Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMelodyT5: A Unified Score-to-Score Transformer for Symbolic Music Processing
In the domain of symbolic music research, the progress of developing scalable systems has been notably hindered by the scarcity of available training data and the demand for models tailored to specific tasks. To address these issues, we propose MelodyT5, a novel unified framework that leverages an encoder-decoder architecture tailored for symbolic music processing in ABC notation. This framework challenges the conventional task-specific approach, considering various symbolic music tasks as score-to-score transformations. Consequently, it integrates seven melody-centric tasks, from generation to harmonization and segmentation, within a single model. Pre-trained on MelodyHub, a newly curated collection featuring over 261K unique melodies encoded in ABC notation and encompassing more than one million task instances, MelodyT5 demonstrates superior performance in symbolic music processing via multi-task transfer learning. Our findings highlight the efficacy of multi-task transfer learning in symbolic music processing, particularly for data-scarce tasks, challenging the prevailing task-specific paradigms and offering a comprehensive dataset and framework for future explorations in this domain.
Melody Is All You Need For Music Generation
We present the Melody Guided Music Generation (MMGen) model, the first novel approach using melody to guide the music generation that, despite a pretty simple method and extremely limited resources, achieves excellent performance. Specifically, we first align the melody with audio waveforms and their associated descriptions using the multimodal alignment module. Subsequently, we condition the diffusion module on the learned melody representations. This allows MMGen to generate music that matches the style of the provided audio while also producing music that reflects the content of the given text description. To address the scarcity of high-quality data, we construct a multi-modal dataset, MusicSet, which includes melody, text, and audio, and will be made publicly available. We conduct extensive experiments which demonstrate the superiority of the proposed model both in terms of experimental metrics and actual performance quality.
Accompanied Singing Voice Synthesis with Fully Text-controlled Melody
Text-to-song (TTSong) is a music generation task that synthesizes accompanied singing voices. Current TTSong methods, inherited from singing voice synthesis (SVS), require melody-related information that can sometimes be impractical, such as music scores or MIDI sequences. We present MelodyLM, the first TTSong model that generates high-quality song pieces with fully text-controlled melodies, achieving minimal user requirements and maximum control flexibility. MelodyLM explicitly models MIDI as the intermediate melody-related feature and sequentially generates vocal tracks in a language model manner, conditioned on textual and vocal prompts. The accompaniment music is subsequently synthesized by a latent diffusion model with hybrid conditioning for temporal alignment. With minimal requirements, users only need to input lyrics and a reference voice to synthesize a song sample. For full control, just input textual prompts or even directly input MIDI. Experimental results indicate that MelodyLM achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://melodylm666.github.io.
YingMusic-Singer: Zero-shot Singing Voice Synthesis and Editing with Annotation-free Melody Guidance
Singing Voice Synthesis (SVS) remains constrained in practical deployment due to its strong dependence on accurate phoneme-level alignment and manually annotated melody contours, requirements that are resource-intensive and hinder scalability. To overcome these limitations, we propose a melody-driven SVS framework capable of synthesizing arbitrary lyrics following any reference melody, without relying on phoneme-level alignment. Our method builds on a Diffusion Transformer (DiT) architecture, enhanced with a dedicated melody extraction module that derives melody representations directly from reference audio. To ensure robust melody encoding, we employ a teacher model to guide the optimization of the melody extractor, alongside an implicit alignment mechanism that enforces similarity distribution constraints for improved melodic stability and coherence. Additionally, we refine duration modeling using weakly annotated song data and introduce a Flow-GRPO reinforcement learning strategy with a multi-objective reward function to jointly enhance pronunciation clarity and melodic fidelity. Experiments show that our model achieves superior performance over existing approaches in both objective measures and subjective listening tests, especially in zero-shot and lyric adaptation settings, while maintaining high audio quality without manual annotation. This work offers a practical and scalable solution for advancing data-efficient singing voice synthesis. To support reproducibility, we release our inference code and model checkpoints.
Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model
Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.
Sing-On-Your-Beat: Simple Text-Controllable Accompaniment Generations
Singing is one of the most cherished forms of human entertainment. However, creating a beautiful song requires an accompaniment that complements the vocals and aligns well with the song instruments and genre. With advancements in deep learning, previous research has focused on generating suitable accompaniments but often lacks precise alignment with the desired instrumentation and genre. To address this, we propose a straightforward method that enables control over the accompaniment through text prompts, allowing the generation of music that complements the vocals and aligns with the song instrumental and genre requirements. Through extensive experiments, we successfully generate 10-second accompaniments using vocal input and text control.
MelodySim: Measuring Melody-aware Music Similarity for Plagiarism Detection
We propose MelodySim, a melody-aware music similarity model and dataset for plagiarism detection. First, we introduce a novel method to construct a dataset with focus on melodic similarity. By augmenting Slakh2100; an existing MIDI dataset, we generate variations of each piece while preserving the melody through modifications such as note splitting, arpeggiation, minor track dropout (excluding bass), and re-instrumentation. A user study confirms that positive pairs indeed contain similar melodies, with other musical tracks significantly changed. Second, we develop a segment-wise melodic-similarity detection model that uses a MERT encoder and applies a triplet neural network to capture melodic similarity. The resultant decision matrix highlights where plagiarism might occur. Our model achieves high accuracy on the MelodySim test set.
Compose & Embellish: Well-Structured Piano Performance Generation via A Two-Stage Approach
Even with strong sequence models like Transformers, generating expressive piano performances with long-range musical structures remains challenging. Meanwhile, methods to compose well-structured melodies or lead sheets (melody + chords), i.e., simpler forms of music, gained more success. Observing the above, we devise a two-stage Transformer-based framework that Composes a lead sheet first, and then Embellishes it with accompaniment and expressive touches. Such a factorization also enables pretraining on non-piano data. Our objective and subjective experiments show that Compose & Embellish shrinks the gap in structureness between a current state of the art and real performances by half, and improves other musical aspects such as richness and coherence as well.
AnyAccomp: Generalizable Accompaniment Generation via Quantized Melodic Bottleneck
Singing Accompaniment Generation (SAG) is the process of generating instrumental music for a given clean vocal input. However, existing SAG techniques use source-separated vocals as input and overfit to separation artifacts. This creates a critical train-test mismatch, leading to failure on clean, real-world vocal inputs. We introduce AnyAccomp, a framework that resolves this by decoupling accompaniment generation from source-dependent artifacts. AnyAccomp first employs a quantized melodic bottleneck, using a chromagram and a VQ-VAE to extract a discrete and timbre-invariant representation of the core melody. A subsequent flow-matching model then generates the accompaniment conditioned on these robust codes. Experiments show AnyAccomp achieves competitive performance on separated-vocal benchmarks while significantly outperforming baselines on generalization test sets of clean studio vocals and, notably, solo instrumental tracks. This demonstrates a qualitative leap in generalization, enabling robust accompaniment for instruments - a task where existing models completely fail - and paving the way for more versatile music co-creation tools. Demo audio and code: https://anyaccomp.github.io
Pictures Of MIDI: Controlled Music Generation via Graphical Prompts for Image-Based Diffusion Inpainting
Recent years have witnessed significant progress in generative models for music, featuring diverse architectures that balance output quality, diversity, speed, and user control. This study explores a user-friendly graphical interface enabling the drawing of masked regions for inpainting by an Hourglass Diffusion Transformer (HDiT) model trained on MIDI piano roll images. To enhance note generation in specified areas, masked regions can be "repainted" with extra noise. The non-latent HDiTs linear scaling with pixel count allows efficient generation in pixel space, providing intuitive and interpretable controls such as masking throughout the network and removing the need to operate in compressed latent spaces such as those provided by pretrained autoencoders. We demonstrate that, in addition to inpainting of melodies, accompaniment, and continuations, the use of repainting can help increase note density yielding musical structures closely matching user specifications such as rising, falling, or diverging melody and/or accompaniment, even when these lie outside the typical training data distribution. We achieve performance on par with prior results while operating at longer context windows, with no autoencoder, and can enable complex geometries for inpainting masks, increasing the options for machine-assisted composers to control the generated music.
Music Style Transfer with Time-Varying Inversion of Diffusion Models
With the development of diffusion models, text-guided image style transfer has demonstrated high-quality controllable synthesis results. However, the utilization of text for diverse music style transfer poses significant challenges, primarily due to the limited availability of matched audio-text datasets. Music, being an abstract and complex art form, exhibits variations and intricacies even within the same genre, thereby making accurate textual descriptions challenging. This paper presents a music style transfer approach that effectively captures musical attributes using minimal data. We introduce a novel time-varying textual inversion module to precisely capture mel-spectrogram features at different levels. During inference, we propose a bias-reduced stylization technique to obtain stable results. Experimental results demonstrate that our method can transfer the style of specific instruments, as well as incorporate natural sounds to compose melodies. Samples and source code are available at https://lsfhuihuiff.github.io/MusicTI/.
JEN-1 DreamStyler: Customized Musical Concept Learning via Pivotal Parameters Tuning
Large models for text-to-music generation have achieved significant progress, facilitating the creation of high-quality and varied musical compositions from provided text prompts. However, input text prompts may not precisely capture user requirements, particularly when the objective is to generate music that embodies a specific concept derived from a designated reference collection. In this paper, we propose a novel method for customized text-to-music generation, which can capture the concept from a two-minute reference music and generate a new piece of music conforming to the concept. We achieve this by fine-tuning a pretrained text-to-music model using the reference music. However, directly fine-tuning all parameters leads to overfitting issues. To address this problem, we propose a Pivotal Parameters Tuning method that enables the model to assimilate the new concept while preserving its original generative capabilities. Additionally, we identify a potential concept conflict when introducing multiple concepts into the pretrained model. We present a concept enhancement strategy to distinguish multiple concepts, enabling the fine-tuned model to generate music incorporating either individual or multiple concepts simultaneously. Since we are the first to work on the customized music generation task, we also introduce a new dataset and evaluation protocol for the new task. Our proposed Jen1-DreamStyler outperforms several baselines in both qualitative and quantitative evaluations. Demos will be available at https://www.jenmusic.ai/research#DreamStyler.
MusicLM: Generating Music From Text
We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.
Text2midi-InferAlign: Improving Symbolic Music Generation with Inference-Time Alignment
We present Text2midi-InferAlign, a novel technique for improving symbolic music generation at inference time. Our method leverages text-to-audio alignment and music structural alignment rewards during inference to encourage the generated music to be consistent with the input caption. Specifically, we introduce two objectives scores: a text-audio consistency score that measures rhythmic alignment between the generated music and the original text caption, and a harmonic consistency score that penalizes generated music containing notes inconsistent with the key. By optimizing these alignment-based objectives during the generation process, our model produces symbolic music that is more closely tied to the input captions, thereby improving the overall quality and coherence of the generated compositions. Our approach can extend any existing autoregressive model without requiring further training or fine-tuning. We evaluate our work on top of Text2midi - an existing text-to-midi generation model, demonstrating significant improvements in both objective and subjective evaluation metrics.
SongComposer: A Large Language Model for Lyric and Melody Composition in Song Generation
We present SongComposer, an innovative LLM designed for song composition. It could understand and generate melodies and lyrics in symbolic song representations, by leveraging the capability of LLM. Existing music-related LLM treated the music as quantized audio signals, while such implicit encoding leads to inefficient encoding and poor flexibility. In contrast, we resort to symbolic song representation, the mature and efficient way humans designed for music, and enable LLM to explicitly compose songs like humans. In practice, we design a novel tuple design to format lyric and three note attributes (pitch, duration, and rest duration) in the melody, which guarantees the correct LLM understanding of musical symbols and realizes precise alignment between lyrics and melody. To impart basic music understanding to LLM, we carefully collected SongCompose-PT, a large-scale song pretraining dataset that includes lyrics, melodies, and paired lyrics-melodies in either Chinese or English. After adequate pre-training, 10K carefully crafted QA pairs are used to empower the LLM with the instruction-following capability and solve diverse tasks. With extensive experiments, SongComposer demonstrates superior performance in lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation, outperforming advanced LLMs like GPT-4.
SongMASS: Automatic Song Writing with Pre-training and Alignment Constraint
Automatic song writing aims to compose a song (lyric and/or melody) by machine, which is an interesting topic in both academia and industry. In automatic song writing, lyric-to-melody generation and melody-to-lyric generation are two important tasks, both of which usually suffer from the following challenges: 1) the paired lyric and melody data are limited, which affects the generation quality of the two tasks, considering a lot of paired training data are needed due to the weak correlation between lyric and melody; 2) Strict alignments are required between lyric and melody, which relies on specific alignment modeling. In this paper, we propose SongMASS to address the above challenges, which leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling for lyric-to-melody and melody-to-lyric generation. Specifically, 1) we extend the original sentence-level MASS pre-training to song level to better capture long contextual information in music, and use a separate encoder and decoder for each modality (lyric or melody); 2) we leverage sentence-level attention mask and token-level attention constraint during training to enhance the alignment between lyric and melody. During inference, we use a dynamic programming strategy to obtain the alignment between each word/syllable in lyric and note in melody. We pre-train SongMASS on unpaired lyric and melody datasets, and both objective and subjective evaluations demonstrate that SongMASS generates lyric and melody with significantly better quality than the baseline method without pre-training or alignment constraint.
TunesFormer: Forming Tunes with Control Codes
In recent years, deep learning techniques have been applied to music generation systems with promising results. However, one of the main challenges in this field has been the lack of annotated datasets, making it difficult for models to learn musical forms in compositions. To address this issue, we present TunesFormer, a Transformer-based melody generation system that is trained on a large dataset of 285,449 ABC tunes. By utilizing specific symbols commonly found in ABC notation to indicate section boundaries, TunesFormer can understand and generate melodies with given musical forms based on control codes. Our objective evaluations demonstrate the effectiveness of the control codes in achieving controlled musical forms, and subjective experiments show that the generated melodies are of comparable quality to human compositions. Our results also provide insights into the optimal placement of control codes and their impact on the generated melodies. TunesFormer presents a promising approach for generating melodies with desired musical forms through the use of deep learning techniques.
Audio Conditioning for Music Generation via Discrete Bottleneck Features
While most music generation models use textual or parametric conditioning (e.g. tempo, harmony, musical genre), we propose to condition a language model based music generation system with audio input. Our exploration involves two distinct strategies. The first strategy, termed textual inversion, leverages a pre-trained text-to-music model to map audio input to corresponding "pseudowords" in the textual embedding space. For the second model we train a music language model from scratch jointly with a text conditioner and a quantized audio feature extractor. At inference time, we can mix textual and audio conditioning and balance them thanks to a novel double classifier free guidance method. We conduct automatic and human studies that validates our approach. We will release the code and we provide music samples on https://musicgenstyle.github.io in order to show the quality of our model.
DiffRhythm: Blazingly Fast and Embarrassingly Simple End-to-End Full-Length Song Generation with Latent Diffusion
Recent advancements in music generation have garnered significant attention, yet existing approaches face critical limitations. Some current generative models can only synthesize either the vocal track or the accompaniment track. While some models can generate combined vocal and accompaniment, they typically rely on meticulously designed multi-stage cascading architectures and intricate data pipelines, hindering scalability. Additionally, most systems are restricted to generating short musical segments rather than full-length songs. Furthermore, widely used language model-based methods suffer from slow inference speeds. To address these challenges, we propose DiffRhythm, the first latent diffusion-based song generation model capable of synthesizing complete songs with both vocal and accompaniment for durations of up to 4m45s in only ten seconds, maintaining high musicality and intelligibility. Despite its remarkable capabilities, DiffRhythm is designed to be simple and elegant: it eliminates the need for complex data preparation, employs a straightforward model structure, and requires only lyrics and a style prompt during inference. Additionally, its non-autoregressive structure ensures fast inference speeds. This simplicity guarantees the scalability of DiffRhythm. Moreover, we release the complete training code along with the pre-trained model on large-scale data to promote reproducibility and further research.
From Generality to Mastery: Composer-Style Symbolic Music Generation via Large-Scale Pre-training
Despite progress in controllable symbolic music generation, data scarcity remains a challenge for certain control modalities. Composer-style music generation is a prime example, as only a few pieces per composer are available, limiting the modeling of both styles and fundamental music elements (e.g., melody, chord, rhythm). In this paper, we investigate how general music knowledge learned from a broad corpus can enhance the mastery of specific composer styles, with a focus on piano piece generation. Our approach follows a two-stage training paradigm. First, we pre-train a REMI-based music generation model on a large corpus of pop, folk, and classical music. Then, we fine-tune it on a small, human-verified dataset from four renowned composers, namely Bach, Mozart, Beethoven, and Chopin, using a lightweight adapter module to condition the model on style indicators. To evaluate the effectiveness of our approach, we conduct both objective and subjective evaluations on style accuracy and musicality. Experimental results demonstrate that our method outperforms ablations and baselines, achieving more precise composer-style modeling and better musical aesthetics. Additionally, we provide observations on how the model builds music concepts from the generality pre-training and refines its stylistic understanding through the mastery fine-tuning.
MusicMagus: Zero-Shot Text-to-Music Editing via Diffusion Models
Recent advances in text-to-music generation models have opened new avenues in musical creativity. However, music generation usually involves iterative refinements, and how to edit the generated music remains a significant challenge. This paper introduces a novel approach to the editing of music generated by such models, enabling the modification of specific attributes, such as genre, mood and instrument, while maintaining other aspects unchanged. Our method transforms text editing to latent space manipulation while adding an extra constraint to enforce consistency. It seamlessly integrates with existing pretrained text-to-music diffusion models without requiring additional training. Experimental results demonstrate superior performance over both zero-shot and certain supervised baselines in style and timbre transfer evaluations. Additionally, we showcase the practical applicability of our approach in real-world music editing scenarios.
Amuse: Human-AI Collaborative Songwriting with Multimodal Inspirations
Songwriting is often driven by multimodal inspirations, such as imagery, narratives, or existing music, yet songwriters remain unsupported by current music AI systems in incorporating these multimodal inputs into their creative processes. We introduce Amuse, a songwriting assistant that transforms multimodal (image, text, or audio) inputs into chord progressions that can be seamlessly incorporated into songwriters' creative processes. A key feature of Amuse is its novel method for generating coherent chords that are relevant to music keywords in the absence of datasets with paired examples of multimodal inputs and chords. Specifically, we propose a method that leverages multimodal large language models (LLMs) to convert multimodal inputs into noisy chord suggestions and uses a unimodal chord model to filter the suggestions. A user study with songwriters shows that Amuse effectively supports transforming multimodal ideas into coherent musical suggestions, enhancing users' agency and creativity throughout the songwriting process.
Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure
The rise of deep learning technologies has quickly advanced many fields, including that of generative music systems. There exist a number of systems that allow for the generation of good sounding short snippets, yet, these generated snippets often lack an overarching, longer-term structure. In this work, we propose CM-HRNN: a conditional melody generation model based on a hierarchical recurrent neural network. This model allows us to generate melodies with long-term structures based on given chord accompaniments. We also propose a novel, concise event-based representation to encode musical lead sheets while retaining the notes' relative position within the bar with respect to the musical meter. With this new data representation, the proposed architecture can simultaneously model the rhythmic, as well as the pitch structures in an effective way. Melodies generated by the proposed model were extensively evaluated in quantitative experiments as well as a user study to ensure the musical quality of the output as well as to evaluate if they contain repeating patterns. We also compared the system with the state-of-the-art AttentionRNN. This comparison shows that melodies generated by CM-HRNN contain more repeated patterns (i.e., higher compression ratio) and a lower tonal tension (i.e., more tonally concise). Results from our listening test indicate that CM-HRNN outperforms AttentionRNN in terms of long-term structure and overall rating.
MIDI-GPT: A Controllable Generative Model for Computer-Assisted Multitrack Music Composition
We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
CONTUNER: Singing Voice Beautifying with Pitch and Expressiveness Condition
Singing voice beautifying is a novel task that has application value in people's daily life, aiming to correct the pitch of the singing voice and improve the expressiveness without changing the original timbre and content. Existing methods rely on paired data or only concentrate on the correction of pitch. However, professional songs and amateur songs from the same person are hard to obtain, and singing voice beautifying doesn't only contain pitch correction but other aspects like emotion and rhythm. Since we propose a fast and high-fidelity singing voice beautifying system called ConTuner, a diffusion model combined with the modified condition to generate the beautified Mel-spectrogram, where the modified condition is composed of optimized pitch and expressiveness. For pitch correction, we establish a mapping relationship from MIDI, spectrum envelope to pitch. To make amateur singing more expressive, we propose the expressiveness enhancer in the latent space to convert amateur vocal tone to professional. ConTuner achieves a satisfactory beautification effect on both Mandarin and English songs. Ablation study demonstrates that the expressiveness enhancer and generator-based accelerate method in ConTuner are effective.
MusiConGen: Rhythm and Chord Control for Transformer-Based Text-to-Music Generation
Existing text-to-music models can produce high-quality audio with great diversity. However, textual prompts alone cannot precisely control temporal musical features such as chords and rhythm of the generated music. To address this challenge, we introduce MusiConGen, a temporally-conditioned Transformer-based text-to-music model that builds upon the pretrained MusicGen framework. Our innovation lies in an efficient finetuning mechanism, tailored for consumer-grade GPUs, that integrates automatically-extracted rhythm and chords as the condition signal. During inference, the condition can either be musical features extracted from a reference audio signal, or be user-defined symbolic chord sequence, BPM, and textual prompts. Our performance evaluation on two datasets -- one derived from extracted features and the other from user-created inputs -- demonstrates that MusiConGen can generate realistic backing track music that aligns well with the specified conditions. We open-source the code and model checkpoints, and provide audio examples online, https://musicongen.github.io/musicongen_demo/.
Melody-Lyrics Matching with Contrastive Alignment Loss
The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
MuseControlLite: Multifunctional Music Generation with Lightweight Conditioners
We propose MuseControlLite, a lightweight mechanism designed to fine-tune text-to-music generation models for precise conditioning using various time-varying musical attributes and reference audio signals. The key finding is that positional embeddings, which have been seldom used by text-to-music generation models in the conditioner for text conditions, are critical when the condition of interest is a function of time. Using melody control as an example, our experiments show that simply adding rotary positional embeddings to the decoupled cross-attention layers increases control accuracy from 56.6% to 61.1%, while requiring 6.75 times fewer trainable parameters than state-of-the-art fine-tuning mechanisms, using the same pre-trained diffusion Transformer model of Stable Audio Open. We evaluate various forms of musical attribute control, audio inpainting, and audio outpainting, demonstrating improved controllability over MusicGen-Large and Stable Audio Open ControlNet at a significantly lower fine-tuning cost, with only 85M trainble parameters. Source code, model checkpoints, and demo examples are available at: https://musecontrollite.github.io/web/.
MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies
Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.
Music Consistency Models
Consistency models have exhibited remarkable capabilities in facilitating efficient image/video generation, enabling synthesis with minimal sampling steps. It has proven to be advantageous in mitigating the computational burdens associated with diffusion models. Nevertheless, the application of consistency models in music generation remains largely unexplored. To address this gap, we present Music Consistency Models (MusicCM), which leverages the concept of consistency models to efficiently synthesize mel-spectrogram for music clips, maintaining high quality while minimizing the number of sampling steps. Building upon existing text-to-music diffusion models, the MusicCM model incorporates consistency distillation and adversarial discriminator training. Moreover, we find it beneficial to generate extended coherent music by incorporating multiple diffusion processes with shared constraints. Experimental results reveal the effectiveness of our model in terms of computational efficiency, fidelity, and naturalness. Notable, MusicCM achieves seamless music synthesis with a mere four sampling steps, e.g., only one second per minute of the music clip, showcasing the potential for real-time application.
ImprovNet -- Generating Controllable Musical Improvisations with Iterative Corruption Refinement
Despite deep learning's remarkable advances in style transfer across various domains, generating controllable performance-level musical style transfer for complete symbolically represented musical works remains a challenging area of research. Much of this is owed to limited datasets, especially for genres such as jazz, and the lack of unified models that can handle multiple music generation tasks. This paper presents ImprovNet, a transformer-based architecture that generates expressive and controllable musical improvisations through a self-supervised corruption-refinement training strategy. The improvisational style transfer is aimed at making meaningful modifications to one or more musical elements - melody, harmony or rhythm of the original composition with respect to the target genre. ImprovNet unifies multiple capabilities within a single model: it can perform cross-genre and intra-genre improvisations, harmonize melodies with genre-specific styles, and execute short prompt continuation and infilling tasks. The model's iterative generation framework allows users to control the degree of style transfer and structural similarity to the original composition. Objective and subjective evaluations demonstrate ImprovNet's effectiveness in generating musically coherent improvisations while maintaining structural relationships with the original pieces. The model outperforms Anticipatory Music Transformer in short continuation and infilling tasks and successfully achieves recognizable genre conversion, with 79\% of participants correctly identifying jazz-style improvisations of classical pieces. Our code and demo page can be found at https://github.com/keshavbhandari/improvnet.
Cluster and Separate: a GNN Approach to Voice and Staff Prediction for Score Engraving
This paper approaches the problem of separating the notes from a quantized symbolic music piece (e.g., a MIDI file) into multiple voices and staves. This is a fundamental part of the larger task of music score engraving (or score typesetting), which aims to produce readable musical scores for human performers. We focus on piano music and support homophonic voices, i.e., voices that can contain chords, and cross-staff voices, which are notably difficult tasks that have often been overlooked in previous research. We propose an end-to-end system based on graph neural networks that clusters notes that belong to the same chord and connects them with edges if they are part of a voice. Our results show clear and consistent improvements over a previous approach on two datasets of different styles. To aid the qualitative analysis of our results, we support the export in symbolic music formats and provide a direct visualization of our outputs graph over the musical score. All code and pre-trained models are available at https://github.com/CPJKU/piano_svsep
Small Tunes Transformer: Exploring Macro & Micro-Level Hierarchies for Skeleton-Conditioned Melody Generation
Recently, symbolic music generation has become a focus of numerous deep learning research. Structure as an important part of music, contributes to improving the quality of music, and an increasing number of works start to study the hierarchical structure. In this study, we delve into the multi-level structures within music from macro-level and micro-level hierarchies. At the macro-level hierarchy, we conduct phrase segmentation algorithm to explore how phrases influence the overall development of music, and at the micro-level hierarchy, we design skeleton notes extraction strategy to explore how skeleton notes within each phrase guide the melody generation. Furthermore, we propose a novel Phrase-level Cross-Attention mechanism to capture the intrinsic relationship between macro-level hierarchy and micro-level hierarchy. Moreover, in response to the current lack of research on Chinese-style music, we construct our Small Tunes Dataset: a substantial collection of MIDI files comprising 10088 Small Tunes, a category of traditional Chinese Folk Songs. This dataset serves as the focus of our study. We generate Small Tunes songs utilizing the extracted skeleton notes as conditions, and experiment results indicate that our proposed model, Small Tunes Transformer, outperforms other state-of-the-art models. Besides, we design three novel objective evaluation metrics to evaluate music from both rhythm and melody dimensions.
MusicGen-Chord: Advancing Music Generation through Chord Progressions and Interactive Web-UI
MusicGen is a music generation language model (LM) that can be conditioned on textual descriptions and melodic features. We introduce MusicGen-Chord, which extends this capability by incorporating chord progression features. This model modifies one-hot encoded melody chroma vectors into multi-hot encoded chord chroma vectors, enabling the generation of music that reflects both chord progressions and textual descriptions. Furthermore, we developed MusicGen-Remixer, an application utilizing MusicGen-Chord to generate remixes of input music conditioned on textual descriptions. Both models are integrated into Replicate's web-UI using cog, facilitating broad accessibility and user-friendly controllable interaction for creating and experiencing AI-generated music.
Everyone-Can-Sing: Zero-Shot Singing Voice Synthesis and Conversion with Speech Reference
We propose a unified framework for Singing Voice Synthesis (SVS) and Conversion (SVC), addressing the limitations of existing approaches in cross-domain SVS/SVC, poor output musicality, and scarcity of singing data. Our framework enables control over multiple aspects, including language content based on lyrics, performance attributes based on a musical score, singing style and vocal techniques based on a selector, and voice identity based on a speech sample. The proposed zero-shot learning paradigm consists of one SVS model and two SVC models, utilizing pre-trained content embeddings and a diffusion-based generator. The proposed framework is also trained on mixed datasets comprising both singing and speech audio, allowing singing voice cloning based on speech reference. Experiments show substantial improvements in timbre similarity and musicality over state-of-the-art baselines, providing insights into other low-data music tasks such as instrumental style transfer. Examples can be found at: everyone-can-sing.github.io.
LeVo: High-Quality Song Generation with Multi-Preference Alignment
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/.
SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation
Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .
A Machine Learning Approach for MIDI to Guitar Tablature Conversion
Guitar tablature transcription consists in deducing the string and the fret number on which each note should be played to reproduce the actual musical part. This assignment should lead to playable string-fret combinations throughout the entire track and, in general, preserve parsimonious motion between successive combinations. Throughout the history of guitar playing, specific chord fingerings have been developed across different musical styles that facilitate common idiomatic voicing combinations and motion between them. This paper presents a method for assigning guitar tablature notation to a given MIDI-based musical part (possibly consisting of multiple polyphonic tracks), i.e. no information about guitar-idiomatic expressional characteristics is involved (e.g. bending etc.) The current strategy is based on machine learning and requires a basic assumption about how much fingers can stretch on a fretboard; only standard 6-string guitar tuning is examined. The proposed method also examines the transcription of music pieces that was not meant to be played or could not possibly be played by a guitar (e.g. potentially a symphonic orchestra part), employing a rudimentary method for augmenting musical information and training/testing the system with artificial data. The results present interesting aspects about what the system can achieve when trained on the initial and augmented dataset, showing that the training with augmented data improves the performance even in simple, e.g. monophonic, cases. Results also indicate weaknesses and lead to useful conclusions about possible improvements.
Equipping Pretrained Unconditional Music Transformers with Instrument and Genre Controls
The ''pretraining-and-finetuning'' paradigm has become a norm for training domain-specific models in natural language processing and computer vision. In this work, we aim to examine this paradigm for symbolic music generation through leveraging the largest ever symbolic music dataset sourced from the MuseScore forum. We first pretrain a large unconditional transformer model using 1.5 million songs. We then propose a simple technique to equip this pretrained unconditional music transformer model with instrument and genre controls by finetuning the model with additional control tokens. Our proposed representation offers improved high-level controllability and expressiveness against two existing representations. The experimental results show that the proposed model can successfully generate music with user-specified instruments and genre. In a subjective listening test, the proposed model outperforms the pretrained baseline model in terms of coherence, harmony, arrangement and overall quality.
Efficient Neural Music Generation
Recent progress in music generation has been remarkably advanced by the state-of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the MusicLM requires processing through these LMs one by one to obtain the fine-grained acoustic tokens, making it computationally expensive and prohibitive for a real-time generation. Efficient music generation with a quality on par with MusicLM remains a significant challenge. In this paper, we present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion model that generates music audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform. DPD is proposed to simultaneously model the coarse and fine acoustics by incorporating the semantic information into segments of latents effectively via cross-attention at each denoising step. Our experimental results suggest the superiority of MeLoDy, not only in its practical advantages on sampling speed and infinitely continuable generation, but also in its state-of-the-art musicality, audio quality, and text correlation. Our samples are available at https://Efficient-MeLoDy.github.io/.
JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
MuPT: A Generative Symbolic Music Pretrained Transformer
In this paper, we explore the application of Large Language Models (LLMs) to the pre-training of music. While the prevalent use of MIDI in music modeling is well-established, our findings suggest that LLMs are inherently more compatible with ABC Notation, which aligns more closely with their design and strengths, thereby enhancing the model's performance in musical composition. To address the challenges associated with misaligned measures from different tracks during generation, we propose the development of a Synchronized Multi-Track ABC Notation (SMT-ABC Notation), which aims to preserve coherence across multiple musical tracks. Our contributions include a series of models capable of handling up to 8192 tokens, covering 90\% of the symbolic music data in our training set. Furthermore, we explore the implications of the Symbolic Music Scaling Law (SMS Law) on model performance. The results indicate a promising direction for future research in music generation, offering extensive resources for community-led research through our open-source contributions.
ACE-Step: A Step Towards Music Generation Foundation Model
We introduce ACE-Step, a novel open-source foundation model for music generation that overcomes key limitations of existing approaches and achieves state-of-the-art performance through a holistic architectural design. Current methods face inherent trade-offs between generation speed, musical coherence, and controllability. For example, LLM-based models (e.g. Yue, SongGen) excel at lyric alignment but suffer from slow inference and structural artifacts. Diffusion models (e.g. DiffRhythm), on the other hand, enable faster synthesis but often lack long-range structural coherence. ACE-Step bridges this gap by integrating diffusion-based generation with Sana's Deep Compression AutoEncoder (DCAE) and a lightweight linear transformer. It also leverages MERT and m-hubert to align semantic representations (REPA) during training, allowing rapid convergence. As a result, our model synthesizes up to 4 minutes of music in just 20 seconds on an A100 GPU-15x faster than LLM-based baselines-while achieving superior musical coherence and lyric alignment across melody, harmony, and rhythm metrics. Moreover, ACE-Step preserves fine-grained acoustic details, enabling advanced control mechanisms such as voice cloning, lyric editing, remixing, and track generation (e.g. lyric2vocal, singing2accompaniment). Rather than building yet another end-to-end text-to-music pipeline, our vision is to establish a foundation model for music AI: a fast, general-purpose, efficient yet flexible architecture that makes it easy to train subtasks on top of it. This paves the way for the development of powerful tools that seamlessly integrate into the creative workflows of music artists, producers, and content creators. In short, our goal is to build a stable diffusion moment for music. The code, the model weights and the demo are available at: https://ace-step.github.io/.
Efficient Fine-Grained Guidance for Diffusion-Based Symbolic Music Generation
Developing generative models to create or conditionally create symbolic music presents unique challenges due to the combination of limited data availability and the need for high precision in note pitch. To address these challenges, we introduce an efficient Fine-Grained Guidance (FGG) approach within diffusion models. FGG guides the diffusion models to generate music that aligns more closely with the control and intent of expert composers, which is critical to improve the accuracy, listenability, and quality of generated music. This approach empowers diffusion models to excel in advanced applications such as improvisation, and interactive music creation. We derive theoretical characterizations for both the challenges in symbolic music generation and the effects of the FGG approach. We provide numerical experiments and subjective evaluation to demonstrate the effectiveness of our approach. We have published a demo page to showcase performances, as one of the first in the symbolic music literature's demo pages that enables real-time interactive generation.
SongBloom: Coherent Song Generation via Interleaved Autoregressive Sketching and Diffusion Refinement
Generating music with coherent structure, harmonious instrumental and vocal elements remains a significant challenge in song generation. Existing language models and diffusion-based methods often struggle to balance global coherence with local fidelity, resulting in outputs that lack musicality or suffer from incoherent progression and mismatched lyrics. This paper introduces SongBloom, a novel framework for full-length song generation that leverages an interleaved paradigm of autoregressive sketching and diffusion-based refinement. SongBloom employs an autoregressive diffusion model that combines the high fidelity of diffusion models with the scalability of language models. Specifically, it gradually extends a musical sketch from short to long and refines the details from coarse to fine-grained. The interleaved generation paradigm effectively integrates prior semantic and acoustic context to guide the generation process. Experimental results demonstrate that SongBloom outperforms existing methods across both subjective and objective metrics and achieves performance comparable to the state-of-the-art commercial music generation platforms. Audio samples are available on our demo page: https://cypress-yang.github.io/SongBloom\_demo.
All-In-One Metrical And Functional Structure Analysis With Neighborhood Attentions on Demixed Audio
Music is characterized by complex hierarchical structures. Developing a comprehensive model to capture these structures has been a significant challenge in the field of Music Information Retrieval (MIR). Prior research has mainly focused on addressing individual tasks for specific hierarchical levels, rather than providing a unified approach. In this paper, we introduce a versatile, all-in-one model that jointly performs beat and downbeat tracking as well as functional structure segmentation and labeling. The model leverages source-separated spectrograms as inputs and employs dilated neighborhood attentions to capture temporal long-term dependencies, along with non-dilated attentions for local instrumental dependencies. Consequently, the proposed model achieves state-of-the-art performance in all four tasks on the Harmonix Set while maintaining a relatively lower number of parameters compared to recent state-of-the-art models. Furthermore, our ablation study demonstrates that the concurrent learning of beats, downbeats, and segments can lead to enhanced performance, with each task mutually benefiting from the others.
Mustango: Toward Controllable Text-to-Music Generation
With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets.
Learning Global-aware Kernel for Image Harmonization
Image harmonization aims to solve the visual inconsistency problem in composited images by adaptively adjusting the foreground pixels with the background as references. Existing methods employ local color transformation or region matching between foreground and background, which neglects powerful proximity prior and independently distinguishes fore-/back-ground as a whole part for harmonization. As a result, they still show a limited performance across varied foreground objects and scenes. To address this issue, we propose a novel Global-aware Kernel Network (GKNet) to harmonize local regions with comprehensive consideration of long-distance background references. Specifically, GKNet includes two parts, \ie, harmony kernel prediction and harmony kernel modulation branches. The former includes a Long-distance Reference Extractor (LRE) to obtain long-distance context and Kernel Prediction Blocks (KPB) to predict multi-level harmony kernels by fusing global information with local features. To achieve this goal, a novel Selective Correlation Fusion (SCF) module is proposed to better select relevant long-distance background references for local harmonization. The latter employs the predicted kernels to harmonize foreground regions with both local and global awareness. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods, \eg, achieving 39.53dB PSNR that surpasses the best counterpart by +0.78dB uparrow; decreasing fMSE/MSE by 11.5\%downarrow/6.7\%downarrow compared with the SoTA method. Code will be available at https://github.com/XintianShen/GKNet{here}.
Generating Lead Sheets with Affect: A Novel Conditional seq2seq Framework
The field of automatic music composition has seen great progress in the last few years, much of which can be attributed to advances in deep neural networks. There are numerous studies that present different strategies for generating sheet music from scratch. The inclusion of high-level musical characteristics (e.g., perceived emotional qualities), however, as conditions for controlling the generation output remains a challenge. In this paper, we present a novel approach for calculating the valence (the positivity or negativity of the perceived emotion) of a chord progression within a lead sheet, using pre-defined mood tags proposed by music experts. Based on this approach, we propose a novel strategy for conditional lead sheet generation that allows us to steer the music generation in terms of valence, phrasing, and time signature. Our approach is similar to a Neural Machine Translation (NMT) problem, as we include high-level conditions in the encoder part of the sequence-to-sequence architectures used (i.e., long-short term memory networks, and a Transformer network). We conducted experiments to thoroughly analyze these two architectures. The results show that the proposed strategy is able to generate lead sheets in a controllable manner, resulting in distributions of musical attributes similar to those of the training dataset. We also verified through a subjective listening test that our approach is effective in controlling the valence of a generated chord progression.
Relightful Harmonization: Lighting-aware Portrait Background Replacement
Portrait harmonization aims to composite a subject into a new background, adjusting its lighting and color to ensure harmony with the background scene. Existing harmonization techniques often only focus on adjusting the global color and brightness of the foreground and ignore crucial illumination cues from the background such as apparent lighting direction, leading to unrealistic compositions. We introduce Relightful Harmonization, a lighting-aware diffusion model designed to seamlessly harmonize sophisticated lighting effect for the foreground portrait using any background image. Our approach unfolds in three stages. First, we introduce a lighting representation module that allows our diffusion model to encode lighting information from target image background. Second, we introduce an alignment network that aligns lighting features learned from image background with lighting features learned from panorama environment maps, which is a complete representation for scene illumination. Last, to further boost the photorealism of the proposed method, we introduce a novel data simulation pipeline that generates synthetic training pairs from a diverse range of natural images, which are used to refine the model. Our method outperforms existing benchmarks in visual fidelity and lighting coherence, showing superior generalization in real-world testing scenarios, highlighting its versatility and practicality.
Aligning Generative Music AI with Human Preferences: Methods and Challenges
Recent advances in generative AI for music have achieved remarkable fidelity and stylistic diversity, yet these systems often fail to align with nuanced human preferences due to the specific loss functions they use. This paper advocates for the systematic application of preference alignment techniques to music generation, addressing the fundamental gap between computational optimization and human musical appreciation. Drawing on recent breakthroughs including MusicRL's large-scale preference learning, multi-preference alignment frameworks like diffusion-based preference optimization in DiffRhythm+, and inference-time optimization techniques like Text2midi-InferAlign, we discuss how these techniques can address music's unique challenges: temporal coherence, harmonic consistency, and subjective quality assessment. We identify key research challenges including scalability to long-form compositions, reliability amongst others in preference modelling. Looking forward, we envision preference-aligned music generation enabling transformative applications in interactive composition tools and personalized music services. This work calls for sustained interdisciplinary research combining advances in machine learning, music-theory to create music AI systems that truly serve human creative and experiential needs.
Multitrack Music Transformer
Existing approaches for generating multitrack music with transformer models have been limited in terms of the number of instruments, the length of the music segments and slow inference. This is partly due to the memory requirements of the lengthy input sequences necessitated by existing representations. In this work, we propose a new multitrack music representation that allows a diverse set of instruments while keeping a short sequence length. Our proposed Multitrack Music Transformer (MMT) achieves comparable performance with state-of-the-art systems, landing in between two recently proposed models in a subjective listening test, while achieving substantial speedups and memory reductions over both, making the method attractive for real time improvisation or near real time creative applications. Further, we propose a new measure for analyzing musical self-attention and show that the trained model attends more to notes that form a consonant interval with the current note and to notes that are 4N beats away from the current step.
Towards An Integrated Approach for Expressive Piano Performance Synthesis from Music Scores
This paper presents an integrated system that transforms symbolic music scores into expressive piano performance audio. By combining a Transformer-based Expressive Performance Rendering (EPR) model with a fine-tuned neural MIDI synthesiser, our approach directly generates expressive audio performances from score inputs. To the best of our knowledge, this is the first system to offer a streamlined method for converting score MIDI files lacking expression control into rich, expressive piano performances. We conducted experiments using subsets of the ATEPP dataset, evaluating the system with both objective metrics and subjective listening tests. Our system not only accurately reconstructs human-like expressiveness, but also captures the acoustic ambience of environments such as concert halls and recording studios. Additionally, the proposed system demonstrates its ability to achieve musical expressiveness while ensuring good audio quality in its outputs.
Generating Sample-Based Musical Instruments Using Neural Audio Codec Language Models
In this paper, we propose and investigate the use of neural audio codec language models for the automatic generation of sample-based musical instruments based on text or reference audio prompts. Our approach extends a generative audio framework to condition on pitch across an 88-key spectrum, velocity, and a combined text/audio embedding. We identify maintaining timbral consistency within the generated instruments as a major challenge. To tackle this issue, we introduce three distinct conditioning schemes. We analyze our methods through objective metrics and human listening tests, demonstrating that our approach can produce compelling musical instruments. Specifically, we introduce a new objective metric to evaluate the timbral consistency of the generated instruments and adapt the average Contrastive Language-Audio Pretraining (CLAP) score for the text-to-instrument case, noting that its naive application is unsuitable for assessing this task. Our findings reveal a complex interplay between timbral consistency, the quality of generated samples, and their correspondence to the input prompt.
METEOR: Melody-aware Texture-controllable Symbolic Orchestral Music Generation via Transformer VAE
Re-orchestration is the process of adapting a music piece for a different set of instruments. By altering the original instrumentation, the orchestrator often modifies the musical texture while preserving a recognizable melodic line and ensures that each part is playable within the technical and expressive capabilities of the chosen instruments. In this work, we propose METEOR, a model for generating Melody-aware Texture-controllable re-Orchestration with a Transformer-based variational auto-encoder (VAE). This model performs symbolic instrumental and textural music style transfers with a focus on melodic fidelity and controllability. We allow bar- and track-level controllability of the accompaniment with various textural attributes while keeping a homophonic texture. With both subjective and objective evaluations, we show that our model outperforms style transfer models on a re-orchestration task in terms of generation quality and controllability. Moreover, it can be adapted for a lead sheet orchestration task as a zero-shot learning model, achieving performance comparable to a model specifically trained for this task.
Unlocking Potential in Pre-Trained Music Language Models for Versatile Multi-Track Music Arrangement
Large language models have shown significant capabilities across various domains, including symbolic music generation. However, leveraging these pre-trained models for controllable music arrangement tasks, each requiring different forms of musical information as control, remains a novel challenge. In this paper, we propose a unified sequence-to-sequence framework that enables the fine-tuning of a symbolic music language model for multiple multi-track arrangement tasks, including band arrangement, piano reduction, drum arrangement, and voice separation. Our experiments demonstrate that the proposed approach consistently achieves higher musical quality compared to task-specific baselines across all four tasks. Furthermore, through additional experiments on probing analysis, we show the pre-training phase equips the model with essential knowledge to understand musical conditions, which is hard to acquired solely through task-specific fine-tuning.
Deep Performer: Score-to-Audio Music Performance Synthesis
Music performance synthesis aims to synthesize a musical score into a natural performance. In this paper, we borrow recent advances in text-to-speech synthesis and present the Deep Performer -- a novel system for score-to-audio music performance synthesis. Unlike speech, music often contains polyphony and long notes. Hence, we propose two new techniques for handling polyphonic inputs and providing a fine-grained conditioning in a transformer encoder-decoder model. To train our proposed system, we present a new violin dataset consisting of paired recordings and scores along with estimated alignments between them. We show that our proposed model can synthesize music with clear polyphony and harmonic structures. In a listening test, we achieve competitive quality against the baseline model, a conditional generative audio model, in terms of pitch accuracy, timbre and noise level. Moreover, our proposed model significantly outperforms the baseline on an existing piano dataset in overall quality.
Video Background Music Generation with Controllable Music Transformer
In this work, we address the task of video background music generation. Some previous works achieve effective music generation but are unable to generate melodious music tailored to a particular video, and none of them considers the video-music rhythmic consistency. To generate the background music that matches the given video, we first establish the rhythmic relations between video and background music. In particular, we connect timing, motion speed, and motion saliency from video with beat, simu-note density, and simu-note strength from music, respectively. We then propose CMT, a Controllable Music Transformer that enables local control of the aforementioned rhythmic features and global control of the music genre and instruments. Objective and subjective evaluations show that the generated background music has achieved satisfactory compatibility with the input videos, and at the same time, impressive music quality. Code and models are available at https://github.com/wzk1015/video-bgm-generation.
Zero-Shot Image Harmonization with Generative Model Prior
Recent image harmonization methods have demonstrated promising results. However, due to their heavy reliance on a large number of composite images, these works are expensive in the training phase and often fail to generalize to unseen images. In this paper, we draw lessons from human behavior and come up with a zero-shot image harmonization method. Specifically, in the harmonization process, a human mainly utilizes his long-term prior on harmonious images and makes a composite image close to that prior. To imitate that, we resort to pretrained generative models for the prior of natural images. For the guidance of the harmonization direction, we propose an Attention-Constraint Text which is optimized to well illustrate the image environments. Some further designs are introduced for preserving the foreground content structure. The resulting framework, highly consistent with human behavior, can achieve harmonious results without burdensome training. Extensive experiments have demonstrated the effectiveness of our approach, and we have also explored some interesting applications.
Mel-RoFormer for Vocal Separation and Vocal Melody Transcription
Developing a versatile deep neural network to model music audio is crucial in MIR. This task is challenging due to the intricate spectral variations inherent in music signals, which convey melody, harmonics, and timbres of diverse instruments. In this paper, we introduce Mel-RoFormer, a spectrogram-based model featuring two key designs: a novel Mel-band Projection module at the front-end to enhance the model's capability to capture informative features across multiple frequency bands, and interleaved RoPE Transformers to explicitly model the frequency and time dimensions as two separate sequences. We apply Mel-RoFormer to tackle two essential MIR tasks: vocal separation and vocal melody transcription, aimed at isolating singing voices from audio mixtures and transcribing their lead melodies, respectively. Despite their shared focus on singing signals, these tasks possess distinct optimization objectives. Instead of training a unified model, we adopt a two-step approach. Initially, we train a vocal separation model, which subsequently serves as a foundation model for fine-tuning for vocal melody transcription. Through extensive experiments conducted on benchmark datasets, we showcase that our models achieve state-of-the-art performance in both vocal separation and melody transcription tasks, underscoring the efficacy and versatility of Mel-RoFormer in modeling complex music audio signals.
MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization
Generating music that aligns with the visual content of a video has been a challenging task, as it requires a deep understanding of visual semantics and involves generating music whose melody, rhythm, and dynamics harmonize with the visual narratives. This paper presents MuVi, a novel framework that effectively addresses these challenges to enhance the cohesion and immersive experience of audio-visual content. MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features. These features are used to generate music that not only matches the video's mood and theme but also its rhythm and pacing. We also introduce a contrastive music-visual pre-training scheme to ensure synchronization, based on the periodicity nature of music phrases. In addition, we demonstrate that our flow-matching-based music generator has in-context learning ability, allowing us to control the style and genre of the generated music. Experimental results show that MuVi demonstrates superior performance in both audio quality and temporal synchronization. The generated music video samples are available at https://muvi-v2m.github.io.
Jukebox: A Generative Model for Music
We introduce Jukebox, a model that generates music with singing in the raw audio domain. We tackle the long context of raw audio using a multi-scale VQ-VAE to compress it to discrete codes, and modeling those using autoregressive Transformers. We show that the combined model at scale can generate high-fidelity and diverse songs with coherence up to multiple minutes. We can condition on artist and genre to steer the musical and vocal style, and on unaligned lyrics to make the singing more controllable. We are releasing thousands of non cherry-picked samples at https://jukebox.openai.com, along with model weights and code at https://github.com/openai/jukebox
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
Playing Music in Just Intonation - A Dynamically Adapting Tuning Scheme
We investigate a dynamically adapting tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, the tuning scheme continually solves a system of linear equations without making explicit decisions. In complex situations, where not all intervals of a chord can be tuned according to just frequency ratios, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided in order to demonstrate the feasibility of the tuning method.
Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music
Hindustani music is a performance-driven oral tradition that exhibits the rendition of rich melodic patterns. In this paper, we focus on generative modeling of singers' vocal melodies extracted from audio recordings, as the voice is musically prominent within the tradition. Prior generative work in Hindustani music models melodies as coarse discrete symbols which fails to capture the rich expressive melodic intricacies of singing. Thus, we propose to use a finely quantized pitch contour, as an intermediate representation for hierarchical audio modeling. We propose GaMaDHaNi, a modular two-level hierarchy, consisting of a generative model on pitch contours, and a pitch contour to audio synthesis model. We compare our approach to non-hierarchical audio models and hierarchical models that use a self-supervised intermediate representation, through a listening test and qualitative analysis. We also evaluate audio model's ability to faithfully represent the pitch contour input using Pearson correlation coefficient. By using pitch contours as an intermediate representation, we show that our model may be better equipped to listen and respond to musicians in a human-AI collaborative setting by highlighting two potential interaction use cases (1) primed generation, and (2) coarse pitch conditioning.
DiffRhythm 2: Efficient and High Fidelity Song Generation via Block Flow Matching
Generating full-length, high-quality songs is challenging, as it requires maintaining long-term coherence both across text and music modalities and within the music modality itself. Existing non-autoregressive (NAR) frameworks, while capable of producing high-quality songs, often struggle with the alignment between lyrics and vocal. Concurrently, catering to diverse musical preferences necessitates reinforcement learning from human feedback (RLHF). However, existing methods often rely on merging multiple models during multi-preference optimization, which results in significant performance degradation. To address these challenges, we introduce DiffRhythm 2, an end-to-end framework designed for high-fidelity, controllable song generation. To tackle the lyric alignment problem, DiffRhythm 2 employs a semi-autoregressive architecture based on block flow matching. This design enables faithful alignment of lyrics to singing vocals without relying on external labels and constraints, all while preserving the high generation quality and efficiency of NAR models. To make this framework computationally tractable for long sequences, we implement a music variational autoencoder (VAE) that achieves a low frame rate of 5 Hz while still enabling high-fidelity audio reconstruction. In addition, to overcome the limitations of multi-preference optimization in RLHF, we propose cross-pair preference optimization. This method effectively mitigates the performance drop typically associated with model merging, allowing for more robust optimization across diverse human preferences. We further enhance musicality and structural coherence by introducing stochastic block representation alignment loss.
SmoothSinger: A Conditional Diffusion Model for Singing Voice Synthesis with Multi-Resolution Architecture
Singing voice synthesis (SVS) aims to generate expressive and high-quality vocals from musical scores, requiring precise modeling of pitch, duration, and articulation. While diffusion-based models have achieved remarkable success in image and video generation, their application to SVS remains challenging due to the complex acoustic and musical characteristics of singing, often resulting in artifacts that degrade naturalness. In this work, we propose SmoothSinger, a conditional diffusion model designed to synthesize high quality and natural singing voices. Unlike prior methods that depend on vocoders as a final stage and often introduce distortion, SmoothSinger refines low-quality synthesized audio directly in a unified framework, mitigating the degradation associated with two-stage pipelines. The model adopts a reference-guided dual-branch architecture, using low-quality audio from any baseline system as a reference to guide the denoising process, enabling more expressive and context-aware synthesis. Furthermore, it enhances the conventional U-Net with a parallel low-frequency upsampling path, allowing the model to better capture pitch contours and long term spectral dependencies. To improve alignment during training, we replace reference audio with degraded ground truth audio, addressing temporal mismatch between reference and target signals. Experiments on the Opencpop dataset, a large-scale Chinese singing corpus, demonstrate that SmoothSinger achieves state-of-the-art results in both objective and subjective evaluations. Extensive ablation studies confirm its effectiveness in reducing artifacts and improving the naturalness of synthesized voices.
SongCreator: Lyrics-based Universal Song Generation
Music is an integral part of human culture, embodying human intelligence and creativity, of which songs compose an essential part. While various aspects of song generation have been explored by previous works, such as singing voice, vocal composition and instrumental arrangement, etc., generating songs with both vocals and accompaniment given lyrics remains a significant challenge, hindering the application of music generation models in the real world. In this light, we propose SongCreator, a song-generation system designed to tackle this challenge. The model features two novel designs: a meticulously designed dual-sequence language model (DSLM) to capture the information of vocals and accompaniment for song generation, and an additional attention mask strategy for DSLM, which allows our model to understand, generate and edit songs, making it suitable for various song-related generation tasks. Extensive experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks. Notably, it surpasses previous works by a large margin in lyrics-to-song and lyrics-to-vocals. Additionally, it is able to independently control the acoustic conditions of the vocals and accompaniment in the generated song through different prompts, exhibiting its potential applicability. Our samples are available at https://songcreator.github.io/.
YuE: Scaling Open Foundation Models for Long-Form Music Generation
We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Language Models for Music Medicine Generation
Music therapy has been shown in recent years to provide multiple health benefits related to emotional wellness. In turn, maintaining a healthy emotional state has proven to be effective for patients undergoing treatment, such as Parkinson's patients or patients suffering from stress and anxiety. We propose fine-tuning MusicGen, a music-generating transformer model, to create short musical clips that assist patients in transitioning from negative to desired emotional states. Using low-rank decomposition fine-tuning on the MTG-Jamendo Dataset with emotion tags, we generate 30-second clips that adhere to the iso principle, guiding patients through intermediate states in the valence-arousal circumplex. The generated music is evaluated using a music emotion recognition model to ensure alignment with intended emotions. By concatenating these clips, we produce a 15-minute "music medicine" resembling a music therapy session. Our approach is the first model to leverage Language Models to generate music medicine. Ultimately, the output is intended to be used as a temporary relief between music therapy sessions with a board-certified therapist.
MidiCaps -- A large-scale MIDI dataset with text captions
Generative models guided by text prompts are increasingly becoming more popular. However, no text-to-MIDI models currently exist, mostly due to the lack of a captioned MIDI dataset. This work aims to enable research that combines LLMs with symbolic music by presenting the first large-scale MIDI dataset with text captions that is openly available: MidiCaps. MIDI (Musical Instrument Digital Interface) files are a widely used format for encoding musical information. Their structured format captures the nuances of musical composition and has practical applications by music producers, composers, musicologists, as well as performers. Inspired by recent advancements in captioning techniques applied to various domains, we present a large-scale curated dataset of over 168k MIDI files accompanied by textual descriptions. Each MIDI caption succinctly describes the musical content, encompassing tempo, chord progression, time signature, instruments present, genre and mood; thereby facilitating multi-modal exploration and analysis. The dataset contains a mix of various genres, styles, and complexities, offering a rich source for training and evaluating models for tasks such as music information retrieval, music understanding and cross-modal translation. We provide detailed statistics about the dataset and have assessed the quality of the captions in an extensive listening study. We anticipate that this resource will stimulate further research in the intersection of music and natural language processing, fostering advancements in both fields.
Music ControlNet: Multiple Time-varying Controls for Music Generation
Text-to-music generation models are now capable of generating high-quality music audio in broad styles. However, text control is primarily suitable for the manipulation of global musical attributes like genre, mood, and tempo, and is less suitable for precise control over time-varying attributes such as the positions of beats in time or the changing dynamics of the music. We propose Music ControlNet, a diffusion-based music generation model that offers multiple precise, time-varying controls over generated audio. To imbue text-to-music models with time-varying control, we propose an approach analogous to pixel-wise control of the image-domain ControlNet method. Specifically, we extract controls from training audio yielding paired data, and fine-tune a diffusion-based conditional generative model over audio spectrograms given melody, dynamics, and rhythm controls. While the image-domain Uni-ControlNet method already allows generation with any subset of controls, we devise a new strategy to allow creators to input controls that are only partially specified in time. We evaluate both on controls extracted from audio and controls we expect creators to provide, demonstrating that we can generate realistic music that corresponds to control inputs in both settings. While few comparable music generation models exist, we benchmark against MusicGen, a recent model that accepts text and melody input, and show that our model generates music that is 49% more faithful to input melodies despite having 35x fewer parameters, training on 11x less data, and enabling two additional forms of time-varying control. Sound examples can be found at https://MusicControlNet.github.io/web/.
Simultaneous Music Separation and Generation Using Multi-Track Latent Diffusion Models
Diffusion models have recently shown strong potential in both music generation and music source separation tasks. Although in early stages, a trend is emerging towards integrating these tasks into a single framework, as both involve generating musically aligned parts and can be seen as facets of the same generative process. In this work, we introduce a latent diffusion-based multi-track generation model capable of both source separation and multi-track music synthesis by learning the joint probability distribution of tracks sharing a musical context. Our model also enables arrangement generation by creating any subset of tracks given the others. We trained our model on the Slakh2100 dataset, compared it with an existing simultaneous generation and separation model, and observed significant improvements across objective metrics for source separation, music, and arrangement generation tasks. Sound examples are available at https://msg-ld.github.io/.
Jointist: Joint Learning for Multi-instrument Transcription and Its Applications
In this paper, we introduce Jointist, an instrument-aware multi-instrument framework that is capable of transcribing, recognizing, and separating multiple musical instruments from an audio clip. Jointist consists of the instrument recognition module that conditions the other modules: the transcription module that outputs instrument-specific piano rolls, and the source separation module that utilizes instrument information and transcription results. The instrument conditioning is designed for an explicit multi-instrument functionality while the connection between the transcription and source separation modules is for better transcription performance. Our challenging problem formulation makes the model highly useful in the real world given that modern popular music typically consists of multiple instruments. However, its novelty necessitates a new perspective on how to evaluate such a model. During the experiment, we assess the model from various aspects, providing a new evaluation perspective for multi-instrument transcription. We also argue that transcription models can be utilized as a preprocessing module for other music analysis tasks. In the experiment on several downstream tasks, the symbolic representation provided by our transcription model turned out to be helpful to spectrograms in solving downbeat detection, chord recognition, and key estimation.
Pop2Piano : Pop Audio-based Piano Cover Generation
The piano cover of pop music is widely enjoyed by people. However, the generation task of the pop piano cover is still understudied. This is partly due to the lack of synchronized {Pop, Piano Cover} data pairs, which made it challenging to apply the latest data-intensive deep learning-based methods. To leverage the power of the data-driven approach, we make a large amount of paired and synchronized {pop, piano cover} data using an automated pipeline. In this paper, we present Pop2Piano, a Transformer network that generates piano covers given waveforms of pop music. To the best of our knowledge, this is the first model to directly generate a piano cover from pop audio without melody and chord extraction modules. We show that Pop2Piano trained with our dataset can generate plausible piano covers.
Do Music Generation Models Encode Music Theory?
Music foundation models possess impressive music generation capabilities. When people compose music, they may infuse their understanding of music into their work, by using notes and intervals to craft melodies, chords to build progressions, and tempo to create a rhythmic feel. To what extent is this true of music generation models? More specifically, are fundamental Western music theory concepts observable within the "inner workings" of these models? Recent work proposed leveraging latent audio representations from music generation models towards music information retrieval tasks (e.g. genre classification, emotion recognition), which suggests that high-level musical characteristics are encoded within these models. However, probing individual music theory concepts (e.g. tempo, pitch class, chord quality) remains under-explored. Thus, we introduce SynTheory, a synthetic MIDI and audio music theory dataset, consisting of tempos, time signatures, notes, intervals, scales, chords, and chord progressions concepts. We then propose a framework to probe for these music theory concepts in music foundation models (Jukebox and MusicGen) and assess how strongly they encode these concepts within their internal representations. Our findings suggest that music theory concepts are discernible within foundation models and that the degree to which they are detectable varies by model size and layer.
Auto-Regressive vs Flow-Matching: a Comparative Study of Modeling Paradigms for Text-to-Music Generation
Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM
SLEEPING-DISCO 9M: A large-scale pre-training dataset for generative music modeling
We present Sleeping-DISCO 9M, a large-scale pre-training dataset for music and song. To the best of our knowledge, there are no open-source high-quality dataset representing popular and well-known songs for generative music modeling tasks such as text-music, music-captioning, singing-voice synthesis, melody reconstruction and cross-model retrieval. Past contributions focused on isolated and constrained factors whose core perspective was to create synthetic or re-recorded music corpus (e.g. GTSinger, M4Singer) and arbitrarily large-scale audio datasets (e.g. DISCO-10M and LAIONDISCO-12M) had been another focus for the community. Unfortunately, adoption of these datasets has been below substantial in the generative music community as these datasets fail to reflect real-world music and its flavour. Our dataset changes this narrative and provides a dataset that is constructed using actual popular music and world-renowned artists.
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models
Music generation has attracted growing interest with the advancement of deep generative models. However, generating music conditioned on textual descriptions, known as text-to-music, remains challenging due to the complexity of musical structures and high sampling rate requirements. Despite the task's significance, prevailing generative models exhibit limitations in music quality, computational efficiency, and generalization. This paper introduces JEN-1, a universal high-fidelity model for text-to-music generation. JEN-1 is a diffusion model incorporating both autoregressive and non-autoregressive training. Through in-context learning, JEN-1 performs various generation tasks including text-guided music generation, music inpainting, and continuation. Evaluations demonstrate JEN-1's superior performance over state-of-the-art methods in text-music alignment and music quality while maintaining computational efficiency. Our demos are available at http://futureverse.com/research/jen/demos/jen1
Video2Music: Suitable Music Generation from Videos using an Affective Multimodal Transformer model
Numerous studies in the field of music generation have demonstrated impressive performance, yet virtually no models are able to directly generate music to match accompanying videos. In this work, we develop a generative music AI framework, Video2Music, that can match a provided video. We first curated a unique collection of music videos. Then, we analysed the music videos to obtain semantic, scene offset, motion, and emotion features. These distinct features are then employed as guiding input to our music generation model. We transcribe the audio files into MIDI and chords, and extract features such as note density and loudness. This results in a rich multimodal dataset, called MuVi-Sync, on which we train a novel Affective Multimodal Transformer (AMT) model to generate music given a video. This model includes a novel mechanism to enforce affective similarity between video and music. Finally, post-processing is performed based on a biGRU-based regression model to estimate note density and loudness based on the video features. This ensures a dynamic rendering of the generated chords with varying rhythm and volume. In a thorough experiment, we show that our proposed framework can generate music that matches the video content in terms of emotion. The musical quality, along with the quality of music-video matching is confirmed in a user study. The proposed AMT model, along with the new MuVi-Sync dataset, presents a promising step for the new task of music generation for videos.
MIRFLEX: Music Information Retrieval Feature Library for Extraction
This paper introduces an extendable modular system that compiles a range of music feature extraction models to aid music information retrieval research. The features include musical elements like key, downbeats, and genre, as well as audio characteristics like instrument recognition, vocals/instrumental classification, and vocals gender detection. The integrated models are state-of-the-art or latest open-source. The features can be extracted as latent or post-processed labels, enabling integration into music applications such as generative music, recommendation, and playlist generation. The modular design allows easy integration of newly developed systems, making it a good benchmarking and comparison tool. This versatile toolkit supports the research community in developing innovative solutions by providing concrete musical features.
Subtractive Training for Music Stem Insertion using Latent Diffusion Models
We present Subtractive Training, a simple and novel method for synthesizing individual musical instrument stems given other instruments as context. This method pairs a dataset of complete music mixes with 1) a variant of the dataset lacking a specific stem, and 2) LLM-generated instructions describing how the missing stem should be reintroduced. We then fine-tune a pretrained text-to-audio diffusion model to generate the missing instrument stem, guided by both the existing stems and the text instruction. Our results demonstrate Subtractive Training's efficacy in creating authentic drum stems that seamlessly blend with the existing tracks. We also show that we can use the text instruction to control the generation of the inserted stem in terms of rhythm, dynamics, and genre, allowing us to modify the style of a single instrument in a full song while keeping the remaining instruments the same. Lastly, we extend this technique to MIDI formats, successfully generating compatible bass, drum, and guitar parts for incomplete arrangements.
Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning
Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.
Learning to Groove with Inverse Sequence Transformations
We explore models for translating abstract musical ideas (scores, rhythms) into expressive performances using Seq2Seq and recurrent Variational Information Bottleneck (VIB) models. Though Seq2Seq models usually require painstakingly aligned corpora, we show that it is possible to adapt an approach from the Generative Adversarial Network (GAN) literature (e.g. Pix2Pix (Isola et al., 2017) and Vid2Vid (Wang et al. 2018a)) to sequences, creating large volumes of paired data by performing simple transformations and training generative models to plausibly invert these transformations. Music, and drumming in particular, provides a strong test case for this approach because many common transformations (quantization, removing voices) have clear semantics, and models for learning to invert them have real-world applications. Focusing on the case of drum set players, we create and release a new dataset for this purpose, containing over 13 hours of recordings by professional drummers aligned with fine-grained timing and dynamics information. We also explore some of the creative potential of these models, including demonstrating improvements on state-of-the-art methods for Humanization (instantiating a performance from a musical score).
MMM : Exploring Conditional Multi-Track Music Generation with the Transformer
We propose the Multi-Track Music Machine (MMM), a generative system based on the Transformer architecture that is capable of generating multi-track music. In contrast to previous work, which represents musical material as a single time-ordered sequence, where the musical events corresponding to different tracks are interleaved, we create a time-ordered sequence of musical events for each track and concatenate several tracks into a single sequence. This takes advantage of the Transformer's attention-mechanism, which can adeptly handle long-term dependencies. We explore how various representations can offer the user a high degree of control at generation time, providing an interactive demo that accommodates track-level and bar-level inpainting, and offers control over track instrumentation and note density.
Constructing a Singing Style Caption Dataset
Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.
Singing voice synthesis based on frame-level sequence-to-sequence models considering vocal timing deviation
This paper proposes singing voice synthesis (SVS) based on frame-level sequence-to-sequence models considering vocal timing deviation. In SVS, it is essential to synchronize the timing of singing with temporal structures represented by scores, taking into account that there are differences between actual vocal timing and note start timing. In many SVS systems including our previous work, phoneme-level score features are converted into frame-level ones on the basis of phoneme boundaries obtained by external aligners to take into account vocal timing deviations. Therefore, the sound quality is affected by the aligner accuracy in this system. To alleviate this problem, we introduce an attention mechanism with frame-level features. In the proposed system, the attention mechanism absorbs alignment errors in phoneme boundaries. Additionally, we evaluate the system with pseudo-phoneme-boundaries defined by heuristic rules based on musical scores when there is no aligner. The experimental results show the effectiveness of the proposed system.
Integrating Text-to-Music Models with Language Models: Composing Long Structured Music Pieces
Recent music generation methods based on transformers have a context window of up to a minute. The music generated by these methods is largely unstructured beyond the context window. With a longer context window, learning long-scale structures from musical data is a prohibitively challenging problem. This paper proposes integrating a text-to-music model with a large language model to generate music with form. The papers discusses the solutions to the challenges of such integration. The experimental results show that the proposed method can generate 2.5-minute-long music that is highly structured, strongly organized, and cohesive.
UniMuMo: Unified Text, Music and Motion Generation
We introduce UniMuMo, a unified multimodal model capable of taking arbitrary text, music, and motion data as input conditions to generate outputs across all three modalities. To address the lack of time-synchronized data, we align unpaired music and motion data based on rhythmic patterns to leverage existing large-scale music-only and motion-only datasets. By converting music, motion, and text into token-based representation, our model bridges these modalities through a unified encoder-decoder transformer architecture. To support multiple generation tasks within a single framework, we introduce several architectural improvements. We propose encoding motion with a music codebook, mapping motion into the same feature space as music. We introduce a music-motion parallel generation scheme that unifies all music and motion generation tasks into a single transformer decoder architecture with a single training task of music-motion joint generation. Moreover, the model is designed by fine-tuning existing pre-trained single-modality models, significantly reducing computational demands. Extensive experiments demonstrate that UniMuMo achieves competitive results on all unidirectional generation benchmarks across music, motion, and text modalities. Quantitative results are available in the https://hanyangclarence.github.io/unimumo_demo/{project page}.
PhraseVAE and PhraseLDM: Latent Diffusion for Full-Song Multitrack Symbolic Music Generation
This technical report presents a new paradigm for full-song symbolic music generation. Existing symbolic models operate on note-attribute tokens and suffer from extremely long sequences, limited context length, and weak support for long-range structure. We address these issues by introducing PhraseVAE and PhraseLDM, the first latent diffusion framework designed for full-song multitrack symbolic music. PhraseVAE compresses an arbitrary variable-length polyphonic note sequence into a single compact 64-dimensional phrase-level latent representation with high reconstruction fidelity, allowing a well-structured latent space and efficient generative modeling. Built on this latent space, PhraseLDM generates an entire multi-track song in a single pass without any autoregressive components. The system eliminates bar-wise sequential modeling, supports up to 128 bars of music (8 minutes at 64 bpm), and produces complete songs with coherent local texture, idiomatic instrument patterns, and clear global structure. With only 45M parameters, our framework generates a full song within seconds while maintaining competitive musical quality and generation diversity. Together, these results show that phrase-level latent diffusion provides an effective and scalable solution to long-sequence modeling in symbolic music generation. We hope this work encourages future symbolic music research to move beyond note-attribute tokens and to consider phrase-level units as a more effective and musically meaningful modeling target.
Peransformer: Improving Low-informed Expressive Performance Rendering with Score-aware Discriminator
Highly-informed Expressive Performance Rendering (EPR) systems transform music scores with rich musical annotations into human-like expressive performance MIDI files. While these systems have achieved promising results, the availability of detailed music scores is limited compared to MIDI files and are less flexible to work with using a digital audio workstation (DAW). Recent advancements in low-informed EPR systems offer a more accessible alternative by directly utilizing score-derived MIDI as input, but these systems often exhibit suboptimal performance. Meanwhile, existing works are evaluated with diverse automatic metrics and data formats, hindering direct objective comparisons between EPR systems. In this study, we introduce Peransformer, a transformer-based low-informed EPR system designed to bridge the gap between low-informed and highly-informed EPR systems. Our approach incorporates a score-aware discriminator that leverages the underlying score-derived MIDI files and is trained on a score-to-performance paired, note-to-note aligned MIDI dataset. Experimental results demonstrate that Peransformer achieves state-of-the-art performance among low-informed systems, as validated by subjective evaluations. Furthermore, we extend existing automatic evaluation metrics for EPR systems and introduce generalized EPR metrics (GEM), enabling more direct, accurate, and reliable comparisons across EPR systems.
BACHI: Boundary-Aware Symbolic Chord Recognition Through Masked Iterative Decoding on Pop and Classical Music
Automatic chord recognition (ACR) via deep learning models has gradually achieved promising recognition accuracy, yet two key challenges remain. First, prior work has primarily focused on audio-domain ACR, while symbolic music (e.g., score) ACR has received limited attention due to data scarcity. Second, existing methods still overlook strategies that are aligned with human music analytical practices. To address these challenges, we make two contributions: (1) we introduce POP909-CL, an enhanced version of POP909 dataset with tempo-aligned content and human-corrected labels of chords, beats, keys, and time signatures; and (2) We propose BACHI, a symbolic chord recognition model that decomposes the task into different decision steps, namely boundary detection and iterative ranking of chord root, quality, and bass (inversion). This mechanism mirrors the human ear-training practices. Experiments demonstrate that BACHI achieves state-of-the-art chord recognition performance on both classical and pop music benchmarks, with ablation studies validating the effectiveness of each module.
Accompaniment Prompt Adherence: A Measure for Evaluating Music Accompaniment Systems
Generative systems of musical accompaniments are rapidly growing, yet there are no standardized metrics to evaluate how well generations align with the conditional audio prompt. We introduce a distribution-based measure called "Accompaniment Prompt Adherence" (APA), and validate it through objective experiments on synthetic data perturbations, and human listening tests. Results show that APA aligns well with human judgments of adherence and is discriminative to transformations that degrade adherence. We release a Python implementation of the metric using the widely adopted pre-trained CLAP embedding model, offering a valuable tool for evaluating and comparing accompaniment generation systems.
MusIAC: An extensible generative framework for Music Infilling Applications with multi-level Control
We present a novel music generation framework for music infilling, with a user friendly interface. Infilling refers to the task of generating musical sections given the surrounding multi-track music. The proposed transformer-based framework is extensible for new control tokens as the added music control tokens such as tonal tension per bar and track polyphony level in this work. We explore the effects of including several musically meaningful control tokens, and evaluate the results using objective metrics related to pitch and rhythm. Our results demonstrate that adding additional control tokens helps to generate music with stronger stylistic similarities to the original music. It also provides the user with more control to change properties like the music texture and tonal tension in each bar compared to previous research which only provided control for track density. We present the model in a Google Colab notebook to enable interactive generation.
Harmonizing Pixels and Melodies: Maestro-Guided Film Score Generation and Composition Style Transfer
We introduce a film score generation framework to harmonize visual pixels and music melodies utilizing a latent diffusion model. Our framework processes film clips as input and generates music that aligns with a general theme while offering the capability to tailor outputs to a specific composition style. Our model directly produces music from video, utilizing a streamlined and efficient tuning mechanism on ControlNet. It also integrates a film encoder adept at understanding the film's semantic depth, emotional impact, and aesthetic appeal. Additionally, we introduce a novel, effective yet straightforward evaluation metric to evaluate the originality and recognizability of music within film scores. To fill this gap for film scores, we curate a comprehensive dataset of film videos and legendary original scores, injecting domain-specific knowledge into our data-driven generation model. Our model outperforms existing methodologies in creating film scores, capable of generating music that reflects the guidance of a maestro's style, thereby redefining the benchmark for automated film scores and laying a robust groundwork for future research in this domain. The code and generated samples are available at https://anonymous.4open.science/r/HPM.
Text2midi: Generating Symbolic Music from Captions
This paper introduces text2midi, an end-to-end model to generate MIDI files from textual descriptions. Leveraging the growing popularity of multimodal generative approaches, text2midi capitalizes on the extensive availability of textual data and the success of large language models (LLMs). Our end-to-end system harnesses the power of LLMs to generate symbolic music in the form of MIDI files. Specifically, we utilize a pretrained LLM encoder to process captions, which then condition an autoregressive transformer decoder to produce MIDI sequences that accurately reflect the provided descriptions. This intuitive and user-friendly method significantly streamlines the music creation process by allowing users to generate music pieces using text prompts. We conduct comprehensive empirical evaluations, incorporating both automated and human studies, that show our model generates MIDI files of high quality that are indeed controllable by text captions that may include music theory terms such as chords, keys, and tempo. We release the code and music samples on our demo page (https://github.com/AMAAI-Lab/Text2midi) for users to interact with text2midi.
Versatile Framework for Song Generation with Prompt-based Control
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results demonstrate that VersBand performs better over baseline models across multiple song generation tasks using objective and subjective metrics. Audio samples are available at https://VersBand.github.io.
ChatMusician: Understanding and Generating Music Intrinsically with LLM
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval
Many applications of cross-modal music retrieval are related to connecting sheet music images to audio recordings. A typical and recent approach to this is to learn, via deep neural networks, a joint embedding space that correlates short fixed-size snippets of audio and sheet music by means of an appropriate similarity structure. However, two challenges that arise out of this strategy are the requirement of strongly aligned data to train the networks, and the inherent discrepancies of musical content between audio and sheet music snippets caused by local and global tempo differences. In this paper, we address these two shortcomings by designing a cross-modal recurrent network that learns joint embeddings that can summarize longer passages of corresponding audio and sheet music. The benefits of our method are that it only requires weakly aligned audio-sheet music pairs, as well as that the recurrent network handles the non-linearities caused by tempo variations between audio and sheet music. We conduct a number of experiments on synthetic and real piano data and scores, showing that our proposed recurrent method leads to more accurate retrieval in all possible configurations.
ChoralSynth: Synthetic Dataset of Choral Singing
Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research.
Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions
A great number of deep learning based models have been recently proposed for automatic music composition. Among these models, the Transformer stands out as a prominent approach for generating expressive classical piano performance with a coherent structure of up to one minute. The model is powerful in that it learns abstractions of data on its own, without much human-imposed domain knowledge or constraints. In contrast with this general approach, this paper shows that Transformers can do even better for music modeling, when we improve the way a musical score is converted into the data fed to a Transformer model. In particular, we seek to impose a metrical structure in the input data, so that Transformers can be more easily aware of the beat-bar-phrase hierarchical structure in music. The new data representation maintains the flexibility of local tempo changes, and provides hurdles to control the rhythmic and harmonic structure of music. With this approach, we build a Pop Music Transformer that composes Pop piano music with better rhythmic structure than existing Transformer models.
QA-MDT: Quality-aware Masked Diffusion Transformer for Enhanced Music Generation
In recent years, diffusion-based text-to-music (TTM) generation has gained prominence, offering an innovative approach to synthesizing musical content from textual descriptions. Achieving high accuracy and diversity in this generation process requires extensive, high-quality data, including both high-fidelity audio waveforms and detailed text descriptions, which often constitute only a small portion of available datasets. In open-source datasets, issues such as low-quality music waveforms, mislabeling, weak labeling, and unlabeled data significantly hinder the development of music generation models. To address these challenges, we propose a novel paradigm for high-quality music generation that incorporates a quality-aware training strategy, enabling generative models to discern the quality of input music waveforms during training. Leveraging the unique properties of musical signals, we first adapted and implemented a masked diffusion transformer (MDT) model for the TTM task, demonstrating its distinct capacity for quality control and enhanced musicality. Additionally, we address the issue of low-quality captions in TTM with a caption refinement data processing approach. Experiments demonstrate our state-of-the-art (SOTA) performance on MusicCaps and the Song-Describer Dataset. Our demo page can be accessed at https://qa-mdt.github.io/.
GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks
The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large Global, multi-Technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.
Musika! Fast Infinite Waveform Music Generation
Fast and user-controllable music generation could enable novel ways of composing or performing music. However, state-of-the-art music generation systems require large amounts of data and computational resources for training, and are slow at inference. This makes them impractical for real-time interactive use. In this work, we introduce Musika, a music generation system that can be trained on hundreds of hours of music using a single consumer GPU, and that allows for much faster than real-time generation of music of arbitrary length on a consumer CPU. We achieve this by first learning a compact invertible representation of spectrogram magnitudes and phases with adversarial autoencoders, then training a Generative Adversarial Network (GAN) on this representation for a particular music domain. A latent coordinate system enables generating arbitrarily long sequences of excerpts in parallel, while a global context vector allows the music to remain stylistically coherent through time. We perform quantitative evaluations to assess the quality of the generated samples and showcase options for user control in piano and techno music generation. We release the source code and pretrained autoencoder weights at github.com/marcoppasini/musika, such that a GAN can be trained on a new music domain with a single GPU in a matter of hours.
The Jazz Transformer on the Front Line: Exploring the Shortcomings of AI-composed Music through Quantitative Measures
This paper presents the Jazz Transformer, a generative model that utilizes a neural sequence model called the Transformer-XL for modeling lead sheets of Jazz music. Moreover, the model endeavors to incorporate structural events present in the Weimar Jazz Database (WJazzD) for inducing structures in the generated music. While we are able to reduce the training loss to a low value, our listening test suggests however a clear gap between the average ratings of the generated and real compositions. We therefore go one step further and conduct a series of computational analysis of the generated compositions from different perspectives. This includes analyzing the statistics of the pitch class, grooving, and chord progression, assessing the structureness of the music with the help of the fitness scape plot, and evaluating the model's understanding of Jazz music through a MIREX-like continuation prediction task. Our work presents in an analytical manner why machine-generated music to date still falls short of the artwork of humanity, and sets some goals for future work on automatic composition to further pursue.
Graph-based Polyphonic Multitrack Music Generation
Graphs can be leveraged to model polyphonic multitrack symbolic music, where notes, chords and entire sections may be linked at different levels of the musical hierarchy by tonal and rhythmic relationships. Nonetheless, there is a lack of works that consider graph representations in the context of deep learning systems for music generation. This paper bridges this gap by introducing a novel graph representation for music and a deep Variational Autoencoder that generates the structure and the content of musical graphs separately, one after the other, with a hierarchical architecture that matches the structural priors of music. By separating the structure and content of musical graphs, it is possible to condition generation by specifying which instruments are played at certain times. This opens the door to a new form of human-computer interaction in the context of music co-creation. After training the model on existing MIDI datasets, the experiments show that the model is able to generate appealing short and long musical sequences and to realistically interpolate between them, producing music that is tonally and rhythmically consistent. Finally, the visualization of the embeddings shows that the model is able to organize its latent space in accordance with known musical concepts.
HeartMuLa: A Family of Open Sourced Music Foundation Models
We present a family of open-source Music Foundation Models designed to advance large-scale music understanding and generation across diverse tasks and modalities. Our framework consists of four major components: (1) HeartCLAP, an audio-text alignment model; (2) HeartTranscriptor, a robust lyric recognition model optimized for real-world music scenarios; and (3) HeartCodec, a low-frame-rate (12.5 Hz) yet high-fidelity music codec tokenizer that captures long-range musical structure while preserving fine-grained acoustic details and enabling efficient autoregressive modeling; (4) HeartMuLa, an LLM-based song generation model capable of synthesizing high-fidelity music under rich, user-controllable conditions (e.g., textual style descriptions, lyrics, and reference audio). In addition, it provides two specialized modes: (i) fine-grained musical attribute control, which allows users to specify the style of different song sections (e.g., intro, verse, chorus) using natural language prompts; and (ii) short, engaging music generation, which is suitable as background music for short videos. Lastly, HeartMuLa improves significantly when scaled to 7B parameters. For the first time, we show that a Suno-level, commercial-grade system can be reproduced using academic-scale data and GPU resources. We expect these foundation models to serve as strong baselines for future research and to facilitate practical applications in multimodal content production.
Music Foundation Model as Generic Booster for Music Downstream Tasks
We demonstrate the efficacy of using intermediate representations from a single foundation model to enhance various music downstream tasks. We introduce SoniDo , a music foundation model (MFM) designed to extract hierarchical features from target music samples. By leveraging hierarchical intermediate features, SoniDo constrains the information granularity, leading to improved performance across various downstream tasks including both understanding and generative tasks. We specifically evaluated this approach on representative tasks such as music tagging, music transcription, music source separation, and music mixing. Our results reveal that the features extracted from foundation models provide valuable enhancements in training downstream task models. This highlights the capability of using features extracted from music foundation models as a booster for downstream tasks. Our approach not only benefits existing task-specific models but also supports music downstream tasks constrained by data scarcity. This paves the way for more effective and accessible music processing solutions.
A Survey of AI Music Generation Tools and Models
In this work, we provide a comprehensive survey of AI music generation tools, including both research projects and commercialized applications. To conduct our analysis, we classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes. Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users, from regular listeners to professional musicians. We observed that each tool has its own set of advantages and limitations. As a result, we have compiled a comprehensive list of these factors that should be considered during the tool selection process. Moreover, our survey offers critical insights into the underlying mechanisms and challenges of AI music generation.
JEN-1 Composer: A Unified Framework for High-Fidelity Multi-Track Music Generation
With rapid advances in generative artificial intelligence, the text-to-music synthesis task has emerged as a promising direction for music generation from scratch. However, finer-grained control over multi-track generation remains an open challenge. Existing models exhibit strong raw generation capability but lack the flexibility to compose separate tracks and combine them in a controllable manner, differing from typical workflows of human composers. To address this issue, we propose JEN-1 Composer, a unified framework to efficiently model marginal, conditional, and joint distributions over multi-track music via a single model. JEN-1 Composer framework exhibits the capacity to seamlessly incorporate any diffusion-based music generation system, e.g. Jen-1, enhancing its capacity for versatile multi-track music generation. We introduce a curriculum training strategy aimed at incrementally instructing the model in the transition from single-track generation to the flexible generation of multi-track combinations. During the inference, users have the ability to iteratively produce and choose music tracks that meet their preferences, subsequently creating an entire musical composition incrementally following the proposed Human-AI co-composition workflow. Quantitative and qualitative assessments demonstrate state-of-the-art performance in controllable and high-fidelity multi-track music synthesis. The proposed JEN-1 Composer represents a significant advance toward interactive AI-facilitated music creation and composition. Demos will be available at https://jenmusic.ai/audio-demos.
A Domain-Knowledge-Inspired Music Embedding Space and a Novel Attention Mechanism for Symbolic Music Modeling
Following the success of the transformer architecture in the natural language domain, transformer-like architectures have been widely applied to the domain of symbolic music recently. Symbolic music and text, however, are two different modalities. Symbolic music contains multiple attributes, both absolute attributes (e.g., pitch) and relative attributes (e.g., pitch interval). These relative attributes shape human perception of musical motifs. These important relative attributes, however, are mostly ignored in existing symbolic music modeling methods with the main reason being the lack of a musically-meaningful embedding space where both the absolute and relative embeddings of the symbolic music tokens can be efficiently represented. In this paper, we propose the Fundamental Music Embedding (FME) for symbolic music based on a bias-adjusted sinusoidal encoding within which both the absolute and the relative attributes can be embedded and the fundamental musical properties (e.g., translational invariance) are explicitly preserved. Taking advantage of the proposed FME, we further propose a novel attention mechanism based on the relative index, pitch and onset embeddings (RIPO attention) such that the musical domain knowledge can be fully utilized for symbolic music modeling. Experiment results show that our proposed model: RIPO transformer which utilizes FME and RIPO attention outperforms the state-of-the-art transformers (i.e., music transformer, linear transformer) in a melody completion task. Moreover, using the RIPO transformer in a downstream music generation task, we notice that the notorious degeneration phenomenon no longer exists and the music generated by the RIPO transformer outperforms the music generated by state-of-the-art transformer models in both subjective and objective evaluations.
Diff-A-Riff: Musical Accompaniment Co-creation via Latent Diffusion Models
Recent advancements in deep generative models present new opportunities for music production but also pose challenges, such as high computational demands and limited audio quality. Moreover, current systems frequently rely solely on text input and typically focus on producing complete musical pieces, which is incompatible with existing workflows in music production. To address these issues, we introduce "Diff-A-Riff," a Latent Diffusion Model designed to generate high-quality instrumental accompaniments adaptable to any musical context. This model offers control through either audio references, text prompts, or both, and produces 48kHz pseudo-stereo audio while significantly reducing inference time and memory usage. We demonstrate the model's capabilities through objective metrics and subjective listening tests, with extensive examples available on the accompanying website: sonycslparis.github.io/diffariff-companion/
AnalysisGNN: Unified Music Analysis with Graph Neural Networks
Recent years have seen a boom in computational approaches to music analysis, yet each one is typically tailored to a specific analytical domain. In this work, we introduce AnalysisGNN, a novel graph neural network framework that leverages a data-shuffling strategy with a custom weighted multi-task loss and logit fusion between task-specific classifiers to integrate heterogeneously annotated symbolic datasets for comprehensive score analysis. We further integrate a Non-Chord-Tone prediction module, which identifies and excludes passing and non-functional notes from all tasks, thereby improving the consistency of label signals. Experimental evaluations demonstrate that AnalysisGNN achieves performance comparable to traditional static-dataset approaches, while showing increased resilience to domain shifts and annotation inconsistencies across multiple heterogeneous corpora.
From Context to Concept: Exploring Semantic Relationships in Music with Word2Vec
We explore the potential of a popular distributional semantics vector space model, word2vec, for capturing meaningful relationships in ecological (complex polyphonic) music. More precisely, the skip-gram version of word2vec is used to model slices of music from a large corpus spanning eight musical genres. In this newly learned vector space, a metric based on cosine distance is able to distinguish between functional chord relationships, as well as harmonic associations in the music. Evidence, based on cosine distance between chord-pair vectors, suggests that an implicit circle-of-fifths exists in the vector space. In addition, a comparison between pieces in different keys reveals that key relationships are represented in word2vec space. These results suggest that the newly learned embedded vector representation does in fact capture tonal and harmonic characteristics of music, without receiving explicit information about the musical content of the constituent slices. In order to investigate whether proximity in the discovered space of embeddings is indicative of `semantically-related' slices, we explore a music generation task, by automatically replacing existing slices from a given piece of music with new slices. We propose an algorithm to find substitute slices based on spatial proximity and the pitch class distribution inferred in the chosen subspace. The results indicate that the size of the subspace used has a significant effect on whether slices belonging to the same key are selected. In sum, the proposed word2vec model is able to learn music-vector embeddings that capture meaningful tonal and harmonic relationships in music, thereby providing a useful tool for exploring musical properties and comparisons across pieces, as a potential input representation for deep learning models, and as a music generation device.
GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
Personalizable Long-Context Symbolic Music Infilling with MIDI-RWKV
Existing work in automatic music generation has primarily focused on end-to-end systems that produce complete compositions or continuations. However, because musical composition is typically an iterative process, such systems make it difficult to engage in the back-and-forth between human and machine that is essential to computer-assisted creativity. In this study, we address the task of personalizable, multi-track, long-context, and controllable symbolic music infilling to enhance the process of computer-assisted composition. We present MIDI-RWKV, a novel model based on the RWKV-7 linear architecture, to enable efficient and coherent musical cocreation on edge devices. We also demonstrate that MIDI-RWKV admits an effective method of finetuning its initial state for personalization in the very-low-sample regime. We evaluate MIDI-RWKV and its state tuning on several quantitative and qualitative metrics, and release model weights and code at https://github.com/christianazinn/MIDI-RWKV.
Diff-V2M: A Hierarchical Conditional Diffusion Model with Explicit Rhythmic Modeling for Video-to-Music Generation
Video-to-music (V2M) generation aims to create music that aligns with visual content. However, two main challenges persist in existing methods: (1) the lack of explicit rhythm modeling hinders audiovisual temporal alignments; (2) effectively integrating various visual features to condition music generation remains non-trivial. To address these issues, we propose Diff-V2M, a general V2M framework based on a hierarchical conditional diffusion model, comprising two core components: visual feature extraction and conditional music generation. For rhythm modeling, we begin by evaluating several rhythmic representations, including low-resolution mel-spectrograms, tempograms, and onset detection functions (ODF), and devise a rhythmic predictor to infer them directly from videos. To ensure contextual and affective coherence, we also extract semantic and emotional features. All features are incorporated into the generator via a hierarchical cross-attention mechanism, where emotional features shape the affective tone via the first layer, while semantic and rhythmic features are fused in the second cross-attention layer. To enhance feature integration, we introduce timestep-aware fusion strategies, including feature-wise linear modulation (FiLM) and weighted fusion, allowing the model to adaptively balance semantic and rhythmic cues throughout the diffusion process. Extensive experiments identify low-resolution ODF as a more effective signal for modeling musical rhythm and demonstrate that Diff-V2M outperforms existing models on both in-domain and out-of-domain datasets, achieving state-of-the-art performance in terms of objective metrics and subjective comparisons. Demo and code are available at https://Tayjsl97.github.io/Diff-V2M-Demo/.
Scaling Self-Supervised Representation Learning for Symbolic Piano Performance
We study the capabilities of generative autoregressive transformer models trained on large amounts of symbolic solo-piano transcriptions. After first pretraining on approximately 60,000 hours of music, we use a comparatively smaller, high-quality subset, to finetune models to produce musical continuations, perform symbolic classification tasks, and produce general-purpose contrastive MIDI embeddings by adapting the SimCLR framework to symbolic music. When evaluating piano continuation coherence, our generative model outperforms leading symbolic generation techniques and remains competitive with proprietary audio generation models. On MIR classification benchmarks, frozen representations from our contrastive model achieve state-of-the-art results in linear probe experiments, while direct finetuning demonstrates the generalizability of pretrained representations, often requiring only a few hundred labeled examples to specialize to downstream tasks.
From Words to Music: A Study of Subword Tokenization Techniques in Symbolic Music Generation
Subword tokenization has been widely successful in text-based natural language processing (NLP) tasks with Transformer-based models. As Transformer models become increasingly popular in symbolic music-related studies, it is imperative to investigate the efficacy of subword tokenization in the symbolic music domain. In this paper, we explore subword tokenization techniques, such as byte-pair encoding (BPE), in symbolic music generation and its impact on the overall structure of generated songs. Our experiments are based on three types of MIDI datasets: single track-melody only, multi-track with a single instrument, and multi-track and multi-instrument. We apply subword tokenization on post-musical tokenization schemes and find that it enables the generation of longer songs at the same time and improves the overall structure of the generated music in terms of objective metrics like structure indicator (SI), Pitch Class Entropy, etc. We also compare two subword tokenization methods, BPE and Unigram, and observe that both methods lead to consistent improvements. Our study suggests that subword tokenization is a promising technique for symbolic music generation and may have broader implications for music composition, particularly in cases involving complex data such as multi-track songs.
