- Inducing Neural Collapse to a Fixed Hierarchy-Aware Frame for Reducing Mistake Severity There is a recently discovered and intriguing phenomenon called Neural Collapse: at the terminal phase of training a deep neural network for classification, the within-class penultimate feature means and the associated classifier vectors of all flat classes collapse to the vertices of a simplex Equiangular Tight Frame (ETF). Recent work has tried to exploit this phenomenon by fixing the related classifier weights to a pre-computed ETF to induce neural collapse and maximize the separation of the learned features when training with imbalanced data. In this work, we propose to fix the linear classifier of a deep neural network to a Hierarchy-Aware Frame (HAFrame), instead of an ETF, and use a cosine similarity-based auxiliary loss to learn hierarchy-aware penultimate features that collapse to the HAFrame. We demonstrate that our approach reduces the mistake severity of the model's predictions while maintaining its top-1 accuracy on several datasets of varying scales with hierarchies of heights ranging from 3 to 12. Code: https://github.com/ltong1130ztr/HAFrame 2 authors · Mar 9, 2023
- To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers Hierarchical classification offers an approach to incorporate the concept of mistake severity by leveraging a structured, labeled hierarchy. However, decoding in such settings frequently relies on heuristic decision rules, which may not align with task-specific evaluation metrics. In this work, we propose a framework for the optimal decoding of an output probability distribution with respect to a target metric. We derive optimal decision rules for increasingly complex prediction settings, providing universal algorithms when candidates are limited to the set of nodes. In the most general case of predicting a subset of nodes, we focus on rules dedicated to the hierarchical hF_{beta} scores, tailored to hierarchical settings. To demonstrate the practical utility of our approach, we conduct extensive empirical evaluations, showcasing the superiority of our proposed optimal strategies, particularly in underdetermined scenarios. These results highlight the potential of our methods to enhance the performance and reliability of hierarchical classifiers in real-world applications. The code is available at https://github.com/RomanPlaud/hierarchical_decision_rules 5 authors · Jun 2, 2025
- Subtle Errors Matter: Preference Learning via Error-injected Self-editing Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH. 10 authors · Oct 9, 2024
5 InT: Self-Proposed Interventions Enable Credit Assignment in LLM Reasoning Outcome-reward reinforcement learning (RL) has proven effective at improving the reasoning capabilities of large language models (LLMs). However, standard RL assigns credit only at the level of the final answer, penalizing entire reasoning traces when the outcome is incorrect and uniformly reinforcing all steps when it is correct. As a result, correct intermediate steps may be discouraged in failed traces, while spurious steps may be reinforced in successful ones. We refer to this failure mode as the problem of credit assignment. While a natural remedy is to train a process reward model, accurately optimizing such models to identify corrective reasoning steps remains challenging. We introduce Intervention Training (InT), a training paradigm in which the model performs fine-grained credit assignment on its own reasoning traces by proposing short, targeted corrections that steer trajectories toward higher reward. Using reference solutions commonly available in mathematical reasoning datasets and exploiting the fact that verifying a model-generated solution is easier than generating a correct one from scratch, the model identifies the first error in its reasoning and proposes a single-step intervention to redirect the trajectory toward the correct solution. We then apply supervised fine-tuning (SFT) to the on-policy rollout up to the point of error concatenated with the intervention, localizing error to the specific step that caused failure. We show that the resulting model serves as a far better initialization for RL training. After running InT and subsequent fine-tuning with RL, we improve accuracy by nearly 14% over a 4B-parameter base model on IMO-AnswerBench, outperforming larger open-source models such as gpt-oss-20b. CMU Artificial Intelligence and Reinforcement Learning (AIRe) Lab · Jan 20 2
- Avoiding Catastrophe in Online Learning by Asking for Help Most learning algorithms with formal regret guarantees assume that no mistake is irreparable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are catastrophic, i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe that round and aim to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We first show that in general, any algorithm either constantly queries the mentor or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online learning model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help. 3 authors · Feb 12, 2024
2 Better Safe Than Sorry? Overreaction Problem of Vision Language Models in Visual Emergency Recognition Vision-Language Models (VLMs) have demonstrated impressive capabilities in understanding visual content, but their reliability in safety-critical contexts remains under-explored. We introduce VERI (Visual Emergency Recognition Dataset), a carefully designed diagnostic benchmark of 200 images (100 contrastive pairs). Each emergency scene is matched with a visually similar but safe counterpart through multi-stage human verification and iterative refinement. Using a two-stage protocol - risk identification and emergency response - we evaluate 14 VLMs (2B-124B parameters) across medical emergencies, accidents, and natural disasters. Our analysis reveals a systematic overreaction problem: models excel at identifying real emergencies (70-100 percent success rate) but suffer from an alarming rate of false alarms, misidentifying 31-96 percent of safe situations as dangerous, with 10 scenarios failed by all models regardless of scale. This "better-safe-than-sorry" bias manifests primarily through contextual overinterpretation (88-93 percent of errors), challenging VLMs' reliability for safety applications. These findings highlight persistent limitations that are not resolved by increasing model scale, motivating targeted approaches for improving contextual safety assessment in visually misleading scenarios. AIM Intelligence · May 21, 2025
- Regretful Decisions under Label Noise Machine learning models are routinely used to support decisions that affect individuals -- be it to screen a patient for a serious illness or to gauge their response to treatment. In these tasks, we are limited to learning models from datasets with noisy labels. In this paper, we study the instance-level impact of learning under label noise. We introduce a notion of regret for this regime, which measures the number of unforeseen mistakes due to noisy labels. We show that standard approaches to learning under label noise can return models that perform well at a population-level while subjecting individuals to a lottery of mistakes. We present a versatile approach to estimate the likelihood of mistakes at the individual-level from a noisy dataset by training models over plausible realizations of datasets without label noise. This is supported by a comprehensive empirical study of label noise in clinical prediction tasks. Our results reveal how failure to anticipate mistakes can compromise model reliability and adoption -- we demonstrate how we can address these challenges by anticipating and avoiding regretful decisions. 4 authors · Apr 12, 2025
- Evaluating Reasoning LLMs for Suicide Screening with the Columbia-Suicide Severity Rating Scale Suicide prevention remains a critical public health challenge. While online platforms such as Reddit's r/SuicideWatch have historically provided spaces for individuals to express suicidal thoughts and seek community support, the advent of large language models (LLMs) introduces a new paradigm-where individuals may begin disclosing ideation to AI systems instead of humans. This study evaluates the capability of LLMs to perform automated suicide risk assessment using the Columbia-Suicide Severity Rating Scale (C-SSRS). We assess the zero-shot performance of six models-including Claude, GPT, Mistral, and LLaMA-in classifying posts across a 7-point severity scale (Levels 0-6). Results indicate that Claude and GPT closely align with human annotations, while Mistral achieves the lowest ordinal prediction error. Most models exhibit ordinal sensitivity, with misclassifications typically occurring between adjacent severity levels. We further analyze confusion patterns, misclassification sources, and ethical considerations, underscoring the importance of human oversight, transparency, and cautious deployment. Full code and supplementary materials are available at https://github.com/av9ash/llm_cssrs_code. 3 authors · May 11, 2025
- MMErroR: A Benchmark for Erroneous Reasoning in Vision-Language Models Recent advances in Vision-Language Models (VLMs) have improved performance in multi-modal learning, raising the question of whether these models truly understand the content they process. Crucially, can VLMs detect when a reasoning process is wrong and identify its error type? To answer this, we present MMErroR, a multi-modal benchmark of 2,013 samples, each embedding a single coherent reasoning error. These samples span 24 subdomains across six top-level domains, ensuring broad coverage and taxonomic richness. Unlike existing benchmarks that focus on answer correctness, MMErroR targets a process-level, error-centric evaluation that requires models to detect incorrect reasoning and classify the error type within both visual and linguistic contexts. We evaluate 20 advanced VLMs, even the best model (Gemini-3.0-Pro) classifies the error in only 66.47\% of cases, underscoring the challenge of identifying erroneous reasoning. Furthermore, the ability to accurately identify errors offers valuable insights into the capabilities of multi-modal reasoning models. Project Page: https://mmerror-benchmark.github.io 9 authors · Jan 6
- Can Large Reasoning Models Improve Accuracy on Mathematical Tasks Using Flawed Thinking? Chain-of-thought (CoT) prompting has become central to mathematical reasoning in large language models, yet models remain brittle to early errors: a single arithmetic slip or unjustified inference typically propagates uncorrected to an incorrect final answer. We investigate whether training on intentionally flawed reasoning traces can teach models to detect and recover from such errors without degrading standard problem-solving ability. Using competition-level problems from MATH-lighteval, we generate CoT prefixes containing exactly one controlled error, either a calculation error (sign flips, dropped terms) or a reasoning error (misapplied rules, unjustified logical steps), and fine-tune Qwen3-4B with GRPO using a binary final-answer reward. Our Mixed-CoT-RL model matches standard RL on clean problems (41% vs 41%) while substantially outperforming it on problems prefilled with flawed reasoning (24% vs 19%). Notably, clean-only RL fine-tuning degrades robustness below the untuned baseline 19% vs. 20%), indicating that conventional training increases susceptibility to misleading prefills. Among error types, training on reasoning errors yields greater robustness gains than calculation errors alone, with mixed training performing best. These findings demonstrate that exposure to flawed traces during training can improve error-recovery behavior without sacrificing accuracy, suggesting a path toward more robust mathematical reasoning in LLMs. 4 authors · Dec 18, 2025