new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

Subtle Errors Matter: Preference Learning via Error-injected Self-editing

Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.

  • 10 authors
·
Oct 9, 2024

InT: Self-Proposed Interventions Enable Credit Assignment in LLM Reasoning

Outcome-reward reinforcement learning (RL) has proven effective at improving the reasoning capabilities of large language models (LLMs). However, standard RL assigns credit only at the level of the final answer, penalizing entire reasoning traces when the outcome is incorrect and uniformly reinforcing all steps when it is correct. As a result, correct intermediate steps may be discouraged in failed traces, while spurious steps may be reinforced in successful ones. We refer to this failure mode as the problem of credit assignment. While a natural remedy is to train a process reward model, accurately optimizing such models to identify corrective reasoning steps remains challenging. We introduce Intervention Training (InT), a training paradigm in which the model performs fine-grained credit assignment on its own reasoning traces by proposing short, targeted corrections that steer trajectories toward higher reward. Using reference solutions commonly available in mathematical reasoning datasets and exploiting the fact that verifying a model-generated solution is easier than generating a correct one from scratch, the model identifies the first error in its reasoning and proposes a single-step intervention to redirect the trajectory toward the correct solution. We then apply supervised fine-tuning (SFT) to the on-policy rollout up to the point of error concatenated with the intervention, localizing error to the specific step that caused failure. We show that the resulting model serves as a far better initialization for RL training. After running InT and subsequent fine-tuning with RL, we improve accuracy by nearly 14% over a 4B-parameter base model on IMO-AnswerBench, outperforming larger open-source models such as gpt-oss-20b.

Can Large Reasoning Models Improve Accuracy on Mathematical Tasks Using Flawed Thinking?

Chain-of-thought (CoT) prompting has become central to mathematical reasoning in large language models, yet models remain brittle to early errors: a single arithmetic slip or unjustified inference typically propagates uncorrected to an incorrect final answer. We investigate whether training on intentionally flawed reasoning traces can teach models to detect and recover from such errors without degrading standard problem-solving ability. Using competition-level problems from MATH-lighteval, we generate CoT prefixes containing exactly one controlled error, either a calculation error (sign flips, dropped terms) or a reasoning error (misapplied rules, unjustified logical steps), and fine-tune Qwen3-4B with GRPO using a binary final-answer reward. Our Mixed-CoT-RL model matches standard RL on clean problems (41% vs 41%) while substantially outperforming it on problems prefilled with flawed reasoning (24% vs 19%). Notably, clean-only RL fine-tuning degrades robustness below the untuned baseline 19% vs. 20%), indicating that conventional training increases susceptibility to misleading prefills. Among error types, training on reasoning errors yields greater robustness gains than calculation errors alone, with mixed training performing best. These findings demonstrate that exposure to flawed traces during training can improve error-recovery behavior without sacrificing accuracy, suggesting a path toward more robust mathematical reasoning in LLMs.

  • 4 authors
·
Dec 18, 2025