complexity. Empirically, our method provides notable speedups particularly for high-resolution tasks, significantly addressing the hardware challenges in inference. Additionally, it also elevates Mamba-based architectures' performance on standard vision benchmarks, achieving a competitive 84.3% top-1 accuracy on ImageNet with a base-sized model. Our results underscore the good potential of RNN-based solutions for large-scale visual tasks, bridging the gap between theoretical efficiency and real-world practice.
Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve nearly 100\% attack success rate -- according to GPT-4 as a judge -- on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with 100\% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). We provide the code, prompts, and logs of the attacks at https://github.com/tml-epfl/llm-adaptive-attacks.
On the Effectiveness of Compact Biomedical Transformers
Language models pre-trained on biomedical corpora, such as BioBERT, have recently shown promising results on downstream biomedical tasks. Many existing pre-trained models, on the other hand, are resource-intensive and computationally heavy owing to factors such as embedding size, hidden dimension, and number of layers. The natural language processing (NLP) community has developed numerous strategies to compress these models utilising techniques such as pruning, quantisation, and knowledge distillation, resulting in models that are considerably faster, smaller, and subsequently easier to use in practice. By the same token, in this paper we introduce six lightweight models, namely, BioDistilBERT, BioTinyBERT, BioMobileBERT, DistilBioBERT, TinyBioBERT, and CompactBioBERT which are obtained either by knowledge distillation from a biomedical teacher or continual learning on the Pubmed dataset via the Masked Language Modelling (MLM) objective. We evaluate all of our models on three biomedical tasks and compare them with BioBERT-v1.1 to create efficient lightweight models that perform on par with their larger counterparts. All the models will be publicly available on our Huggingface profile at https://huggingface.co/nlpie and the codes used to run the experiments will be available at https://github.com/nlpie-research/Compact-Biomedical-Transformers.
Short Text Pre-training with Extended Token Classification for E-commerce Query Understanding
E-commerce query understanding is the process of inferring the shopping intent of customers by extracting semantic meaning from their search queries. The recent progress of pre-trained masked language models (MLM) in natural language processing is extremely attractive for developing effective query understanding models. Specifically, MLM learns contextual text embedding via recovering the masked tokens in the sentences. Such a pre-training process relies on the sufficient contextual information. It is, however, less effective for search queries, which are usually short text. When applying masking to short search queries, most contextual information is lost and the intent of the search queries may be changed. To mitigate the above issues for MLM pre-training on search queries, we propose a novel pre-training task specifically designed for short text, called Extended Token Classification (ETC). Instead of masking the input text, our approach extends the input by inserting tokens via a generator network, and trains a discriminator to identify which tokens are inserted in the extended input. We conduct experiments in an E-commerce store to demonstrate the effectiveness of ETC.
What to Hide from Your Students: Attention-Guided Masked Image Modeling
Transformers and masked language modeling are quickly being adopted and explored in computer vision as vision transformers and masked image modeling (MIM). In this work, we argue that image token masking differs from token masking in text, due to the amount and correlation of tokens in an image. In particular, to generate a challenging pretext task for MIM, we advocate a shift from random masking to informed masking. We develop and exhibit this idea in the context of distillation-based MIM, where a teacher transformer encoder generates an attention map, which we use to guide masking for the student. We thus introduce a novel masking strategy, called attention-guided masking (AttMask), and we demonstrate its effectiveness over random masking for dense distillation-based MIM as well as plain distillation-based self-supervised learning on classification tokens. We confirm that AttMask accelerates the learning process and improves the performance on a variety of downstream tasks. We provide the implementation code at https://github.com/gkakogeorgiou/attmask.
Learning with Unmasked Tokens Drives Stronger Vision Learners
Masked image modeling (MIM) has become a leading self-supervised learning strategy. MIMs such as Masked Autoencoder (MAE) learn strong representations by randomly masking input tokens for the encoder to process, with the decoder reconstructing the masked tokens to the input. However, MIM pre-trained encoders often exhibit a limited attention span, attributed to MIM's sole focus on regressing masked tokens only, which may impede the encoder's broader context learning. To tackle the limitation, we improve MIM by explicitly incorporating unmasked tokens into the training process. Specifically, our method enables the encoder to learn from broader context supervision, allowing unmasked tokens to experience broader contexts while the decoder reconstructs masked tokens. Thus, the encoded unmasked tokens are equipped with extensive contextual information, empowering masked tokens to leverage the enhanced unmasked tokens for MIM. As a result, our simple remedy trains more discriminative representations revealed by achieving 84.2% top-1 accuracy with ViT-B on ImageNet-1K with 0.6%p gain. We attribute the success to the enhanced pre-training method, as evidenced by the singular value spectrum and attention analyses. Finally, our models achieve significant performance gains at the downstream semantic segmentation and fine-grained visual classification tasks; and on diverse robust evaluation metrics. Code is available at https://github.com/naver-ai/lut
ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models
Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs.
Beyond Masked and Unmasked: Discrete Diffusion Models via Partial Masking
Masked diffusion models (MDM) are powerful generative models for discrete data that generate samples by progressively unmasking tokens in a sequence. Each token can take one of two states: masked or unmasked. We observe that token sequences often remain unchanged between consecutive sampling steps; consequently, the model repeatedly processes identical inputs, leading to redundant computation. To address this inefficiency, we propose the Partial masking scheme (Prime), which augments MDM by allowing tokens to take intermediate states interpolated between the masked and unmasked states. This design enables the model to make predictions based on partially observed token information, and facilitates a fine-grained denoising process. We derive a variational training objective and introduce a simple architectural design to accommodate intermediate-state inputs. Our method demonstrates superior performance across a diverse set of generative modeling tasks. On text data, it achieves a perplexity of 15.36 on OpenWebText, outperforming previous MDM (21.52), autoregressive models (17.54), and their hybrid variants (17.58), without relying on an autoregressive formulation. On image data, it attains competitive FID scores of 3.26 on CIFAR-10 and 6.98 on ImageNet-32, comparable to leading continuous generative models.
Faithfulness Measurable Masked Language Models
A common approach to explain NLP models, is to use importance measures that express which tokens are important for a prediction. Unfortunately, such explanations are often wrong despite being persuasive. Therefore, it is essential to measure their faithfulness. One such metric is if tokens are truly important, then masking them should result in worse model performance. However, token masking introduces out-of-distribution issues and existing solutions are computationally expensive and employ proxy-models. Furthermore, other metrics are very limited in scope. In this work, we propose an inherently faithfulness measurable model that addresses these challenges. This is achieved by using a novel fine-tuning method that incorporates masking, such that masking tokens become in-distribution by design. This differs from existing approaches, which are completely model-agnostic but are inapplicable in practice. We demonstrate the generality of our approach by applying it to various tasks and validate it using statistical in-distribution tests. Additionally, because masking is in-distribution, importance measures which themselves use masking become more faithful, thus our model becomes more explainable.
Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation
Recent open-vocabulary segmentation methods adopt mask generators to predict segmentation masks and leverage pre-trained vision-language models, e.g., CLIP, to classify these masks via mask pooling. Although these approaches show promising results, it is counterintuitive that accurate masks often fail to yield accurate classification results through pooling CLIP image embeddings within the mask regions. In this paper, we reveal the performance limitations of mask pooling and introduce Mask-Adapter, a simple yet effective method to address these challenges in open-vocabulary segmentation. Compared to directly using proposal masks, our proposed Mask-Adapter extracts semantic activation maps from proposal masks, providing richer contextual information and ensuring alignment between masks and CLIP. Additionally, we propose a mask consistency loss that encourages proposal masks with similar IoUs to obtain similar CLIP embeddings to enhance models' robustness to varying predicted masks. Mask-Adapter integrates seamlessly into open-vocabulary segmentation methods based on mask pooling in a plug-and-play manner, delivering more accurate classification results. Extensive experiments across several zero-shot benchmarks demonstrate significant performance gains for the proposed Mask-Adapter on several well-established methods. Notably, Mask-Adapter also extends effectively to SAM and achieves impressive results on several open-vocabulary segmentation datasets. Code and models are available at https://github.com/hustvl/MaskAdapter.
Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval
Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks.
ERNIE: Enhanced Representation through Knowledge Integration
We present a novel language representation model enhanced by knowledge called ERNIE (Enhanced Representation through kNowledge IntEgration). Inspired by the masking strategy of BERT, ERNIE is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking. Entity-level strategy masks entities which are usually composed of multiple words.Phrase-level strategy masks the whole phrase which is composed of several words standing together as a conceptual unit.Experimental results show that ERNIE outperforms other baseline methods, achieving new state-of-the-art results on five Chinese natural language processing tasks including natural language inference, semantic similarity, named entity recognition, sentiment analysis and question answering. We also demonstrate that ERNIE has more powerful knowledge inference capacity on a cloze test.
MaskMoE: Boosting Token-Level Learning via Routing Mask in Mixture-of-Experts
Scaling the size of a model enhances its capabilities but significantly increases computation complexity. Mixture-of-Experts models (MoE) address the issue by allowing model size to scale up without substantially increasing training or inference costs. Despite their promising results, MoE models encounter several challenges. Primarily, for dynamic routing methods, the dispersion of training tokens across multiple experts can lead to underfitting, particularly for infrequent tokens. Additionally, while fixed routing methods can mitigate that issue, they compromise on the diversity of representations. In this paper, we propose MaskMoE, a method designed to enhance token-level learning by employing a routing masking technique within the Mixture-of-Experts model. MaskMoE is capable of maintaining representation diversity while achieving more comprehensive training. Experimental results demonstrate that our method outperforms previous dominant Mixture-of-Experts models in terms of both perplexity (PPL) and downstream task performance.
Emerging Property of Masked Token for Effective Pre-training
Driven by the success of Masked Language Modeling (MLM), the realm of self-supervised learning for computer vision has been invigorated by the central role of Masked Image Modeling (MIM) in driving recent breakthroughs. Notwithstanding the achievements of MIM across various downstream tasks, its overall efficiency is occasionally hampered by the lengthy duration of the pre-training phase. This paper presents a perspective that the optimization of masked tokens as a means of addressing the prevailing issue. Initially, we delve into an exploration of the inherent properties that a masked token ought to possess. Within the properties, we principally dedicated to articulating and emphasizing the `data singularity' attribute inherent in masked tokens. Through a comprehensive analysis of the heterogeneity between masked tokens and visible tokens within pre-trained models, we propose a novel approach termed masked token optimization (MTO), specifically designed to improve model efficiency through weight recalibration and the enhancement of the key property of masked tokens. The proposed method serves as an adaptable solution that seamlessly integrates into any MIM approach that leverages masked tokens. As a result, MTO achieves a considerable improvement in pre-training efficiency, resulting in an approximately 50% reduction in pre-training epochs required to attain converged performance of the recent approaches.
Mask More and Mask Later: Efficient Pre-training of Masked Language Models by Disentangling the [MASK] Token
The pre-training of masked language models (MLMs) consumes massive computation to achieve good results on downstream NLP tasks, resulting in a large carbon footprint. In the vanilla MLM, the virtual tokens, [MASK]s, act as placeholders and gather the contextualized information from unmasked tokens to restore the corrupted information. It raises the question of whether we can append [MASK]s at a later layer, to reduce the sequence length for earlier layers and make the pre-training more efficient. We show: (1) [MASK]s can indeed be appended at a later layer, being disentangled from the word embedding; (2) The gathering of contextualized information from unmasked tokens can be conducted with a few layers. By further increasing the masking rate from 15% to 50%, we can pre-train RoBERTa-base and RoBERTa-large from scratch with only 78% and 68% of the original computational budget without any degradation on the GLUE benchmark. When pre-training with the original budget, our method outperforms RoBERTa for 6 out of 8 GLUE tasks, on average by 0.4%.
Mask and You Shall Receive: Optimizing Masked Language Modeling For Pretraining BabyLMs
We describe our strategy for the 2025 edition of the BabyLM Challenge. Our main contribution is that of an improved form of Masked Language Modeling (MLM), which adapts the probabilities of the tokens masked according to the model's ability to predict them. The results show a substantial increase in performance on (Super)GLUE tasks over the standard MLM. We also incorporate sub-token embeddings, finding that this increases the model's morphological generalization capabilities. Our submission beats the baseline in the strict-small track.
InforMask: Unsupervised Informative Masking for Language Model Pretraining
Masked language modeling is widely used for pretraining large language models for natural language understanding (NLU). However, random masking is suboptimal, allocating an equal masking rate for all tokens. In this paper, we propose InforMask, a new unsupervised masking strategy for training masked language models. InforMask exploits Pointwise Mutual Information (PMI) to select the most informative tokens to mask. We further propose two optimizations for InforMask to improve its efficiency. With a one-off preprocessing step, InforMask outperforms random masking and previously proposed masking strategies on the factual recall benchmark LAMA and the question answering benchmark SQuAD v1 and v2.
GUARD: Generation-time LLM Unlearning via Adaptive Restriction and Detection
Large Language Models (LLMs) have demonstrated strong capabilities in memorizing vast amounts of knowledge across diverse domains. However, the ability to selectively forget specific knowledge is critical for ensuring the safety and compliance of deployed models. Existing unlearning efforts typically fine-tune the model with resources such as forget data, retain data, and a calibration model. These additional gradient steps blur the decision boundary between forget and retain knowledge, making unlearning often at the expense of overall performance. To avoid the negative impact of fine-tuning, it would be better to unlearn solely at inference time by safely guarding the model against generating responses related to the forget target, without destroying the fluency of text generation. In this work, we propose Generation-time Unlearning via Adaptive Restriction and Detection (GUARD), a framework that enables dynamic unlearning during LLM generation. Specifically, we first employ a prompt classifier to detect unlearning targets and extract the corresponding forbidden token. We then dynamically penalize and filter candidate tokens during generation using a combination of token matching and semantic matching, effectively preventing the model from leaking the forgotten content. Experimental results on copyright content unlearning tasks over the Harry Potter dataset and the MUSE benchmark, as well as entity unlearning tasks on the TOFU dataset, demonstrate that GUARD achieves strong forget quality across various tasks while causing almost no degradation to the LLM's general capabilities, striking an excellent trade-off between forgetting and utility.
Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance
Extraction of sentiment signals from news text, stock message boards, and business reports, for stock movement prediction, has been a rising field of interest in finance. Building upon past literature, the most recent works attempt to better capture sentiment from sentences with complex syntactic structures by introducing aspect-level sentiment classification (ASC). Despite the growing interest, however, fine-grained sentiment analysis has not been fully explored in non-English literature due to the shortage of annotated finance-specific data. Accordingly, it is necessary for non-English languages to leverage datasets and pre-trained language models (PLM) of different domains, languages, and tasks to best their performance. To facilitate finance-specific ASC research in the Korean language, we build KorFinASC, a Korean aspect-level sentiment classification dataset for finance consisting of 12,613 human-annotated samples, and explore methods of intermediate transfer learning. Our experiments indicate that past research has been ignorant towards the potentially wrong knowledge of financial entities encoded during the training phase, which has overestimated the predictive power of PLMs. In our work, we use the term "non-stationary knowledge'' to refer to information that was previously correct but is likely to change, and present "TGT-Masking'', a novel masking pattern to restrict PLMs from speculating knowledge of the kind. Finally, through a series of transfer learning with TGT-Masking applied we improve 22.63% of classification accuracy compared to standalone models on KorFinASC.
Prompt-Guided Mask Proposal for Two-Stage Open-Vocabulary Segmentation
We tackle the challenge of open-vocabulary segmentation, where we need to identify objects from a wide range of categories in different environments, using text prompts as our input. To overcome this challenge, existing methods often use multi-modal models like CLIP, which combine image and text features in a shared embedding space to bridge the gap between limited and extensive vocabulary recognition, resulting in a two-stage approach: In the first stage, a mask generator takes an input image to generate mask proposals, and the in the second stage the target mask is picked based on the query. However, the expected target mask may not exist in the generated mask proposals, which leads to an unexpected output mask. In our work, we propose a novel approach named Prompt-guided Mask Proposal (PMP) where the mask generator takes the input text prompts and generates masks guided by these prompts. Compared with mask proposals generated without input prompts, masks generated by PMP are better aligned with the input prompts. To realize PMP, we designed a cross-attention mechanism between text tokens and query tokens which is capable of generating prompt-guided mask proposals after each decoding. We combined our PMP with several existing works employing a query-based segmentation backbone and the experiments on five benchmark datasets demonstrate the effectiveness of this approach, showcasing significant improvements over the current two-stage models (1% ~ 3% absolute performance gain in terms of mIOU). The steady improvement in performance across these benchmarks indicates the effective generalization of our proposed lightweight prompt-aware method.
Challenging Decoder helps in Masked Auto-Encoder Pre-training for Dense Passage Retrieval
Recently, various studies have been directed towards exploring dense passage retrieval techniques employing pre-trained language models, among which the masked auto-encoder (MAE) pre-training architecture has emerged as the most promising. The conventional MAE framework relies on leveraging the passage reconstruction of decoder to bolster the text representation ability of encoder, thereby enhancing the performance of resulting dense retrieval systems. Within the context of building the representation ability of the encoder through passage reconstruction of decoder, it is reasonable to postulate that a ``more demanding'' decoder will necessitate a corresponding increase in the encoder's ability. To this end, we propose a novel token importance aware masking strategy based on pointwise mutual information to intensify the challenge of the decoder. Importantly, our approach can be implemented in an unsupervised manner, without adding additional expenses to the pre-training phase. Our experiments verify that the proposed method is both effective and robust on large-scale supervised passage retrieval datasets and out-of-domain zero-shot retrieval benchmarks.
iBOT: Image BERT Pre-Training with Online Tokenizer
The success of language Transformers is primarily attributed to the pretext task of masked language modeling (MLM), where texts are first tokenized into semantically meaningful pieces. In this work, we study masked image modeling (MIM) and indicate the advantages and challenges of using a semantically meaningful visual tokenizer. We present a self-supervised framework iBOT that can perform masked prediction with an online tokenizer. Specifically, we perform self-distillation on masked patch tokens and take the teacher network as the online tokenizer, along with self-distillation on the class token to acquire visual semantics. The online tokenizer is jointly learnable with the MIM objective and dispenses with a multi-stage training pipeline where the tokenizer needs to be pre-trained beforehand. We show the prominence of iBOT by achieving an 82.3% linear probing accuracy and an 87.8% fine-tuning accuracy evaluated on ImageNet-1K. Beyond the state-of-the-art image classification results, we underline emerging local semantic patterns, which helps the models to obtain strong robustness against common corruptions and achieve leading results on dense downstream tasks, eg., object detection, instance segmentation, and semantic segmentation.
AdaMAE: Adaptive Masking for Efficient Spatiotemporal Learning with Masked Autoencoders
Masked Autoencoders (MAEs) learn generalizable representations for image, text, audio, video, etc., by reconstructing masked input data from tokens of the visible data. Current MAE approaches for videos rely on random patch, tube, or frame-based masking strategies to select these tokens. This paper proposes AdaMAE, an adaptive masking strategy for MAEs that is end-to-end trainable. Our adaptive masking strategy samples visible tokens based on the semantic context using an auxiliary sampling network. This network estimates a categorical distribution over spacetime-patch tokens. The tokens that increase the expected reconstruction error are rewarded and selected as visible tokens, motivated by the policy gradient algorithm in reinforcement learning. We show that AdaMAE samples more tokens from the high spatiotemporal information regions, thereby allowing us to mask 95% of tokens, resulting in lower memory requirements and faster pre-training. We conduct ablation studies on the Something-Something v2 (SSv2) dataset to demonstrate the efficacy of our adaptive sampling approach and report state-of-the-art results of 70.0% and 81.7% in top-1 accuracy on SSv2 and Kinetics-400 action classification datasets with a ViT-Base backbone and 800 pre-training epochs.
MONKEY: Masking ON KEY-Value Activation Adapter for Personalization
Personalizing diffusion models allows users to generate new images that incorporate a given subject, allowing more control than a text prompt. These models often suffer somewhat when they end up just recreating the subject image, and ignoring the text prompt. We observe that one popular method for personalization, the IP-Adapter automatically generates masks that we definitively segment the subject from the background during inference. We propose to use this automatically generated mask on a second pass to mask the image tokens, thus restricting them to the subject, not the background, allowing the text prompt to attend to the rest of the image. For text prompts describing locations and places, this produces images that accurately depict the subject while definitively matching the prompt. We compare our method to a few other test time personalization methods, and find our method displays high prompt and source image alignment.
Bootstrap Masked Visual Modeling via Hard Patches Mining
Masked visual modeling has attracted much attention due to its promising potential in learning generalizable representations. Typical approaches urge models to predict specific contents of masked tokens, which can be intuitively considered as teaching a student (the model) to solve given problems (predicting masked contents). Under such settings, the performance is highly correlated with mask strategies (the difficulty of provided problems). We argue that it is equally important for the model to stand in the shoes of a teacher to produce challenging problems by itself. Intuitively, patches with high values of reconstruction loss can be regarded as hard samples, and masking those hard patches naturally becomes a demanding reconstruction task. To empower the model as a teacher, we propose Hard Patches Mining (HPM), predicting patch-wise losses and subsequently determining where to mask. Technically, we introduce an auxiliary loss predictor, which is trained with a relative objective to prevent overfitting to exact loss values. Also, to gradually guide the training procedure, we propose an easy-to-hard mask strategy. Empirically, HPM brings significant improvements under both image and video benchmarks. Interestingly, solely incorporating the extra loss prediction objective leads to better representations, verifying the efficacy of determining where is hard to reconstruct. The code is available at https://github.com/Haochen-Wang409/HPM.
FrozenSeg: Harmonizing Frozen Foundation Models for Open-Vocabulary Segmentation
Open-vocabulary segmentation poses significant challenges, as it requires segmenting and recognizing objects across an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models, such as CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite notable performance improvements, these models still encounter the critical issue of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this challenge, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into the learnable queries and CLIP features within the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a lightweight transformer decoder for mask proposal generation-the performance bottleneck. Extensive experiments demonstrate that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data, and tested in a zero-shot manner. Code is available at https://github.com/chenxi52/FrozenSeg.
Jasper-Token-Compression-600M Technical Report
This technical report presents the training methodology and evaluation results of the open-source Jasper-Token-Compression-600M model, released in November 2025. Building on previous distillation-based recipes from the English Stella and Jasper models, we successfully extend this approach to a bilingual (English and Chinese) domain, further enhancing model performance through the incorporation of contrastive learning. A key innovation of our model is the introduction of a one-dimensional convolution-based token compression module. We dynamically adjust the compression rate during training, enabling the model to learn more robust and efficient compressed text representations. By combining knowledge distillation with token compression techniques, we achieve significant improvements in both embedding quality and inference efficiency. Our model performs with higher efficiency than a traditional 0.6B model while achieving performance comparable to that of an 8B model. For more information on the model release, visit: https://huggingface.co/infgrad/Jasper-Token-Compression-600M.
S^2Edit: Text-Guided Image Editing with Precise Semantic and Spatial Control
Recent advances in diffusion models have enabled high-quality generation and manipulation of images guided by texts, as well as concept learning from images. However, naive applications of existing methods to editing tasks that require fine-grained control, e.g., face editing, often lead to suboptimal solutions with identity information and high-frequency details lost during the editing process, or irrelevant image regions altered due to entangled concepts. In this work, we propose S^2Edit, a novel method based on a pre-trained text-to-image diffusion model that enables personalized editing with precise semantic and spatial control. We first fine-tune our model to embed the identity information into a learnable text token. During fine-tuning, we disentangle the learned identity token from attributes to be edited by enforcing an orthogonality constraint in the textual feature space. To ensure that the identity token only affects regions of interest, we apply object masks to guide the cross-attention maps. At inference time, our method performs localized editing while faithfully preserving the original identity with semantically disentangled and spatially focused identity token learned. Extensive experiments demonstrate the superiority of S^2Edit over state-of-the-art methods both quantitatively and qualitatively. Additionally, we showcase several compositional image editing applications of S^2Edit such as makeup transfer.
TLM: Token-Level Masking for Transformers
Structured dropout approaches, such as attention dropout and DropHead, have been investigated to regularize the multi-head attention mechanism in Transformers. In this paper, we propose a new regularization scheme based on token-level rather than structure-level to reduce overfitting. Specifically, we devise a novel Token-Level Masking (TLM) training strategy for Transformers to regularize the connections of self-attention, which consists of two masking techniques that are effective and easy to implement. The underlying idea is to manipulate the connections between tokens in the multi-head attention via masking, where the networks are forced to exploit partial neighbors' information to produce a meaningful representation. The generality and effectiveness of TLM are thoroughly evaluated via extensive experiments on 4 diversified NLP tasks across 18 datasets, including natural language understanding benchmark GLUE, ChineseGLUE, Chinese Grammatical Error Correction, and data-to-text generation. The results indicate that TLM can consistently outperform attention dropout and DropHead, e.g., it increases by 0.5 points relative to DropHead with BERT-large on GLUE. Moreover, TLM can establish a new record on the data-to-text benchmark Rotowire (18.93 BLEU). Our code will be publicly available at https://github.com/Young1993/tlm.
Partition Generative Modeling: Masked Modeling Without Masks
We introduce ``Partition Generative Models'' (PGMs), a novel approach to masked generative modeling (MGMs), particularly effective for masked diffusion language modeling (MDLMs). PGM divides tokens into two distinct groups and employs sparse attention patterns to prevent cross-group information exchange. Hence, the model is trained to predict tokens in one group based solely on information from the other group. This partitioning strategy eliminates the need for MASK tokens entirely. While traditional MGMs inefficiently process MASK tokens during generation, PGMs achieve greater computational efficiency by operating exclusively on unmasked tokens. Our experiments on OpenWebText with a context length of 1024 tokens demonstrate that PGMs deliver at least 5x improvements in both latency and throughput compared to MDLM when using the same number of sampling steps, while generating samples with better generative perplexity than MDLM. Finally, we show that PGMs can be distilled with Self-Distillation Through Time (SDTT), a method originally devised for MDLM, in order to achieve further inference gains.
Should You Mask 15% in Masked Language Modeling?
Masked language models (MLMs) conventionally mask 15% of tokens due to the belief that more masking would leave insufficient context to learn good representations; this masking rate has been widely used, regardless of model sizes or masking strategies. In this work, we revisit this important choice of MLM pre-training. We first establish that 15% is not universally optimal, and larger models should adopt a higher masking rate. Specifically, we find that masking 40% outperforms 15% for BERT-large size models on GLUE and SQuAD. Interestingly, an extremely high masking rate of 80% can still preserve 95% fine-tuning performance and most of the accuracy in linguistic probing, challenging the conventional wisdom about the role of the masking rate. We then examine the interplay between masking rates and masking strategies and find that uniform masking requires a higher masking rate compared to sophisticated masking strategies such as span or PMI masking. Finally, we argue that increasing the masking rate has two distinct effects: it leads to more corruption, which makes the prediction task more difficult; it also enables more predictions, which benefits optimization. Using this framework, we revisit BERT's 80-10-10 corruption strategy. Together, our results contribute to a better understanding of MLM pre-training.
Masked Image Modeling via Dynamic Token Morphing
Masked Image Modeling (MIM) arises as a promising option for Vision Transformers among various self-supervised learning (SSL) methods. The essence of MIM lies in token-wise masked patch predictions, with targets patchified from images; or generated by pre-trained tokenizers or models. We argue targets from the pre-trained models usually exhibit spatial inconsistency, which makes it excessively challenging for the model to follow to learn more discriminative representations. To mitigate the issue, we introduce a novel self-supervision signal based on Dynamic Token Morphing (DTM), which dynamically aggregates contextually related tokens. DTM can be generally applied to various SSL frameworks, yet we propose a simple MIM that employs DTM to effectively improve the performance barely introducing extra training costs. Our experiments on ImageNet-1K and ADE20K evidently demonstrate the superiority of our methods. Furthermore, the comparative evaluation of iNaturalist and Fine-grained Visual Classification datasets further validates the transferability of our method on various downstream tasks. Our code will be released publicly.
Masked Diffusion Transformer is a Strong Image Synthesizer
Despite its success in image synthesis, we observe that diffusion probabilistic models (DPMs) often lack contextual reasoning ability to learn the relations among object parts in an image, leading to a slow learning process. To solve this issue, we propose a Masked Diffusion Transformer (MDT) that introduces a mask latent modeling scheme to explicitly enhance the DPMs' ability of contextual relation learning among object semantic parts in an image. During training, MDT operates on the latent space to mask certain tokens. Then, an asymmetric masking diffusion transformer is designed to predict masked tokens from unmasked ones while maintaining the diffusion generation process. Our MDT can reconstruct the full information of an image from its incomplete contextual input, thus enabling it to learn the associated relations among image tokens. Experimental results show that MDT achieves superior image synthesis performance, e.g. a new SoTA FID score on the ImageNet dataset, and has about 3x faster learning speed than the previous SoTA DiT. The source code is released at https://github.com/sail-sg/MDT.
Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries
To answer one-to-many factual queries (e.g., listing cities of a country), a language model (LM) must simultaneously recall knowledge and avoid repeating previous answers. How are these two subtasks implemented and integrated internally? Across multiple datasets and models, we identify a promote-then-suppress mechanism: the model first recalls all answers, and then suppresses previously generated ones. Specifically, LMs use both the subject and previous answer tokens to perform knowledge recall, with attention propagating subject information and MLPs promoting the answers. Then, attention attends to and suppresses previous answer tokens, while MLPs amplify the suppression signal. Our mechanism is corroborated by extensive experimental evidence: in addition to using early decoding and causal tracing, we analyze how components use different tokens by introducing both Token Lens, which decodes aggregated attention updates from specified tokens, and a knockout method that analyzes changes in MLP outputs after removing attention to specified tokens. Overall, we provide new insights into how LMs' internal components interact with different input tokens to support complex factual recall. Code is available at https://github.com/Lorenayannnnn/how-lms-answer-one-to-many-factual-queries.
MST-Distill: Mixture of Specialized Teachers for Cross-Modal Knowledge Distillation
Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.
Tokenize Anything via Prompting
We present a unified, promptable model capable of simultaneously segmenting, recognizing, and captioning anything. Unlike SAM, we aim to build a versatile region representation in the wild via visual prompting. To achieve this, we train a generalizable model with massive segmentation masks, e.g., SA-1B masks, and semantic priors from a pre-trained CLIP model with 5 billion parameters. Specifically, we construct a promptable image decoder by adding a semantic token to each mask token. The semantic token is responsible for learning the semantic priors in a predefined concept space. Through joint optimization of segmentation on mask tokens and concept prediction on semantic tokens, our model exhibits strong regional recognition and localization capabilities. For example, an additional 38M-parameter causal text decoder trained from scratch sets a new record with a CIDEr score of 150.7 on the Visual Genome region captioning task. We believe this model can be a versatile region-level image tokenizer, capable of encoding general-purpose region context for a broad range of perception tasks. Code and models are available at https://github.com/baaivision/tokenize-anything.
Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering
Multimodal LLMs (MLLMs) are the natural extension of large language models to handle multimodal inputs, combining text and image data. They have recently garnered attention due to their capability to address complex tasks involving both modalities. However, their effectiveness is limited to the knowledge acquired during training, which restricts their practical utility. In this work, we introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources. Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge and predict the relevance of information retrieved from an external database. Tokens are trained following a two-stage two-model training recipe. This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed. Through our experiments, we demonstrate the efficacy of ReflectiVA for knowledge-based visual question answering, highlighting its superior performance compared to existing methods. Source code and trained models are publicly available at https://github.com/aimagelab/ReflectiVA.
Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.
Democratizing Text-to-Image Masked Generative Models with Compact Text-Aware One-Dimensional Tokens
Image tokenizers form the foundation of modern text-to-image generative models but are notoriously difficult to train. Furthermore, most existing text-to-image models rely on large-scale, high-quality private datasets, making them challenging to replicate. In this work, we introduce Text-Aware Transformer-based 1-Dimensional Tokenizer (TA-TiTok), an efficient and powerful image tokenizer that can utilize either discrete or continuous 1-dimensional tokens. TA-TiTok uniquely integrates textual information during the tokenizer decoding stage (i.e., de-tokenization), accelerating convergence and enhancing performance. TA-TiTok also benefits from a simplified, yet effective, one-stage training process, eliminating the need for the complex two-stage distillation used in previous 1-dimensional tokenizers. This design allows for seamless scalability to large datasets. Building on this, we introduce a family of text-to-image Masked Generative Models (MaskGen), trained exclusively on open data while achieving comparable performance to models trained on private data. We aim to release both the efficient, strong TA-TiTok tokenizers and the open-data, open-weight MaskGen models to promote broader access and democratize the field of text-to-image masked generative models.
Masks Can Be Distracting: On Context Comprehension in Diffusion Language Models
Masked Diffusion Language Models (MDLMs) have recently emerged as a promising alternative to Autoregressive Language Models (ARLMs), leveraging a denoising objective that, in principle, should enable more uniform context utilisation. In this work, we examine the context comprehension abilities of MDLMs and uncover two key limitations. First, despite their more global training objective and bidirectional attention mechanism, similarly to ARLMS, MDLMs exhibit a strong locality bias: performance is highly sensitive to the position of relevant information within the input, favouring local over distant context. Second, we show that appending a large number of mask tokens--required for generation--can significantly degrade context comprehension. Through systematic ablations, we find that these masks act as distractors, reducing the model's ability to process relevant information. To address this, we introduce a mask-agnostic loss function that encourages predictions to remain invariant to the number of appended masks. Fine-tuning with this objective substantially mitigates the distracting effect of masks, improving robustness of MDLMs. Overall, our findings reveal critical limitations of the current MDLM training paradigm and provide actionable insights for building diffusion-based language models with stronger context comprehension.
SPDiffusion: Semantic Protection Diffusion for Multi-concept Text-to-image Generation
Recent text-to-image models have achieved remarkable success in generating high-quality images. However, when tasked with multi-concept generation which creates images containing multiple characters or objects, existing methods often suffer from attribute confusion, resulting in severe text-image inconsistency. We found that attribute confusion occurs when a certain region of the latent features attend to multiple or incorrect prompt tokens. In this work, we propose novel Semantic Protection Diffusion (SPDiffusion) to protect the semantics of regions from the influence of irrelevant tokens, eliminating the confusion of non-corresponding attributes. In the SPDiffusion framework, we design a Semantic Protection Mask (SP-Mask) to represent the relevance of the regions and the tokens, and propose a Semantic Protection Cross-Attention (SP-Attn) to shield the influence of irrelevant tokens on specific regions in the generation process. To evaluate our method, we created a diverse multi-concept benchmark, and SPDiffusion achieves state-of-the-art results on this benchmark, proving its effectiveness. Our method can be combined with many other application methods or backbones, such as ControlNet, Story Diffusion, PhotoMaker and PixArt-alpha to enhance their multi-concept capabilities, demonstrating strong compatibility and scalability.
BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers
Masked image modeling (MIM) has demonstrated impressive results in self-supervised representation learning by recovering corrupted image patches. However, most existing studies operate on low-level image pixels, which hinders the exploitation of high-level semantics for representation models. In this work, we propose to use a semantic-rich visual tokenizer as the reconstruction target for masked prediction, providing a systematic way to promote MIM from pixel-level to semantic-level. Specifically, we propose vector-quantized knowledge distillation to train the tokenizer, which discretizes a continuous semantic space to compact codes. We then pretrain vision Transformers by predicting the original visual tokens for the masked image patches. Furthermore, we introduce a patch aggregation strategy which associates discrete image patches to enhance global semantic representation. Experiments on image classification and semantic segmentation show that BEiT v2 outperforms all compared MIM methods. On ImageNet-1K (224 size), the base-size BEiT v2 achieves 85.5% top-1 accuracy for fine-tuning and 80.1% top-1 accuracy for linear probing. The large-size BEiT v2 obtains 87.3% top-1 accuracy for ImageNet-1K (224 size) fine-tuning, and 56.7% mIoU on ADE20K for semantic segmentation. The code and pretrained models are available at https://aka.ms/beitv2.
Recovering from Privacy-Preserving Masking with Large Language Models
Model adaptation is crucial to handle the discrepancy between proxy training data and actual users data received. To effectively perform adaptation, textual data of users is typically stored on servers or their local devices, where downstream natural language processing (NLP) models can be directly trained using such in-domain data. However, this might raise privacy and security concerns due to the extra risks of exposing user information to adversaries. Replacing identifying information in textual data with a generic marker has been recently explored. In this work, we leverage large language models (LLMs) to suggest substitutes of masked tokens and have their effectiveness evaluated on downstream language modeling tasks. Specifically, we propose multiple pre-trained and fine-tuned LLM-based approaches and perform empirical studies on various datasets for the comparison of these methods. Experimental results show that models trained on the obfuscation corpora are able to achieve comparable performance with the ones trained on the original data without privacy-preserving token masking.
Self-Evolution Knowledge Distillation for LLM-based Machine Translation
Knowledge distillation (KD) has shown great promise in transferring knowledge from larger teacher models to smaller student models. However, existing KD strategies for large language models often minimize output distributions between student and teacher models indiscriminately for each token. This overlooks the imbalanced nature of tokens and their varying transfer difficulties. In response, we propose a distillation strategy called Self-Evolution KD. The core of this approach involves dynamically integrating teacher distribution and one-hot distribution of ground truth into the student distribution as prior knowledge, which promotes the distillation process. It adjusts the ratio of prior knowledge based on token learning difficulty, fully leveraging the teacher model's potential. Experimental results show our method brings an average improvement of approximately 1.4 SacreBLEU points across four translation directions in the WMT22 test sets. Further analysis indicates that the improvement comes from better knowledge transfer from teachers, confirming our hypothesis.
Improving Pre-trained Language Model Sensitivity via Mask Specific losses: A case study on Biomedical NER
Adapting language models (LMs) to novel domains is often achieved through fine-tuning a pre-trained LM (PLM) on domain-specific data. Fine-tuning introduces new knowledge into an LM, enabling it to comprehend and efficiently perform a target domain task. Fine-tuning can however be inadvertently insensitive if it ignores the wide array of disparities (e.g in word meaning) between source and target domains. For instance, words such as chronic and pressure may be treated lightly in social conversations, however, clinically, these words are usually an expression of concern. To address insensitive fine-tuning, we propose Mask Specific Language Modeling (MSLM), an approach that efficiently acquires target domain knowledge by appropriately weighting the importance of domain-specific terms (DS-terms) during fine-tuning. MSLM jointly masks DS-terms and generic words, then learns mask-specific losses by ensuring LMs incur larger penalties for inaccurately predicting DS-terms compared to generic words. Results of our analysis show that MSLM improves LMs sensitivity and detection of DS-terms. We empirically show that an optimal masking rate not only depends on the LM, but also on the dataset and the length of sequences. Our proposed masking strategy outperforms advanced masking strategies such as span- and PMI-based masking.
Segment-Based Attention Masking for GPTs
Modern Language Models (LMs) owe much of their success to masked causal attention, the backbone of Generative Pre-Trained Transformer (GPT) models. Although GPTs can process the entire user prompt at once, the causal masking is applied to all input tokens step-by-step, mimicking the generation process. This imposes an unnecessary constraint during the initial "prefill" phase when the model processes the input prompt and generates the internal representations before producing any output tokens. In this work, attention is masked based on the known block structure at the prefill phase, followed by the conventional token-by-token autoregressive process after that. For example, in a typical chat prompt, the system prompt is treated as one block, and the user prompt as the next one. Each of these is treated as a unit for the purpose of masking, such that the first tokens in each block can access the subsequent tokens in a non-causal manner. Then, the model answer is generated in the conventional causal manner. This Segment-by-Segment scheme entails no additional computational overhead. When integrating it into models such as Llama and Qwen, state-of-the-art performance is consistently achieved.
HiMTok: Learning Hierarchical Mask Tokens for Image Segmentation with Large Multimodal Model
The remarkable performance of large multimodal models (LMMs) has attracted significant interest from the image segmentation community. To align with the next-token-prediction paradigm, current LMM-driven segmentation methods either use object boundary points to represent masks or introduce special segmentation tokens, whose hidden states are decoded by a segmentation model requiring the original image as input. However, these approaches often suffer from inadequate mask representation and complex architectures, limiting the potential of LMMs. In this work, we propose the Hierarchical Mask Tokenizer (HiMTok), which represents segmentation masks with up to 32 tokens and eliminates the need for the original image during mask de-tokenization. HiMTok allows for compact and coarse-to-fine mask representations, aligning well with the LLM next-token-prediction paradigm and facilitating the direct acquisition of segmentation capabilities. We develop a 3-stage training recipe for progressive learning of segmentation and visual capabilities, featuring a hierarchical mask loss for effective coarse-to-fine learning. Additionally, we enable bidirectional information flow, allowing conversion between bounding boxes and mask tokens to fully leverage multi-task training potential. Extensive experiments demonstrate that our method achieves state-of-the-art performance across various segmentation tasks,while also enhancing visual grounding and maintaining overall visual understanding.
ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework, offering remarkable performance across a wide range of downstream tasks. To increase the difficulty of the pretext task and learn richer visual representations, existing works have focused on replacing standard random masking with more sophisticated strategies, such as adversarial-guided and teacher-guided masking. However, these strategies depend on the input data thus commonly increasing the model complexity and requiring additional calculations to generate the mask patterns. This raises the question: Can we enhance MAE performance beyond random masking without relying on input data or incurring additional computational costs? In this work, we introduce a simple yet effective data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise. Drawing inspiration from color noise in image processing, we explore four types of filters to yield mask patterns with different spatial and semantic priors. ColorMAE requires no additional learnable parameters or computational overhead in the network, yet it significantly enhances the learned representations. We provide a comprehensive empirical evaluation, demonstrating our strategy's superiority in downstream tasks compared to random masking. Notably, we report an improvement of 2.72 in mIoU in semantic segmentation tasks relative to baseline MAE implementations.
Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.
Open-Vocabulary Attention Maps with Token Optimization for Semantic Segmentation in Diffusion Models
Diffusion models represent a new paradigm in text-to-image generation. Beyond generating high-quality images from text prompts, models such as Stable Diffusion have been successfully extended to the joint generation of semantic segmentation pseudo-masks. However, current extensions primarily rely on extracting attentions linked to prompt words used for image synthesis. This approach limits the generation of segmentation masks derived from word tokens not contained in the text prompt. In this work, we introduce Open-Vocabulary Attention Maps (OVAM)-a training-free method for text-to-image diffusion models that enables the generation of attention maps for any word. In addition, we propose a lightweight optimization process based on OVAM for finding tokens that generate accurate attention maps for an object class with a single annotation. We evaluate these tokens within existing state-of-the-art Stable Diffusion extensions. The best-performing model improves its mIoU from 52.1 to 86.6 for the synthetic images' pseudo-masks, demonstrating that our optimized tokens are an efficient way to improve the performance of existing methods without architectural changes or retraining.
MaskAttn-SDXL: Controllable Region-Level Text-To-Image Generation
Text-to-image diffusion models achieve impressive realism but often suffer from compositional failures on prompts with multiple objects, attributes, and spatial relations, resulting in cross-token interference where entities entangle, attributes mix across objects, and spatial cues are violated. To address these failures, we propose MaskAttn-SDXL,a region-level gating mechanism applied to the cross-attention logits of Stable Diffusion XL(SDXL)'s UNet. MaskAttn-SDXL learns a binary mask per layer, injecting it into each cross-attention logit map before softmax to sparsify token-to-latent interactions so that only semantically relevant connections remain active. The method requires no positional encodings, auxiliary tokens, or external region masks, and preserves the original inference path with negligible overhead. In practice, our model improves spatial compliance and attribute binding in multi-object prompts while preserving overall image quality and diversity. These findings demonstrate that logit-level maksed cross-attention is an data-efficient primitve for enforcing compositional control, and our method thus serves as a practical extension for spatial control in text-to-image generation.
Regularized Mask Tuning: Uncovering Hidden Knowledge in Pre-trained Vision-Language Models
Prompt tuning and adapter tuning have shown great potential in transferring pre-trained vision-language models (VLMs) to various downstream tasks. In this work, we design a new type of tuning method, termed as regularized mask tuning, which masks the network parameters through a learnable selection. Inspired by neural pathways, we argue that the knowledge required by a downstream task already exists in the pre-trained weights but just gets concealed in the upstream pre-training stage. To bring the useful knowledge back into light, we first identify a set of parameters that are important to a given downstream task, then attach a binary mask to each parameter, and finally optimize these masks on the downstream data with the parameters frozen. When updating the mask, we introduce a novel gradient dropout strategy to regularize the parameter selection, in order to prevent the model from forgetting old knowledge and overfitting the downstream data. Experimental results on 11 datasets demonstrate the consistent superiority of our method over previous alternatives. It is noteworthy that we manage to deliver 18.73% performance improvement compared to the zero-shot CLIP via masking an average of only 2.56% parameters. Furthermore, our method is synergistic with most existing parameter-efficient tuning methods and can boost the performance on top of them. Project page can be found here (https://wuw2019.github.io/R-AMT/).
Follow the Flow: On Information Flow Across Textual Tokens in Text-to-Image Models
Text-to-Image (T2I) models often suffer from issues such as semantic leakage, incorrect feature binding, and omissions of key concepts in the generated image. This work studies these phenomena by looking into the role of information flow between textual token representations. To this end, we generate images by applying the diffusion component on a subset of contextual token representations in a given prompt and observe several interesting phenomena. First, in many cases, a word or multiword expression is fully represented by one or two tokens, while other tokens are redundant. For example, in "San Francisco's Golden Gate Bridge", the token "gate" alone captures the full expression. We demonstrate the redundancy of these tokens by removing them after textual encoding and generating an image from the resulting representation. Surprisingly, we find that this process not only maintains image generation performance but also reduces errors by 21\% compared to standard generation. We then show that information can also flow between different expressions in a sentence, which often leads to semantic leakage. Based on this observation, we propose a simple, training-free method to mitigate semantic leakage: replacing the leaked item's representation after the textual encoding with its uncontextualized representation. Remarkably, this simple approach reduces semantic leakage by 85\%. Overall, our work provides a comprehensive analysis of information flow across textual tokens in T2I models, offering both novel insights and practical benefits.
CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor
Existing open-vocabulary image segmentation methods require a fine-tuning step on mask annotations and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets. As a result, the open-vocabulary capacity of pre-trained VLMs is severely reduced after fine-tuning. However, without fine-tuning, VLMs trained under weak image-text supervision tend to make suboptimal mask predictions when there are text queries referring to non-existing concepts in the image. To alleviate these issues, we introduce a novel recurrent framework that progressively filters out irrelevant texts and enhances mask quality without training efforts. The recurrent unit is a two-stage segmenter built upon a VLM with frozen weights. Thus, our model retains the VLM's broad vocabulary space and strengthens its segmentation capability. Experimental results show that our method outperforms not only the training-free counterparts, but also those fine-tuned with millions of additional data samples, and sets new state-of-the-art records for both zero-shot semantic and referring image segmentation tasks. Specifically, we improve the current record by 28.8, 16.0, and 6.9 mIoU on Pascal VOC, COCO Object, and Pascal Context.
Mask to reconstruct: Cooperative Semantics Completion for Video-text Retrieval
Recently, masked video modeling has been widely explored and significantly improved the model's understanding ability of visual regions at a local level. However, existing methods usually adopt random masking and follow the same reconstruction paradigm to complete the masked regions, which do not leverage the correlations between cross-modal content. In this paper, we present Mask for Semantics Completion (MASCOT) based on semantic-based masked modeling. Specifically, after applying attention-based video masking to generate high-informed and low-informed masks, we propose Informed Semantics Completion to recover masked semantics information. The recovery mechanism is achieved by aligning the masked content with the unmasked visual regions and corresponding textual context, which makes the model capture more text-related details at a patch level. Additionally, we shift the emphasis of reconstruction from irrelevant backgrounds to discriminative parts to ignore regions with low-informed masks. Furthermore, we design dual-mask co-learning to incorporate video cues under different masks and learn more aligned video representation. Our MASCOT performs state-of-the-art performance on four major text-video retrieval benchmarks, including MSR-VTT, LSMDC, ActivityNet, and DiDeMo. Extensive ablation studies demonstrate the effectiveness of the proposed schemes.
ART: Anonymous Region Transformer for Variable Multi-Layer Transparent Image Generation
Multi-layer image generation is a fundamental task that enables users to isolate, select, and edit specific image layers, thereby revolutionizing interactions with generative models. In this paper, we introduce the Anonymous Region Transformer (ART), which facilitates the direct generation of variable multi-layer transparent images based on a global text prompt and an anonymous region layout. Inspired by Schema theory suggests that knowledge is organized in frameworks (schemas) that enable people to interpret and learn from new information by linking it to prior knowledge.}, this anonymous region layout allows the generative model to autonomously determine which set of visual tokens should align with which text tokens, which is in contrast to the previously dominant semantic layout for the image generation task. In addition, the layer-wise region crop mechanism, which only selects the visual tokens belonging to each anonymous region, significantly reduces attention computation costs and enables the efficient generation of images with numerous distinct layers (e.g., 50+). When compared to the full attention approach, our method is over 12 times faster and exhibits fewer layer conflicts. Furthermore, we propose a high-quality multi-layer transparent image autoencoder that supports the direct encoding and decoding of the transparency of variable multi-layer images in a joint manner. By enabling precise control and scalable layer generation, ART establishes a new paradigm for interactive content creation.
Few-Shot Question Answering by Pretraining Span Selection
In several question answering benchmarks, pretrained models have reached human parity through fine-tuning on an order of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few hundred training examples are available, and observe that standard models perform poorly, highlighting the discrepancy between current pretraining objectives and question answering. We propose a new pretraining scheme tailored for question answering: recurring span selection. Given a passage with multiple sets of recurring spans, we mask in each set all recurring spans but one, and ask the model to select the correct span in the passage for each masked span. Masked spans are replaced with a special token, viewed as a question representation, that is later used during fine-tuning to select the answer span. The resulting model obtains surprisingly good results on multiple benchmarks (e.g., 72.7 F1 on SQuAD with only 128 training examples), while maintaining competitive performance in the high-resource setting.
Dynamic Token-Pass Transformers for Semantic Segmentation
Vision transformers (ViT) usually extract features via forwarding all the tokens in the self-attention layers from top to toe. In this paper, we introduce dynamic token-pass vision transformers (DoViT) for semantic segmentation, which can adaptively reduce the inference cost for images with different complexity. DoViT gradually stops partial easy tokens from self-attention calculation and keeps the hard tokens forwarding until meeting the stopping criteria. We employ lightweight auxiliary heads to make the token-pass decision and divide the tokens into keeping/stopping parts. With a token separate calculation, the self-attention layers are speeded up with sparse tokens and still work friendly with hardware. A token reconstruction module is built to collect and reset the grouped tokens to their original position in the sequence, which is necessary to predict correct semantic masks. We conduct extensive experiments on two common semantic segmentation tasks, and demonstrate that our method greatly reduces about 40% sim 60% FLOPs and the drop of mIoU is within 0.8% for various segmentation transformers. The throughput and inference speed of ViT-L/B are increased to more than 2times on Cityscapes.
Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
MaskViT: Masked Visual Pre-Training for Video Prediction
The ability to predict future visual observations conditioned on past observations and motor commands can enable embodied agents to plan solutions to a variety of tasks in complex environments. This work shows that we can create good video prediction models by pre-training transformers via masked visual modeling. Our approach, named MaskViT, is based on two simple design decisions. First, for memory and training efficiency, we use two types of window attention: spatial and spatiotemporal. Second, during training, we mask a variable percentage of tokens instead of a fixed mask ratio. For inference, MaskViT generates all tokens via iterative refinement where we incrementally decrease the masking ratio following a mask scheduling function. On several datasets we demonstrate that MaskViT outperforms prior works in video prediction, is parameter efficient, and can generate high-resolution videos (256x256). Further, we demonstrate the benefits of inference speedup (up to 512x) due to iterative decoding by using MaskViT for planning on a real robot. Our work suggests that we can endow embodied agents with powerful predictive models by leveraging the general framework of masked visual modeling with minimal domain knowledge.
Leave No Knowledge Behind During Knowledge Distillation: Towards Practical and Effective Knowledge Distillation for Code-Switching ASR Using Realistic Data
Recent advances in automatic speech recognition (ASR) often rely on large speech foundation models for generating high-quality transcriptions. However, these models can be impractical due to limited computing resources. The situation is even more severe in terms of more realistic or difficult scenarios, such as code-switching ASR (CS-ASR). To address this, we present a framework for developing more efficient models for CS-ASR through knowledge distillation using realistic speech-only data. Our proposed method, Leave No Knowledge Behind During Knowledge Distillation (K^2D), leverages both the teacher model's knowledge and additional insights from a small auxiliary model. We evaluate our approach on two in-domain and two out-domain datasets, demonstrating that K^2D is effective. By conducting K^2D on the unlabeled realistic data, we have successfully obtained a 2-time smaller model with 5-time faster generation speed while outperforming the baseline methods and the teacher model on all the testing sets. We have made our model publicly available on Hugging Face (https://huggingface.co/andybi7676/k2d-whisper.zh-en).
Text-Conditioned Sampling Framework for Text-to-Image Generation with Masked Generative Models
Token-based masked generative models are gaining popularity for their fast inference time with parallel decoding. While recent token-based approaches achieve competitive performance to diffusion-based models, their generation performance is still suboptimal as they sample multiple tokens simultaneously without considering the dependence among them. We empirically investigate this problem and propose a learnable sampling model, Text-Conditioned Token Selection (TCTS), to select optimal tokens via localized supervision with text information. TCTS improves not only the image quality but also the semantic alignment of the generated images with the given texts. To further improve the image quality, we introduce a cohesive sampling strategy, Frequency Adaptive Sampling (FAS), to each group of tokens divided according to the self-attention maps. We validate the efficacy of TCTS combined with FAS with various generative tasks, demonstrating that it significantly outperforms the baselines in image-text alignment and image quality. Our text-conditioned sampling framework further reduces the original inference time by more than 50% without modifying the original generative model.
Incorporating Domain Knowledge into Materials Tokenization
While language models are increasingly utilized in materials science, typical models rely on frequency-centric tokenization methods originally developed for natural language processing. However, these methods frequently produce excessive fragmentation and semantic loss, failing to maintain the structural and semantic integrity of material concepts. To address this issue, we propose MATTER, a novel tokenization approach that integrates material knowledge into tokenization. Based on MatDetector trained on our materials knowledge base and a re-ranking method prioritizing material concepts in token merging, MATTER maintains the structural integrity of identified material concepts and prevents fragmentation during tokenization, ensuring their semantic meaning remains intact. The experimental results demonstrate that MATTER outperforms existing tokenization methods, achieving an average performance gain of 4% and 2% in the generation and classification tasks, respectively. These results underscore the importance of domain knowledge for tokenization strategies in scientific text processing. Our code is available at https://github.com/yerimoh/MATTER
Object Recognition as Next Token Prediction
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
KCTS: Knowledge-Constrained Tree Search Decoding with Token-Level Hallucination Detection
Large Language Models (LLMs) have demonstrated remarkable human-level natural language generation capabilities. However, their potential to generate misinformation, often called the hallucination problem, poses a significant risk to their deployment. A common approach to address this issue is to retrieve relevant knowledge and fine-tune the LLM with the knowledge in its input. Unfortunately, this method incurs high training costs and may cause catastrophic forgetting for multi-tasking models. To overcome these limitations, we propose a knowledge-constrained decoding method called KCTS (Knowledge-Constrained Tree Search), which guides a frozen LM to generate text aligned with the reference knowledge at each decoding step using a knowledge classifier score and MCTS (Monte-Carlo Tree Search). To adapt the sequence-level knowledge classifier to token-level guidance, we also propose a novel token-level hallucination detection method called RIPA (Reward Inflection Point Approximation). Our empirical results on knowledge-grounded dialogue and abstractive summarization demonstrate the strength of KCTS as a plug-and-play, model-agnostic decoding method that can effectively reduce hallucinations in natural language generation.
Entropy-based Attention Regularization Frees Unintended Bias Mitigation from Lists
Natural Language Processing (NLP) models risk overfitting to specific terms in the training data, thereby reducing their performance, fairness, and generalizability. E.g., neural hate speech detection models are strongly influenced by identity terms like gay, or women, resulting in false positives, severe unintended bias, and lower performance. Most mitigation techniques use lists of identity terms or samples from the target domain during training. However, this approach requires a-priori knowledge and introduces further bias if important terms are neglected. Instead, we propose a knowledge-free Entropy-based Attention Regularization (EAR) to discourage overfitting to training-specific terms. An additional objective function penalizes tokens with low self-attention entropy. We fine-tune BERT via EAR: the resulting model matches or exceeds state-of-the-art performance for hate speech classification and bias metrics on three benchmark corpora in English and Italian. EAR also reveals overfitting terms, i.e., terms most likely to induce bias, to help identify their effect on the model, task, and predictions.
DC-AR: Efficient Masked Autoregressive Image Generation with Deep Compression Hybrid Tokenizer
We introduce DC-AR, a novel masked autoregressive (AR) text-to-image generation framework that delivers superior image generation quality with exceptional computational efficiency. Due to the tokenizers' limitations, prior masked AR models have lagged behind diffusion models in terms of quality or efficiency. We overcome this limitation by introducing DC-HT - a deep compression hybrid tokenizer for AR models that achieves a 32x spatial compression ratio while maintaining high reconstruction fidelity and cross-resolution generalization ability. Building upon DC-HT, we extend MaskGIT and create a new hybrid masked autoregressive image generation framework that first produces the structural elements through discrete tokens and then applies refinements via residual tokens. DC-AR achieves state-of-the-art results with a gFID of 5.49 on MJHQ-30K and an overall score of 0.69 on GenEval, while offering 1.5-7.9x higher throughput and 2.0-3.5x lower latency compared to prior leading diffusion and autoregressive models.
Weighted Sampling for Masked Language Modeling
Masked Language Modeling (MLM) is widely used to pretrain language models. The standard random masking strategy in MLM causes the pre-trained language models (PLMs) to be biased toward high-frequency tokens. Representation learning of rare tokens is poor and PLMs have limited performance on downstream tasks. To alleviate this frequency bias issue, we propose two simple and effective Weighted Sampling strategies for masking tokens based on the token frequency and training loss. We apply these two strategies to BERT and obtain Weighted-Sampled BERT (WSBERT). Experiments on the Semantic Textual Similarity benchmark (STS) show that WSBERT significantly improves sentence embeddings over BERT. Combining WSBERT with calibration methods and prompt learning further improves sentence embeddings. We also investigate fine-tuning WSBERT on the GLUE benchmark and show that Weighted Sampling also improves the transfer learning capability of the backbone PLM. We further analyze and provide insights into how WSBERT improves token embeddings.
Drop your Decoder: Pre-training with Bag-of-Word Prediction for Dense Passage Retrieval
Masked auto-encoder pre-training has emerged as a prevalent technique for initializing and enhancing dense retrieval systems. It generally utilizes additional Transformer decoder blocks to provide sustainable supervision signals and compress contextual information into dense representations. However, the underlying reasons for the effectiveness of such a pre-training technique remain unclear. The usage of additional Transformer-based decoders also incurs significant computational costs. In this study, we aim to shed light on this issue by revealing that masked auto-encoder (MAE) pre-training with enhanced decoding significantly improves the term coverage of input tokens in dense representations, compared to vanilla BERT checkpoints. Building upon this observation, we propose a modification to the traditional MAE by replacing the decoder of a masked auto-encoder with a completely simplified Bag-of-Word prediction task. This modification enables the efficient compression of lexical signals into dense representations through unsupervised pre-training. Remarkably, our proposed method achieves state-of-the-art retrieval performance on several large-scale retrieval benchmarks without requiring any additional parameters, which provides a 67% training speed-up compared to standard masked auto-encoder pre-training with enhanced decoding.
Difference-Masking: Choosing What to Mask in Continued Pretraining
The self-supervised objective of masking-and-predicting has led to promising performance gains on a variety of downstream tasks. However, while most approaches randomly mask tokens, there is strong intuition that deciding what to mask can substantially improve learning outcomes. We investigate this in continued pretraining setting in which pretrained models continue to pretrain on domain-specific data before performing some downstream task. We introduce Difference-Masking, a masking strategy that automatically chooses what to mask during continued pretraining by considering what makes a task domain different from the pretraining domain. Empirically, we find that Difference-Masking outperforms baselines on continued pretraining settings across four diverse language-only and multimodal video tasks.
Confidence-Weighted Token Set Cover for Early Hypothesis Pruning in Self-Consistency
Despite its simplicity and efficacy, the high token expenditure of self-consistency can limit its practical utility. Here we investigate if self-consistency can be made more token-efficient for long chain-of-thought reasoning tasks, while preserving its parallelism, through early hypothesis pruning. Concretely, we generate all solutions in parallel, but periodically prune intermediate hypotheses that are deemed unnecessary based on two lightweight indicators: (a) the model's own confidence in individual hypotheses, and (b) lexical coverage of all current hypotheses by candidate subsets that are under consideration for continued retention. We design a fast weighted set cover algorithm that utilizes the two indicators; our evaluation of five LLMs on three math benchmarks shows that this method can improve token efficiency for all models, by 10-35% in many cases.
Hybrid Distillation: Connecting Masked Autoencoders with Contrastive Learners
Representation learning has been evolving from traditional supervised training to Contrastive Learning (CL) and Masked Image Modeling (MIM). Previous works have demonstrated their pros and cons in specific scenarios, i.e., CL and supervised pre-training excel at capturing longer-range global patterns and enabling better feature discrimination, while MIM can introduce more local and diverse attention across all transformer layers. In this paper, we explore how to obtain a model that combines their strengths. We start by examining previous feature distillation and mask feature reconstruction methods and identify their limitations. We find that their increasing diversity mainly derives from the asymmetric designs, but these designs may in turn compromise the discrimination ability. In order to better obtain both discrimination and diversity, we propose a simple but effective Hybrid Distillation strategy, which utilizes both the supervised/CL teacher and the MIM teacher to jointly guide the student model. Hybrid Distill imitates the token relations of the MIM teacher to alleviate attention collapse, as well as distills the feature maps of the supervised/CL teacher to enable discrimination. Furthermore, a progressive redundant token masking strategy is also utilized to reduce the distilling costs and avoid falling into local optima. Experiment results prove that Hybrid Distill can achieve superior performance on different benchmarks.
Keep Decoding Parallel with Effective Knowledge Distillation from Language Models to End-to-end Speech Recognisers
This study presents a novel approach for knowledge distillation (KD) from a BERT teacher model to an automatic speech recognition (ASR) model using intermediate layers. To distil the teacher's knowledge, we use an attention decoder that learns from BERT's token probabilities. Our method shows that language model (LM) information can be more effectively distilled into an ASR model using both the intermediate layers and the final layer. By using the intermediate layers as distillation target, we can more effectively distil LM knowledge into the lower network layers. Using our method, we achieve better recognition accuracy than with shallow fusion of an external LM, allowing us to maintain fast parallel decoding. Experiments on the LibriSpeech dataset demonstrate the effectiveness of our approach in enhancing greedy decoding with connectionist temporal classification (CTC).
Halton Scheduler For Masked Generative Image Transformer
Masked Generative Image Transformers (MaskGIT) have emerged as a scalable and efficient image generation framework, able to deliver high-quality visuals with low inference costs. However, MaskGIT's token unmasking scheduler, an essential component of the framework, has not received the attention it deserves. We analyze the sampling objective in MaskGIT, based on the mutual information between tokens, and elucidate its shortcomings. We then propose a new sampling strategy based on our Halton scheduler instead of the original Confidence scheduler. More precisely, our method selects the token's position according to a quasi-random, low-discrepancy Halton sequence. Intuitively, that method spreads the tokens spatially, progressively covering the image uniformly at each step. Our analysis shows that it allows reducing non-recoverable sampling errors, leading to simpler hyper-parameters tuning and better quality images. Our scheduler does not require retraining or noise injection and may serve as a simple drop-in replacement for the original sampling strategy. Evaluation of both class-to-image synthesis on ImageNet and text-to-image generation on the COCO dataset demonstrates that the Halton scheduler outperforms the Confidence scheduler quantitatively by reducing the FID and qualitatively by generating more diverse and more detailed images. Our code is at https://github.com/valeoai/Halton-MaskGIT.
Break-A-Scene: Extracting Multiple Concepts from a Single Image
Text-to-image model personalization aims to introduce a user-provided concept to the model, allowing its synthesis in diverse contexts. However, current methods primarily focus on the case of learning a single concept from multiple images with variations in backgrounds and poses, and struggle when adapted to a different scenario. In this work, we introduce the task of textual scene decomposition: given a single image of a scene that may contain several concepts, we aim to extract a distinct text token for each concept, enabling fine-grained control over the generated scenes. To this end, we propose augmenting the input image with masks that indicate the presence of target concepts. These masks can be provided by the user or generated automatically by a pre-trained segmentation model. We then present a novel two-phase customization process that optimizes a set of dedicated textual embeddings (handles), as well as the model weights, striking a delicate balance between accurately capturing the concepts and avoiding overfitting. We employ a masked diffusion loss to enable handles to generate their assigned concepts, complemented by a novel loss on cross-attention maps to prevent entanglement. We also introduce union-sampling, a training strategy aimed to improve the ability of combining multiple concepts in generated images. We use several automatic metrics to quantitatively compare our method against several baselines, and further affirm the results using a user study. Finally, we showcase several applications of our method. Project page is available at: https://omriavrahami.com/break-a-scene/
HAD: Hybrid Architecture Distillation Outperforms Teacher in Genomic Sequence Modeling
Inspired by the great success of Masked Language Modeling (MLM) in the natural language domain, the paradigm of self-supervised pre-training and fine-tuning has also achieved remarkable progress in the field of DNA sequence modeling. However, previous methods often relied on massive pre-training data or large-scale base models with huge parameters, imposing a significant computational burden. To address this, many works attempted to use more compact models to achieve similar outcomes but still fell short by a considerable margin. In this work, we propose a Hybrid Architecture Distillation (HAD) approach, leveraging both distillation and reconstruction tasks for more efficient and effective pre-training. Specifically, we employ the NTv2-500M as the teacher model and devise a grouping masking strategy to align the feature embeddings of visible tokens while concurrently reconstructing the invisible tokens during MLM pre-training. To validate the effectiveness of our proposed method, we conducted comprehensive experiments on the Nucleotide Transformer Benchmark and Genomic Benchmark. Compared to models with similar parameters, our model achieved excellent performance. More surprisingly, it even surpassed the distillation ceiling-teacher model on some sub-tasks, which is more than 500 times larger. Lastly, we utilize t-SNE for more intuitive visualization, which shows that our model can gain a sophisticated understanding of the intrinsic representation pattern in genomic sequences.
Knowledge Distillation of Russian Language Models with Reduction of Vocabulary
Today, transformer language models serve as a core component for majority of natural language processing tasks. Industrial application of such models requires minimization of computation time and memory footprint. Knowledge distillation is one of approaches to address this goal. Existing methods in this field are mainly focused on reducing the number of layers or dimension of embeddings/hidden representations. Alternative option is to reduce the number of tokens in vocabulary and therefore the embeddings matrix of the student model. The main problem with vocabulary minimization is mismatch between input sequences and output class distributions of a teacher and a student models. As a result, it is impossible to directly apply KL-based knowledge distillation. We propose two simple yet effective alignment techniques to make knowledge distillation to the students with reduced vocabulary. Evaluation of distilled models on a number of common benchmarks for Russian such as Russian SuperGLUE, SberQuAD, RuSentiment, ParaPhaser, Collection-3 demonstrated that our techniques allow to achieve compression from 17times to 49times, while maintaining quality of 1.7times compressed student with the full-sized vocabulary, but reduced number of Transformer layers only. We make our code and distilled models available.
ENAT: Rethinking Spatial-temporal Interactions in Token-based Image Synthesis
Recently, token-based generation have demonstrated their effectiveness in image synthesis. As a representative example, non-autoregressive Transformers (NATs) can generate decent-quality images in a few steps. NATs perform generation in a progressive manner, where the latent tokens of a resulting image are incrementally revealed. At each step, the unrevealed image regions are padded with mask tokens and inferred by NAT. In this paper, we delve into the mechanisms behind the effectiveness of NATs and uncover two important patterns that naturally emerge from NATs: Spatially (within a step), although mask and visible tokens are processed uniformly by NATs, the interactions between them are highly asymmetric. In specific, mask tokens mainly gather information for decoding, while visible tokens tend to primarily provide information, and their deep representations can be built only upon themselves. Temporally (across steps), the interactions between adjacent generation steps mostly concentrate on updating the representations of a few critical tokens, while the computation for the majority of tokens is generally repetitive. Driven by these findings, we propose EfficientNAT (ENAT), a NAT model that explicitly encourages these critical interactions inherent in NATs. At the spatial level, we disentangle the computations of visible and mask tokens by encoding visible tokens independently, while decoding mask tokens conditioned on the fully encoded visible tokens. At the temporal level, we prioritize the computation of the critical tokens at each step, while maximally reusing previously computed token representations to supplement necessary information. ENAT improves the performance of NATs notably with significantly reduced computational cost. Experiments on ImageNet-256, ImageNet-512 and MS-COCO validate the effectiveness of ENAT. Code is available at https://github.com/LeapLabTHU/ENAT.
Delta Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a widely adopted approach for compressing large neural networks by transferring knowledge from a large teacher model to a smaller student model. In the context of large language models, token level KD, typically minimizing the KL divergence between student output distribution and teacher output distribution, has shown strong empirical performance. However, prior work assumes student output distribution and teacher output distribution share the same optimal representation space, a premise that may not hold in many cases. To solve this problem, we propose Delta Knowledge Distillation (Delta-KD), a novel extension of token level KD that encourages the student to approximate an optimal representation space by explicitly preserving the distributional shift Delta introduced during the teacher's supervised finetuning (SFT). Empirical results on ROUGE metrics demonstrate that Delta KD substantially improves student performance while preserving more of the teacher's knowledge.
Learning Better Masking for Better Language Model Pre-training
Masked Language Modeling (MLM) has been widely used as the denoising objective in pre-training language models (PrLMs). Existing PrLMs commonly adopt a Random-Token Masking strategy where a fixed masking ratio is applied and different contents are masked by an equal probability throughout the entire training. However, the model may receive complicated impact from pre-training status, which changes accordingly as training time goes on. In this paper, we show that such time-invariant MLM settings on masking ratio and masked content are unlikely to deliver an optimal outcome, which motivates us to explore the influence of time-variant MLM settings. We propose two scheduled masking approaches that adaptively tune the masking ratio and masked content in different training stages, which improves the pre-training efficiency and effectiveness verified on the downstream tasks. Our work is a pioneer study on time-variant masking strategy on ratio and content and gives a better understanding of how masking ratio and masked content influence the MLM pre-training.
Gradient-Attention Guided Dual-Masking Synergetic Framework for Robust Text-based Person Retrieval
Although Contrastive Language-Image Pre-training (CLIP) exhibits strong performance across diverse vision tasks, its application to person representation learning faces two critical challenges: (i) the scarcity of large-scale annotated vision-language data focused on person-centric images, and (ii) the inherent limitations of global contrastive learning, which struggles to maintain discriminative local features crucial for fine-grained matching while remaining vulnerable to noisy text tokens. This work advances CLIP for person representation learning through synergistic improvements in data curation and model architecture. First, we develop a noise-resistant data construction pipeline that leverages the in-context learning capabilities of MLLMs to automatically filter and caption web-sourced images. This yields WebPerson, a large-scale dataset of 5M high-quality person-centric image-text pairs. Second, we introduce the GA-DMS (Gradient-Attention Guided Dual-Masking Synergetic) framework, which improves cross-modal alignment by adaptively masking noisy textual tokens based on the gradient-attention similarity score. Additionally, we incorporate masked token prediction objectives that compel the model to predict informative text tokens, enhancing fine-grained semantic representation learning. Extensive experiments show that GA-DMS achieves state-of-the-art performance across multiple benchmarks.
Vision-centric Token Compression in Large Language Model
Large Language Models (LLMs) have revolutionized natural language processing, excelling in handling longer sequences. However, the inefficiency and redundancy in processing extended in-context tokens remain a challenge. Many attempts to address this rely on compressing tokens with smaller text encoders, yet we question whether text encoders are truly indispensable. Our journey leads to an unexpected discovery-a much smaller vision encoder, applied directly to sequences of text tokens, can rival text encoders on text tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small text understanding benchmarks, VIST leads to comparable results with 16% fewer FLOPs and 50% less memory usage. We further uncover significant token redundancy and devise a frequency-based masking strategy to guide the focus of the visual encoder toward the most critical tokens. Interestingly, we observe the trained visual encoder performs like a summarizer, selectively ignoring less important words such as prepositions and conjunctions. This approach delivers remarkable results, outperforming traditional text encoder-based methods by 5.7% on average over benchmarks like TriviaQA, NQ, PopQA, TREF, SST2, and SST5, setting a new standard for token efficiency in LLMs.
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
Pre-Training with Whole Word Masking for Chinese BERT
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks, and its consecutive variants have been proposed to further improve the performance of the pre-trained language models. In this paper, we aim to first introduce the whole word masking (wwm) strategy for Chinese BERT, along with a series of Chinese pre-trained language models. Then we also propose a simple but effective model called MacBERT, which improves upon RoBERTa in several ways. Especially, we propose a new masking strategy called MLM as correction (Mac). To demonstrate the effectiveness of these models, we create a series of Chinese pre-trained language models as our baselines, including BERT, RoBERTa, ELECTRA, RBT, etc. We carried out extensive experiments on ten Chinese NLP tasks to evaluate the created Chinese pre-trained language models as well as the proposed MacBERT. Experimental results show that MacBERT could achieve state-of-the-art performances on many NLP tasks, and we also ablate details with several findings that may help future research. We open-source our pre-trained language models for further facilitating our research community. Resources are available: https://github.com/ymcui/Chinese-BERT-wwm
Forgetting: A New Mechanism Towards Better Large Language Model Fine-tuning
Supervised fine-tuning (SFT) plays a critical role for pretrained large language models (LLMs), notably enhancing their capacity to acquire domain-specific knowledge while preserving or potentially augmenting their general-purpose capabilities. However, the efficacy of SFT hinges on data quality as well as data volume, otherwise it may result in limited performance gains or even degradation relative to the associated baselines. To mitigate such reliance, we suggest categorizing tokens within each corpus into two parts -- positive and negative tokens -- based on whether they are useful to improve model performance. Positive tokens can be trained in common ways, whereas negative tokens, which may lack essential semantics or be misleading, should be explicitly forgotten. Overall, the token categorization facilitate the model to learn less informative message, and the forgetting process shapes a knowledge boundary to guide the model on what information to learn more precisely. We conduct experiments on well-established benchmarks, finding that this forgetting mechanism not only improves overall model performance and also facilitate more diverse model responses.
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
CM3: A Causal Masked Multimodal Model of the Internet
We introduce CM3, a family of causally masked generative models trained over a large corpus of structured multi-modal documents that can contain both text and image tokens. Our new causally masked approach generates tokens left to right while also masking out a small number of long token spans that are generated at the end of the string, instead of their original positions. The casual masking object provides a type of hybrid of the more common causal and masked language models, by enabling full generative modeling while also providing bidirectional context when generating the masked spans. We train causally masked language-image models on large-scale web and Wikipedia articles, where each document contains all of the text, hypertext markup, hyperlinks, and image tokens (from a VQVAE-GAN), provided in the order they appear in the original HTML source (before masking). The resulting CM3 models can generate rich structured, multi-modal outputs while conditioning on arbitrary masked document contexts, and thereby implicitly learn a wide range of text, image, and cross modal tasks. They can be prompted to recover, in a zero-shot fashion, the functionality of models such as DALL-E, GENRE, and HTLM. We set the new state-of-the-art in zero-shot summarization, entity linking, and entity disambiguation while maintaining competitive performance in the fine-tuning setting. We can generate images unconditionally, conditioned on text (like DALL-E) and do captioning all in a zero-shot setting with a single model.
Centroid-centered Modeling for Efficient Vision Transformer Pre-training
Masked Image Modeling (MIM) is a new self-supervised vision pre-training paradigm using Vision Transformer (ViT). Previous works can be pixel-based or token-based, using original pixels or discrete visual tokens from parametric tokenizer models, respectively. Our proposed approach, CCViT, leverages k-means clustering to obtain centroids for image modeling without supervised training of tokenizer model. The centroids represent patch pixels and index tokens and have the property of local invariance. Non-parametric centroid tokenizer only takes seconds to create and is faster for token inference. Specifically, we adopt patch masking and centroid replacement strategies to construct corrupted inputs, and two stacked encoder blocks to predict corrupted patch tokens and reconstruct original patch pixels. Experiments show that the ViT-B model with only 300 epochs achieves 84.3\% top-1 accuracy on ImageNet-1K classification and 51.6\% on ADE20K semantic segmentation. Our approach achieves competitive results with BEiTv2 without distillation training from other models and outperforms other methods such as MAE.
Labels Need Prompts Too Mask Matching for Natural Language Understanding Tasks
Textual label names (descriptions) are typically semantically rich in many natural language understanding (NLU) tasks. In this paper, we incorporate the prompting methodology, which is widely used to enrich model input, into the label side for the first time. Specifically, we propose a Mask Matching method, which equips an input with a prompt and its label with another, and then makes predictions by matching their mask representations. We evaluate our method extensively on 8 NLU tasks with 14 datasets. The experimental results show that Mask Matching significantly outperforms its counterparts of fine-tuning and conventional prompt-tuning, setting up state-of-the-art performances in several datasets. Mask Matching is particularly good at handling NLU tasks with large label counts and informative label names. As pioneering efforts that investigate the label-side prompt, we also discuss open issues for future study.
Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation
The Diffusion Model has not only garnered noteworthy achievements in the realm of image generation but has also demonstrated its potential as an effective pretraining method utilizing unlabeled data. Drawing from the extensive potential unveiled by the Diffusion Model in both semantic correspondence and open vocabulary segmentation, our work initiates an investigation into employing the Latent Diffusion Model for Few-shot Semantic Segmentation. Recently, inspired by the in-context learning ability of large language models, Few-shot Semantic Segmentation has evolved into In-context Segmentation tasks, morphing into a crucial element in assessing generalist segmentation models. In this context, we concentrate on Few-shot Semantic Segmentation, establishing a solid foundation for the future development of a Diffusion-based generalist model for segmentation. Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework. Subsequently, we delve deeper into optimizing the infusion of information from the support mask and simultaneously re-evaluating how to provide reasonable supervision from the query mask. Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework and effectively utilizing the pre-training prior. Experimental results demonstrate that our method significantly outperforms the previous SOTA models in multiple settings.
KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
Improving Joint Embedding Predictive Architecture with Diffusion Noise
Self-supervised learning has become an incredibly successful method for feature learning, widely applied to many downstream tasks. It has proven especially effective for discriminative tasks, surpassing the trending generative models. However, generative models perform better in image generation and detail enhancement. Thus, it is natural for us to find a connection between SSL and generative models to further enhance the representation capacity of SSL. As generative models can create new samples by approximating the data distribution, such modeling should also lead to a semantic understanding of the raw visual data, which is necessary for recognition tasks. This enlightens us to combine the core principle of the diffusion model: diffusion noise, with SSL to learn a competitive recognition model. Specifically, diffusion noise can be viewed as a particular state of mask that reveals a close relationship between masked image modeling (MIM) and diffusion models. In this paper, we propose N-JEPA (Noise-based JEPA) to incorporate diffusion noise into MIM by the position embedding of masked tokens. The multi-level noise schedule is a series of feature augmentations to further enhance the robustness of our model. We perform a comprehensive study to confirm its effectiveness in the classification of downstream tasks. Codes will be released soon in public.
Representation Deficiency in Masked Language Modeling
Masked Language Modeling (MLM) has been one of the most prominent approaches for pretraining bidirectional text encoders due to its simplicity and effectiveness. One notable concern about MLM is that the special [MASK] symbol causes a discrepancy between pretraining data and downstream data as it is present only in pretraining but not in fine-tuning. In this work, we offer a new perspective on the consequence of such a discrepancy: We demonstrate empirically and theoretically that MLM pretraining allocates some model dimensions exclusively for representing [MASK] tokens, resulting in a representation deficiency for real tokens and limiting the pretrained model's expressiveness when it is adapted to downstream data without [MASK] tokens. Motivated by the identified issue, we propose MAE-LM, which pretrains the Masked Autoencoder architecture with MLM where [MASK] tokens are excluded from the encoder. Empirically, we show that MAE-LM improves the utilization of model dimensions for real token representations, and MAE-LM consistently outperforms MLM-pretrained models across different pretraining settings and model sizes when fine-tuned on the GLUE and SQuAD benchmarks.
Region-Adaptive Transform with Segmentation Prior for Image Compression
Learned Image Compression (LIC) has shown remarkable progress in recent years. Existing works commonly employ CNN-based or self-attention-based modules as transform methods for compression. However, there is no prior research on neural transform that focuses on specific regions. In response, we introduce the class-agnostic segmentation masks (i.e. semantic masks without category labels) for extracting region-adaptive contextual information. Our proposed module, Region-Adaptive Transform, applies adaptive convolutions on different regions guided by the masks. Additionally, we introduce a plug-and-play module named Scale Affine Layer to incorporate rich contexts from various regions. While there have been prior image compression efforts that involve segmentation masks as additional intermediate inputs, our approach differs significantly from them. Our advantages lie in that, to avoid extra bitrate overhead, we treat these masks as privilege information, which is accessible during the model training stage but not required during the inference phase. To the best of our knowledge, we are the first to employ class-agnostic masks as privilege information and achieve superior performance in pixel-fidelity metrics, such as Peak Signal to Noise Ratio (PSNR). The experimental results demonstrate our improvement compared to previously well-performing methods, with about 8.2% bitrate saving compared to VTM-17.0. The source code is available at https://github.com/GityuxiLiu/SegPIC-for-Image-Compression.
Mask-Enhanced Autoregressive Prediction: Pay Less Attention to Learn More
Large Language Models (LLMs) are discovered to suffer from accurately retrieving key information. To address this, we propose Mask-Enhanced Autoregressive Prediction (MEAP), a simple yet effective training paradigm that seamlessly integrates Masked Language Modeling (MLM) into Next-Token Prediction (NTP) to enhance the latter's in-context retrieval capabilities. Specifically, MEAP first randomly masks a small fraction of input tokens and then directly performs the standard next-token prediction autoregressive using a decoder-only Transformer. MEAP eliminates the need for bidirectional attention or encoder-decoder architectures for MLM, incurring no additional computational overhead during pre-training or inference. Intensive experiments demonstrate that MEAP substantially outperforms NTP on key information retrieval and long-context reasoning tasks, while performing on par or better on commonsense reasoning tasks. The benefits of MEAP also extend to supervised fine-tuning, where it shows remarkable advantages in lost-in-the-middle scenarios, outperforming NTP by 11.77 percentage points. Our analysis indicates that MEAP's effectiveness arises from its ability to promote more distinguishable attention scores by concentrating on a reduced set of non-masked tokens. This mechanism improves the model's focus on task-relevant signals while mitigating the influence of peripheral context. These findings position MEAP as a promising training paradigm for large language models.
ALTo: Adaptive-Length Tokenizer for Autoregressive Mask Generation
While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.
Class Token and Knowledge Distillation for Multi-head Self-Attention Speaker Verification Systems
This paper explores three novel approaches to improve the performance of speaker verification (SV) systems based on deep neural networks (DNN) using Multi-head Self-Attention (MSA) mechanisms and memory layers. Firstly, we propose the use of a learnable vector called Class token to replace the average global pooling mechanism to extract the embeddings. Unlike global average pooling, our proposal takes into account the temporal structure of the input what is relevant for the text-dependent SV task. The class token is concatenated to the input before the first MSA layer, and its state at the output is used to predict the classes. To gain additional robustness, we introduce two approaches. First, we have developed a Bayesian estimation of the class token. Second, we have added a distilled representation token for training a teacher-student pair of networks using the Knowledge Distillation (KD) philosophy, which is combined with the class token. This distillation token is trained to mimic the predictions from the teacher network, while the class token replicates the true label. All the strategies have been tested on the RSR2015-Part II and DeepMine-Part 1 databases for text-dependent SV, providing competitive results compared to the same architecture using the average pooling mechanism to extract average embeddings.
Revisiting Token Dropping Strategy in Efficient BERT Pretraining
Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping.
Stare at What You See: Masked Image Modeling without Reconstruction
Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training. By reconstructing masked image patches from a small portion of visible image regions, MAE forces the model to infer semantic correlation within an image. Recently, some approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance. However, unlike the low-level features such as pixel values, we argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.This raises one question: is reconstruction necessary in Masked Image Modeling (MIM) with a teacher model? In this paper, we propose an efficient MIM paradigm named MaskAlign. MaskAlign simply learns the consistency of visible patch features extracted by the student model and intact image features extracted by the teacher model. To further advance the performance and tackle the problem of input inconsistency between the student and teacher model, we propose a Dynamic Alignment (DA) module to apply learnable alignment. Our experimental results demonstrate that masked modeling does not lose effectiveness even without reconstruction on masked regions. Combined with Dynamic Alignment, MaskAlign can achieve state-of-the-art performance with much higher efficiency. Code and models will be available at https://github.com/OpenPerceptionX/maskalign.
Edit Less, Achieve More: Dynamic Sparse Neuron Masking for Lifelong Knowledge Editing in LLMs
Lifelong knowledge editing enables continuous, precise updates to outdated knowledge in large language models (LLMs) without computationally expensive full retraining. However, existing methods often accumulate errors throughout the editing process, causing a gradual decline in both editing accuracy and generalization. To tackle this problem, we propose Neuron-Specific Masked Knowledge Editing (NMKE), a novel fine-grained editing framework that combines neuron-level attribution with dynamic sparse masking. Leveraging neuron functional attribution, we identify two key types of knowledge neurons, with knowledge-general neurons activating consistently across prompts and knowledge-specific neurons activating to specific prompts. NMKE further introduces an entropy-guided dynamic sparse mask, locating relevant neurons to the target knowledge. This strategy enables precise neuron-level knowledge editing with fewer parameter modifications. Experimental results from thousands of sequential edits demonstrate that NMKE outperforms existing methods in maintaining high editing success rates and preserving model general capabilities in lifelong editing.
Attentive Mask CLIP
Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves 43.9% top-1 accuracy on ImageNet-1K zero-shot classification, as well as 62.7/42.1 and 38.0/23.2 I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are +1.1%, +5.5/+0.9, and +4.4/+1.3 higher than the SLIP method, while being 2.30times faster. An efficient version of our approach running 1.16times faster than the plain CLIP model achieves significant gains of +5.3%, +11.3/+8.0, and +9.5/+4.9 on these benchmarks.
Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos
A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.
Rethinking Patch Dependence for Masked Autoencoders
In this work, we re-examine inter-patch dependencies in the decoding mechanism of masked autoencoders (MAE). We decompose this decoding mechanism for masked patch reconstruction in MAE into self-attention and cross-attention. Our investigations suggest that self-attention between mask patches is not essential for learning good representations. To this end, we propose a novel pretraining framework: Cross-Attention Masked Autoencoders (CrossMAE). CrossMAE's decoder leverages only cross-attention between masked and visible tokens, with no degradation in downstream performance. This design also enables decoding only a small subset of mask tokens, boosting efficiency. Furthermore, each decoder block can now leverage different encoder features, resulting in improved representation learning. CrossMAE matches MAE in performance with 2.5 to 3.7times less decoding compute. It also surpasses MAE on ImageNet classification and COCO instance segmentation under the same compute. Code and models: https://crossmae.github.io
Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers
Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.
Mask-Align: Self-Supervised Neural Word Alignment
Word alignment, which aims to align translationally equivalent words between source and target sentences, plays an important role in many natural language processing tasks. Current unsupervised neural alignment methods focus on inducing alignments from neural machine translation models, which does not leverage the full context in the target sequence. In this paper, we propose Mask-Align, a self-supervised word alignment model that takes advantage of the full context on the target side. Our model masks out each target token and predicts it conditioned on both source and the remaining target tokens. This two-step process is based on the assumption that the source token contributing most to recovering the masked target token should be aligned. We also introduce an attention variant called leaky attention, which alleviates the problem of unexpected high cross-attention weights on special tokens such as periods. Experiments on four language pairs show that our model outperforms previous unsupervised neural aligners and obtains new state-of-the-art results.
Analysing The Impact of Sequence Composition on Language Model Pre-Training
Most language model pre-training frameworks concatenate multiple documents into fixed-length sequences and use causal masking to compute the likelihood of each token given its context; this strategy is widely adopted due to its simplicity and efficiency. However, to this day, the influence of the pre-training sequence composition strategy on the generalisation properties of the model remains under-explored. In this work, we find that applying causal masking can lead to the inclusion of distracting information from previous documents during pre-training, which negatively impacts the performance of the models on language modelling and downstream tasks. In intra-document causal masking, the likelihood of each token is only conditioned on the previous tokens in the same document, eliminating potential distracting information from previous documents and significantly improving performance. Furthermore, we find that concatenating related documents can reduce some potential distractions during pre-training, and our proposed efficient retrieval-based sequence construction method, BM25Chunk, can improve in-context learning (+11.6\%), knowledge memorisation (+9.8\%), and context utilisation (+7.2\%) abilities of language models without sacrificing efficiency.
Empowering Character-level Text Infilling by Eliminating Sub-Tokens
In infilling tasks, sub-tokens, representing instances where a complete token is segmented into two parts, often emerge at the boundaries of prefixes, middles, and suffixes. Traditional methods focused on training models at the token level, leading to sub-optimal performance in character-level infilling tasks during the inference stage. Alternately, some approaches considered character-level infilling, but they relied on predicting sub-tokens in inference, yet this strategy diminished ability in character-level infilling tasks due to the large perplexity of the model on sub-tokens. In this paper, we introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints. The proposed method addresses character-level infilling tasks by utilizing a line-level format to avoid predicting any sub-token in inference. In addition, we incorporate two special tokens to signify the rest of the incomplete lines, thereby enhancing generation guidance. Extensive experiments demonstrate that our proposed approach surpasses previous methods, offering a significant advantage. Code is available at https://github.com/SenseLLM/FIM-SE.
Learning Unmasking Policies for Diffusion Language Models
Diffusion (Large) Language Models (dLLMs) now match the downstream performance of their autoregressive counterparts on many tasks, while holding the promise of being more efficient during inference. One particularly successful variant is masked discrete diffusion, in which a buffer filled with special mask tokens is progressively replaced with tokens sampled from the model's vocabulary. Efficiency can be gained by unmasking several tokens in parallel, but doing too many at once risks degrading the generation quality. Thus, one critical design aspect of dLLMs is the sampling procedure that selects, at each step of the diffusion process, which tokens to replace. Indeed, recent work has found that heuristic strategies such as confidence thresholding lead to both higher quality and token throughput compared to random unmasking. However, such heuristics have downsides: they require manual tuning, and we observe that their performance degrades with larger buffer sizes. In this work, we instead propose to train sampling procedures using reinforcement learning. Specifically, we formalize masked diffusion sampling as a Markov decision process in which the dLLM serves as the environment, and propose a lightweight policy architecture based on a single-layer transformer that maps dLLM token confidences to unmasking decisions. Our experiments show that these trained policies match the performance of state-of-the-art heuristics when combined with semi-autoregressive generation, while outperforming them in the full diffusion setting. We also examine the transferability of these policies, finding that they can generalize to new underlying dLLMs and longer sequence lengths. However, we also observe that their performance degrades when applied to out-of-domain data, and that fine-grained tuning of the accuracy-efficiency trade-off can be challenging with our approach.
Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
Self-Guided Masked Autoencoder
Masked Autoencoder (MAE) is a self-supervised approach for representation learning, widely applicable to a variety of downstream tasks in computer vision. In spite of its success, it is still not fully uncovered what and how MAE exactly learns. In this paper, with an in-depth analysis, we discover that MAE intrinsically learns pattern-based patch-level clustering from surprisingly early stages of pretraining. Upon this understanding, we propose self-guided masked autoencoder, which internally generates informed mask by utilizing its progress in patch clustering, substituting the naive random masking of the vanilla MAE. Our approach significantly boosts its learning process without relying on any external models or supplementary information, keeping the benefit of self-supervised nature of MAE intact. Comprehensive experiments on various downstream tasks verify the effectiveness of the proposed method.
MDiff4STR: Mask Diffusion Model for Scene Text Recognition
Mask Diffusion Models (MDMs) have recently emerged as a promising alternative to auto-regressive models (ARMs) for vision-language tasks, owing to their flexible balance of efficiency and accuracy. In this paper, for the first time, we introduce MDMs into the Scene Text Recognition (STR) task. We show that vanilla MDM lags behind ARMs in terms of accuracy, although it improves recognition efficiency. To bridge this gap, we propose MDiff4STR, a Mask Diffusion model enhanced with two key improvement strategies tailored for STR. Specifically, we identify two key challenges in applying MDMs to STR: noising gap between training and inference, and overconfident predictions during inference. Both significantly hinder the performance of MDMs. To mitigate the first issue, we develop six noising strategies that better align training with inference behavior. For the second, we propose a token-replacement noise mechanism that provides a non-mask noise type, encouraging the model to reconsider and revise overly confident but incorrect predictions. We conduct extensive evaluations of MDiff4STR on both standard and challenging STR benchmarks, covering diverse scenarios including irregular, artistic, occluded, and Chinese text, as well as whether the use of pretraining. Across these settings, MDiff4STR consistently outperforms popular STR models, surpassing state-of-the-art ARMs in accuracy, while maintaining fast inference with only three denoising steps. Code: https://github.com/Topdu/OpenOCR.
How new data permeates LLM knowledge and how to dilute it
Large language models learn and continually learn through the accumulation of gradient-based updates, but how individual pieces of new information affect existing knowledge, leading to both beneficial generalization and problematic hallucination, remains poorly understood. We demonstrate that when learning new information, LLMs exhibit a "priming" effect: learning a new fact can cause the model to inappropriately apply that knowledge in unrelated contexts. To systematically study this phenomenon, we introduce "Outlandish," a carefully curated dataset of 1320 diverse text samples designed to probe how new knowledge permeates through an LLM's existing knowledge base. Using this dataset, we show that the degree of priming after learning new information can be predicted by measuring the token probability of key words before learning. This relationship holds robustly across different model architectures (PALM-2, Gemma, Llama), sizes, and training stages. Finally, we develop two novel techniques to modulate how new knowledge affects existing model behavior: (1) a ``stepping-stone'' text augmentation strategy and (2) an ``ignore-k'' update pruning method. These approaches reduce undesirable priming effects by 50-95\% while preserving the model's ability to learn new information. Our findings provide both empirical insights into how LLMs learn and practical tools for improving the specificity of knowledge insertion in language models. Further materials: https://sunchipsster1.github.io/projects/outlandish/
Mixture of Tokens: Efficient LLMs through Cross-Example Aggregation
Despite the promise of Mixture of Experts (MoE) models in increasing parameter counts of Transformer models while maintaining training and inference costs, their application carries notable drawbacks. The key strategy of these models is to, for each processed token, activate at most a few experts - subsets of an extensive feed-forward layer. But this approach is not without its challenges. The operation of matching experts and tokens is discrete, which makes MoE models prone to issues like training instability and uneven expert utilization. Existing techniques designed to address these concerns, such as auxiliary losses or balance-aware matching, result either in lower model performance or are more difficult to train. In response to these issues, we propose Mixture of Tokens, a fully-differentiable model that retains the benefits of MoE architectures while avoiding the aforementioned difficulties. Rather than routing tokens to experts, this approach mixes tokens from different examples prior to feeding them to experts, enabling the model to learn from all token-expert combinations. Importantly, this mixing can be disabled to avoid mixing of different sequences during inference. Crucially, this method is fully compatible with both masked and causal Large Language Model training and inference.
