new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

Latent Collective Preference Optimization: A General Framework for Robust LLM Alignment

Standard human preference-based alignment methods, such as Reinforcement Learning from Human Feedback (RLHF), are a cornerstone technology for aligning Large Language Models (LLMs) with human values. However, these methods are all underpinned by a critical, yet flawed assumption: human preferences are homogeneous (representing a single, unified preference) and the collected data is noiseless (free from error). In reality, neither is true since human preference is pluralistic and annotators can make mistakes. This creates a discrepancy between the recorded data and the ground-truth preferences, which can misguide the model and degrade its performance. To address this challenge, we introduce Latent Collective Preference Optimization (LCPO). LCPO leverages an Expectation-Maximization (EM) algorithm to learn the latent collective consensus from noisy data. It operates by inferring the correctness of each preference label and using this probability as an adaptive weight to re-calibrate each data point's contribution to the training loss, thereby mitigating noise. We generalize this approach by establishing a theoretical link between arbitrary preference losses and their corresponding probabilistic models, elevating LCPO from a specific algorithm to a general framework for robust preference alignment. Theoretically, we prove that under the condition of a perfectly calibrated model, LCPO is guaranteed to converge to the true noise level of the dataset. Our experiments demonstrate LCPO's effectiveness as a general framework, consistently enhancing four state-of-the-art alignment algorithms (DPO, IPO, SimPO, and CPO). When applied to Mistral and Llama 3 models, the LCPO-enhanced methods achieve substantial win rate gains on AlpacaEval 2 and Arena-Hard, with improvements of up to 7.0% on both benchmarks.

  • 7 authors
·
Sep 28, 2025

Noisy-Correspondence Learning for Text-to-Image Person Re-identification

Text-to-image person re-identification (TIReID) is a compelling topic in the cross-modal community, which aims to retrieve the target person based on a textual query. Although numerous TIReID methods have been proposed and achieved promising performance, they implicitly assume the training image-text pairs are correctly aligned, which is not always the case in real-world scenarios. In practice, the image-text pairs inevitably exist under-correlated or even false-correlated, a.k.a noisy correspondence (NC), due to the low quality of the images and annotation errors. To address this problem, we propose a novel Robust Dual Embedding method (RDE) that can learn robust visual-semantic associations even with NC. Specifically, RDE consists of two main components: 1) A Confident Consensus Division (CCD) module that leverages the dual-grained decisions of dual embedding modules to obtain a consensus set of clean training data, which enables the model to learn correct and reliable visual-semantic associations. 2) A Triplet-Alignment Loss (TAL) relaxes the conventional triplet-ranking loss with hardest negatives, which tends to rapidly overfit NC, to a log-exponential upper bound over all negatives, thus preventing the model from overemphasizing false image-text pairs. We conduct extensive experiments on three public benchmarks, namely CUHK-PEDES, ICFG-PEDES, and RSTPReID, to evaluate the performance and robustness of our RDE. Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on all three datasets.

  • 6 authors
·
Aug 19, 2023

Fortytwo: Swarm Inference with Peer-Ranked Consensus

As centralized AI hits compute ceilings and diminishing returns from ever-larger training runs, meeting demand requires an inference layer that scales horizontally in both capacity and capability. We present Fortytwo, a novel protocol that leverages swarm intelligence principles and distributed pairwise ranking consensus to achieve superior performance in AI inference. Our approach reimagines collaboration among AI nodes using swarm inference: a peer-ranked, reputation-weighted consensus across heterogeneous models that surfaces the highest-quality responses. Using pairwise ranking with a custom Bradley-Terry-style aggregation model, we demonstrate that swarm inference substantially outperforms majority voting, achieving 85.90% on GPQA Diamond versus 68.69% for majority voting with the same model set - an improvement of +17.21 percentage points (approximately +25.1% relative). The protocol incorporates on-chain reputation so node influence adapts to demonstrated accuracy over time, yielding a meritocratic consensus that filters low-quality or malicious participants. To resist Sybil attacks, Fortytwo employs proof-of-capability in its consensus: nodes must successfully complete calibration/test requests and stake reputation to enter ranking rounds, making multi-identity attacks economically unattractive while preserving openness. Across six challenging benchmarks, including GPQA Diamond, LiveCodeBench, and AIME, our evaluation indicates higher accuracy and strong resilience to adversarial and noisy free-form prompting (e.g., prompt-injection degradation of only 0.12% versus 6.20% for a monolithic single-model baseline), while retaining practical deployability. Together, these results establish a foundation for decentralized AI systems - democratizing access to high-quality inference through collective intelligence without sacrificing reliability or security.

Fortytwo-Network Fortytwo
·
Oct 27, 2025 1

Federated Heavy Hitter Analytics with Local Differential Privacy

Federated heavy hitter analytics enables service providers to better understand the preferences of cross-party users by analyzing the most frequent items. As with federated learning, it faces challenges of privacy concerns, statistical heterogeneity, and expensive communication. Local differential privacy (LDP), as the de facto standard for privacy-preserving data collection, solves the privacy challenge by letting each user perturb her data locally and report the sanitized version. However, in federated settings, applying LDP complicates the other two challenges, due to the deteriorated utility by the injected LDP noise or increasing communication/computation costs by perturbation mechanism. To tackle these problems, we propose a novel target-aligning prefix tree mechanism satisfying epsilon-LDP, for federated heavy hitter analytics. In particular, we propose an adaptive extension strategy to address the inconsistencies between covering necessary prefixes and estimating heavy hitters within a party to enhance the utility. We also present a consensus-based pruning strategy that utilizes noisy prior knowledge from other parties to further align the inconsistency between finding heavy hitters in each party and providing reasonable frequency information to identify the global ones. To the best of our knowledge, our study is the first solution to the federated heavy hitter analytics in a cross-party setting while satisfying the stringent epsilon-LDP. Comprehensive experiments on both real-world and synthetic datasets confirm the effectiveness of our proposed mechanism.

  • 3 authors
·
Dec 19, 2024

Dual Mean-Teacher: An Unbiased Semi-Supervised Framework for Audio-Visual Source Localization

Audio-Visual Source Localization (AVSL) aims to locate sounding objects within video frames given the paired audio clips. Existing methods predominantly rely on self-supervised contrastive learning of audio-visual correspondence. Without any bounding-box annotations, they struggle to achieve precise localization, especially for small objects, and suffer from blurry boundaries and false positives. Moreover, the naive semi-supervised method is poor in fully leveraging the information of abundant unlabeled data. In this paper, we propose a novel semi-supervised learning framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two teacher-student structures to circumvent the confirmation bias issue. Specifically, two teachers, pre-trained on limited labeled data, are employed to filter out noisy samples via the consensus between their predictions, and then generate high-quality pseudo-labels by intersecting their confidence maps. The sufficient utilization of both labeled and unlabeled data and the proposed unbiased framework enable DMT to outperform current state-of-the-art methods by a large margin, with CIoU of 90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%, 9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods respectively, given only 3% positional-annotations. We also extend our framework to some existing AVSL methods and consistently boost their performance.

  • 8 authors
·
Mar 5, 2024

GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector

In this paper, we present a novel end-to-end group collaborative learning network, termed GCoNet+, which can effectively and efficiently (250 fps) identify co-salient objects in natural scenes. The proposed GCoNet+ achieves the new state-of-the-art performance for co-salient object detection (CoSOD) through mining consensus representations based on the following two essential criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module (GAM); 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module (GCM) conditioning on the inconsistent consensus. To further improve the accuracy, we design a series of simple yet effective components as follows: i) a recurrent auxiliary classification module (RACM) promoting model learning at the semantic level; ii) a confidence enhancement module (CEM) assisting the model in improving the quality of the final predictions; and iii) a group-based symmetric triplet (GST) loss guiding the model to learn more discriminative features. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been released at https://github.com/ZhengPeng7/GCoNet_plus.

  • 8 authors
·
May 30, 2022

Generative Artificial Intelligence Consensus in a Trustless Network

We performed a billion locality sensitive hash comparisons between artificially generated data samples to answer the critical question - can we verify the "correctness" of generative AI output in a non-deterministic, trustless, decentralized network? We generate millions of data samples from a variety of open source diffusion and large language models and describe the procedures and trade-offs between generating more verses less deterministic output in a heterogenous, stochastic network. Further, we analyze the outputs to provide empirical evidence of different parameterizations of tolerance and error bounds for verification. Finally, given that we have the generated an enormous amount of simulated data, we also release a new training dataset called ImageNet-Gen for use in augmenting existing training pipelines. For our results, we show that with a majority vote between three independent verifiers, we can detect image generated perceptual collisions in generated AI with over 99.89% probability and less than 0.0267% chance of intra-class collision. For large language models (LLMs), we are able to gain 100% consensus using greedy methods or n-way beam searches to generate consensus demonstrated on different LLMs. In the context of generative AI training, we pinpoint and minimize the major sources of stochasticity and present gossip and synchronization training techniques for verifiability. Thus, this work provides a practical, solid foundation for AI verification and consensus for the minimization of trust in a decentralized network.

  • 4 authors
·
Jul 4, 2023

Multiagent Evaluation under Incomplete Information

This paper investigates the evaluation of learned multiagent strategies in the incomplete information setting, which plays a critical role in ranking and training of agents. Traditionally, researchers have relied on Elo ratings for this purpose, with recent works also using methods based on Nash equilibria. Unfortunately, Elo is unable to handle intransitive agent interactions, and other techniques are restricted to zero-sum, two-player settings or are limited by the fact that the Nash equilibrium is intractable to compute. Recently, a ranking method called α-Rank, relying on a new graph-based game-theoretic solution concept, was shown to tractably apply to general games. However, evaluations based on Elo or α-Rank typically assume noise-free game outcomes, despite the data often being collected from noisy simulations, making this assumption unrealistic in practice. This paper investigates multiagent evaluation in the incomplete information regime, involving general-sum many-player games with noisy outcomes. We derive sample complexity guarantees required to confidently rank agents in this setting. We propose adaptive algorithms for accurate ranking, provide correctness and sample complexity guarantees, then introduce a means of connecting uncertainties in noisy match outcomes to uncertainties in rankings. We evaluate the performance of these approaches in several domains, including Bernoulli games, a soccer meta-game, and Kuhn poker.

  • 7 authors
·
Sep 21, 2019

CP-Guard: Malicious Agent Detection and Defense in Collaborative Bird's Eye View Perception

Collaborative Perception (CP) has shown a promising technique for autonomous driving, where multiple connected and autonomous vehicles (CAVs) share their perception information to enhance the overall perception performance and expand the perception range. However, in CP, ego CAV needs to receive messages from its collaborators, which makes it easy to be attacked by malicious agents. For example, a malicious agent can send harmful information to the ego CAV to mislead it. To address this critical issue, we propose a novel method, CP-Guard, a tailored defense mechanism for CP that can be deployed by each agent to accurately detect and eliminate malicious agents in its collaboration network. Our key idea is to enable CP to reach a consensus rather than a conflict against the ego CAV's perception results. Based on this idea, we first develop a probability-agnostic sample consensus (PASAC) method to effectively sample a subset of the collaborators and verify the consensus without prior probabilities of malicious agents. Furthermore, we define a collaborative consistency loss (CCLoss) to capture the discrepancy between the ego CAV and its collaborators, which is used as a verification criterion for consensus. Finally, we conduct extensive experiments in collaborative bird's eye view (BEV) tasks and our results demonstrate the effectiveness of our CP-Guard. Code is available at https://github.com/CP-Security/CP-Guard

  • 7 authors
·
Dec 16, 2024

Flag Aggregator: Scalable Distributed Training under Failures and Augmented Losses using Convex Optimization

Modern ML applications increasingly rely on complex deep learning models and large datasets. There has been an exponential growth in the amount of computation needed to train the largest models. Therefore, to scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model. However, a distributed setup is prone to Byzantine failures of individual nodes, components, and software. With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems. We define the quality of workers as reconstruction ratios in (0,1], and formulate aggregation as a Maximum Likelihood Estimation procedure using Beta densities. We show that the Regularized form of log-likelihood wrt subspace can be approximately solved using iterative least squares solver, and provide convergence guarantees using recent Convex Optimization landscape results. Our empirical findings demonstrate that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators. We evaluate our method in a distributed setup with a parameter server, and show simultaneous improvements in communication efficiency and accuracy across various tasks. The code is publicly available at https://github.com/hamidralmasi/FlagAggregator

  • 4 authors
·
Feb 12, 2023

Byzantine Resilience at Swarm Scale: A Decentralized Blocklist Protocol from Inter-robot Accusations

The Weighted-Mean Subsequence Reduced (W-MSR) algorithm, the state-of-the-art method for Byzantine-resilient design of decentralized multi-robot systems, is based on discarding outliers received over Linear Consensus Protocol (LCP). Although W-MSR provides well-understood theoretical guarantees relating robust network connectivity to the convergence of the underlying consensus, the method comes with several limitations preventing its use at scale: (1) the number of Byzantine robots, F, to tolerate should be known a priori, (2) the requirement that each robot maintains 2F+1 neighbors is impractical for large F, (3) information propagation is hindered by the requirement that F+1 robots independently make local measurements of the consensus property in order for the swarm's decision to change, and (4) W-MSR is specific to LCP and does not generalize to applications not implemented over LCP. In this work, we propose a Decentralized Blocklist Protocol (DBP) based on inter-robot accusations. Accusations are made on the basis of locally-made observations of misbehavior, and once shared by cooperative robots across the network are used as input to a graph matching algorithm that computes a blocklist. DBP generalizes to applications not implemented via LCP, is adaptive to the number of Byzantine robots, and allows for fast information propagation through the multi-robot system while simultaneously reducing the required network connectivity relative to W-MSR. On LCP-type applications, DBP reduces the worst-case connectivity requirement of W-MSR from (2F+1)-connected to (F+1)-connected and the number of cooperative observers required to propagate new information from F+1 to just 1 observer. We demonstrate empirically that our approach to Byzantine resilience scales to hundreds of robots on cooperative target tracking, time synchronization, and localization case studies.

  • 5 authors
·
Jan 17, 2023

DADAO: Decoupled Accelerated Decentralized Asynchronous Optimization

This work introduces DADAO: the first decentralized, accelerated, asynchronous, primal, first-order algorithm to minimize a sum of L-smooth and mu-strongly convex functions distributed over a given network of size n. Our key insight is based on modeling the local gradient updates and gossip communication procedures with separate independent Poisson Point Processes. This allows us to decouple the computation and communication steps, which can be run in parallel, while making the whole approach completely asynchronous, leading to communication acceleration compared to synchronous approaches. Our new method employs primal gradients and does not use a multi-consensus inner loop nor other ad-hoc mechanisms such as Error Feedback, Gradient Tracking, or a Proximal operator. By relating the inverse of the smallest positive eigenvalue of the Laplacian matrix chi_1 and the maximal resistance chi_2leq chi_1 of the graph to a sufficient minimal communication rate between the nodes of the network, we show that our algorithm requires O(nfrac{L{mu}}log(1{epsilon})) local gradients and only O(nchi_1chi_2frac{L{mu}}log(1{epsilon})) communications to reach a precision epsilon, up to logarithmic terms. Thus, we simultaneously obtain an accelerated rate for both computations and communications, leading to an improvement over state-of-the-art works, our simulations further validating the strength of our relatively unconstrained method. We also propose a SDP relaxation to find the optimal gossip rate of each edge minimizing the total number of communications for a given graph, resulting in faster convergence compared to standard approaches relying on uniform communication weights. Our source code is released on a public repository.

  • 2 authors
·
Jul 26, 2022

Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized Language Model Finetuning Using Shared Randomness

Language model training in distributed settings is limited by the communication cost of gradient exchanges. In this short note, we extend recent work from Malladi et al. (2023), using shared randomness to perform distributed fine-tuning with low bandwidth. The method is a natural decentralized extension of memory-efficient Simultaneous Perturbation Stochastic Approximation (SPSA). Each iteration, each machine seeds a Random Number Generator (RNG) to perform local reproducible perturbations on model weights and calculate and exchange scalar projected gradients, which are then used to update each model. By using a (machine, sample) identifier as the random seed, each model can regenerate one another's perturbations. As machines only exchange single-byte projected gradients, this is highly communication efficient. There are also potential privacy benefits, as projected gradients may be calculated on different training data, and models never access the other's data. Our approach not only drastically reduces communication bandwidth requirements but also accommodates dynamic addition or removal of machines during the training process and retains the memory-efficient and inference-only advantages of recent work. We perform proof-of-concept experiments to demonstrate the potential usefulness of this method, building off of rich literature on distributed optimization and memory-efficient training.

  • 5 authors
·
Jun 16, 2023

Gradient is All You Need?

In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.

  • 4 authors
·
Jun 16, 2023

Lost in the Noise: How Reasoning Models Fail with Contextual Distractors

Recent advances in reasoning models and agentic AI systems have led to an increased reliance on diverse external information. However, this shift introduces input contexts that are inherently noisy, a reality that current sanitized benchmarks fail to capture. We introduce NoisyBench, a comprehensive benchmark that systematically evaluates model robustness across 11 datasets in RAG, reasoning, alignment, and tool-use tasks against diverse noise types, including random documents, irrelevant chat histories, and hard negative distractors. Our evaluation reveals a catastrophic performance drop of up to 80% in state-of-the-art models when faced with contextual distractors. Crucially, we find that agentic workflows often amplify these errors by over-trusting noisy tool outputs, and distractors can trigger emergent misalignment even without adversarial intent. We find that prompting, context engineering, SFT, and outcome-reward only RL fail to ensure robustness; in contrast, our proposed Rationale-Aware Reward (RARE) significantly strengthens resilience by incentivizing the identification of helpful information within noise. Finally, we uncover an inverse scaling trend where increased test-time computation leads to worse performance in noisy settings and demonstrate via attention visualization that models disproportionately focus on distractor tokens, providing vital insights for building the next generation of robust, reasoning-capable agents.

kaist-ai KAIST AI
·
Jan 12 3

Vanishing Variance Problem in Fully Decentralized Neural-Network Systems

Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns by retaining training data on client devices and exclusively sharing locally-trained machine learning (ML) models with others. The primary distinction between the two lies in their approach to model aggregation: federated learning employs a centralized parameter server, whereas gossip learning adopts a fully decentralized mechanism, enabling direct model exchanges among nodes. This decentralized nature often positions gossip learning as less efficient compared to federated learning. Both methodologies involve a critical step: computing a representation of received ML models and integrating this representation into the existing model. Conventionally, this representation is derived by averaging the received models, exemplified by the FedAVG algorithm. Our findings suggest that this averaging approach inherently introduces a potential delay in model convergence. We identify the underlying cause and refer to it as the "vanishing variance" problem, where averaging across uncorrelated ML models undermines the optimal variance established by the Xavier weight initialization. Unlike federated learning where the central server ensures model correlation, and unlike traditional gossip learning which circumvents this problem through model partitioning and sampling, our research introduces a variance-corrected model averaging algorithm. This novel algorithm preserves the optimal variance needed during model averaging, irrespective of network topology or non-IID data distributions. Our extensive simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.

  • 4 authors
·
Apr 6, 2024

Noise-Robust and Resource-Efficient ADMM-based Federated Learning

Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load. We derive the proposed algorithm through solving the weighted least-squares (WLS) regression problem as an illustrative example. We first frame WLS regression as a distributed convex optimization problem over a federated network employing random scheduling for improved communication efficiency. We then apply the alternating direction method of multipliers (ADMM) to iteratively solve this problem. To counteract the detrimental effects of cumulative communication noise, we introduce a key modification by eliminating the dual variable and implementing a new local model update at each participating client. This subtle yet effective change results in using a single noisy global model update at each client instead of two, improving robustness against additive communication noise. Furthermore, we incorporate another modification enabling clients to continue local updates even when not selected by the server, leading to substantial performance improvements. Our theoretical analysis confirms the convergence of our algorithm in both mean and the mean-square senses, even when the server communicates with a random subset of clients over noisy links at each iteration. Numerical results validate the effectiveness of our proposed algorithm and corroborate our theoretical findings.

  • 4 authors
·
Sep 20, 2024

LLM4DSR: Leveraging Large Language Model for Denoising Sequential Recommendation

Sequential Recommenders generate recommendations based on users' historical interaction sequences. However, in practice, these collected sequences are often contaminated by noisy interactions, which significantly impairs recommendation performance. Accurately identifying such noisy interactions without additional information is particularly challenging due to the absence of explicit supervisory signals indicating noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, offer a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation presents notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the denoising task and the inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods.

  • 11 authors
·
Aug 15, 2024

ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs

Large Language Models (LLMs) still struggle with complex reasoning tasks. Motivated by the society of minds (Minsky, 1988), we propose ReConcile, a multi-model multi-agent framework designed as a round table conference among diverse LLM agents to foster diverse thoughts and discussion for improved consensus. ReConcile enhances the reasoning capabilities of LLMs by holding multiple rounds of discussion, learning to convince other agents to improve their answers, and employing a confidence-weighted voting mechanism. In each round, ReConcile initiates discussion between agents via a 'discussion prompt' that consists of (a) grouped answers and explanations generated by each agent in the previous round, (b) their uncertainties, and (c) demonstrations of answer-rectifying human explanations, used for convincing other agents. This discussion prompt enables each agent to revise their responses in light of insights from other agents. Once a consensus is reached and the discussion ends, ReConcile determines the final answer by leveraging the confidence of each agent in a weighted voting scheme. We implement ReConcile with ChatGPT, Bard, and Claude2 as the three agents. Our experimental results on various benchmarks demonstrate that ReConcile significantly enhances the reasoning performance of the agents (both individually and as a team), surpassing prior single-agent and multi-agent baselines by 7.7% and also outperforming GPT-4 on some of these datasets. We also experiment with GPT-4 itself as one of the agents in ReConcile and demonstrate that its initial performance also improves by absolute 10.0% through discussion and feedback from other agents. Finally, we also analyze the accuracy after every round and observe that ReConcile achieves better and faster consensus between agents, compared to a multi-agent debate baseline. Our code is available at: https://github.com/dinobby/ReConcile

  • 3 authors
·
Sep 22, 2023

Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks

We study a family of distributed stochastic optimization algorithms where gradients are sampled by a token traversing a network of agents in random-walk fashion. Typically, these random-walks are chosen to be Markov chains that asymptotically sample from a desired target distribution, and play a critical role in the convergence of the optimization iterates. In this paper, we take a novel approach by replacing the standard linear Markovian token by one which follows a nonlinear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined for any given 'base' Markov chain, the SRRW, parameterized by a positive scalar {\alpha}, is less likely to transition to states that were highly visited in the past, thus the name. In the context of MCMC sampling on a graph, a recent breakthrough in Doshi et al. (2023) shows that the SRRW achieves O(1/{\alpha}) decrease in the asymptotic variance for sampling. We propose the use of a 'generalized' version of the SRRW to drive token algorithms for distributed stochastic optimization in the form of stochastic approximation, termed SA-SRRW. We prove that the optimization iterate errors of the resulting SA-SRRW converge to zero almost surely and prove a central limit theorem, deriving the explicit form of the resulting asymptotic covariance matrix corresponding to iterate errors. This asymptotic covariance is always smaller than that of an algorithm driven by the base Markov chain and decreases at rate O(1/{\alpha}^2) - the performance benefit of using SRRW thereby amplified in the stochastic optimization context. Empirical results support our theoretical findings.

  • 3 authors
·
Jan 17, 2024

Improving the Model Consistency of Decentralized Federated Learning

To mitigate the privacy leakages and communication burdens of Federated Learning (FL), decentralized FL (DFL) discards the central server and each client only communicates with its neighbors in a decentralized communication network. However, existing DFL suffers from high inconsistency among local clients, which results in severe distribution shift and inferior performance compared with centralized FL (CFL), especially on heterogeneous data or sparse communication topology. To alleviate this issue, we propose two DFL algorithms named DFedSAM and DFedSAM-MGS to improve the performance of DFL. Specifically, DFedSAM leverages gradient perturbation to generate local flat models via Sharpness Aware Minimization (SAM), which searches for models with uniformly low loss values. DFedSAM-MGS further boosts DFedSAM by adopting Multiple Gossip Steps (MGS) for better model consistency, which accelerates the aggregation of local flat models and better balances communication complexity and generalization. Theoretically, we present improved convergence rates small Obig(1{KT}+1{T}+1{K^{1/2}T^{3/2}(1-lambda)^2}big) and small Obig(1{KT}+1{T}+lambda^Q+1{K^{1/2}T^{3/2}(1-lambda^Q)^2}big) in non-convex setting for DFedSAM and DFedSAM-MGS, respectively, where 1-lambda is the spectral gap of gossip matrix and Q is the number of MGS. Empirically, our methods can achieve competitive performance compared with CFL methods and outperform existing DFL methods.

  • 7 authors
·
Feb 8, 2023

Local Graph Clustering with Noisy Labels

The growing interest in machine learning problems over graphs with additional node information such as texts, images, or labels has popularized methods that require the costly operation of processing the entire graph. Yet, little effort has been made to the development of fast local methods (i.e. without accessing the entire graph) that extract useful information from such data. To that end, we propose a study of local graph clustering using noisy node labels as a proxy for additional node information. In this setting, nodes receive initial binary labels based on cluster affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently, a fraction of these labels is flipped. We investigate the benefits of incorporating noisy labels for local graph clustering. By constructing a weighted graph with such labels, we study the performance of graph diffusion-based local clustering method on both the original and the weighted graphs. From a theoretical perspective, we consider recovering an unknown target cluster with a single seed node in a random graph with independent noisy node labels. We provide sufficient conditions on the label noise under which, with high probability, using diffusion in the weighted graph yields a more accurate recovery of the target cluster. This approach proves more effective than using the given labels alone or using diffusion in the label-free original graph. Empirically, we show that reliable node labels can be obtained with just a few samples from an attributed graph. Moreover, utilizing these labels via diffusion in the weighted graph leads to significantly better local clustering performance across several real-world datasets, improving F1 scores by up to 13%.

  • 3 authors
·
Oct 12, 2023

CamI2V: Camera-Controlled Image-to-Video Diffusion Model

Recent advancements have integrated camera pose as a user-friendly and physics-informed condition in video diffusion models, enabling precise camera control. In this paper, we identify one of the key challenges as effectively modeling noisy cross-frame interactions to enhance geometry consistency and camera controllability. We innovatively associate the quality of a condition with its ability to reduce uncertainty and interpret noisy cross-frame features as a form of noisy condition. Recognizing that noisy conditions provide deterministic information while also introducing randomness and potential misguidance due to added noise, we propose applying epipolar attention to only aggregate features along corresponding epipolar lines, thereby accessing an optimal amount of noisy conditions. Additionally, we address scenarios where epipolar lines disappear, commonly caused by rapid camera movements, dynamic objects, or occlusions, ensuring robust performance in diverse environments. Furthermore, we develop a more robust and reproducible evaluation pipeline to address the inaccuracies and instabilities of existing camera control metrics. Our method achieves a 25.64% improvement in camera controllability on the RealEstate10K dataset without compromising dynamics or generation quality and demonstrates strong generalization to out-of-domain images. Training and inference require only 24GB and 12GB of memory, respectively, for 16-frame sequences at 256x256 resolution. We will release all checkpoints, along with training and evaluation code. Dynamic videos are best viewed at https://zgctroy.github.io/CamI2V.

  • 6 authors
·
Oct 21, 2024

Semi-Supervised Learning for Multi-Task Scene Understanding by Neural Graph Consensus

We address the challenging problem of semi-supervised learning in the context of multiple visual interpretations of the world by finding consensus in a graph of neural networks. Each graph node is a scene interpretation layer, while each edge is a deep net that transforms one layer at one node into another from a different node. During the supervised phase edge networks are trained independently. During the next unsupervised stage edge nets are trained on the pseudo-ground truth provided by consensus among multiple paths that reach the nets' start and end nodes. These paths act as ensemble teachers for any given edge and strong consensus is used for high-confidence supervisory signal. The unsupervised learning process is repeated over several generations, in which each edge becomes a "student" and also part of different ensemble "teachers" for training other students. By optimizing such consensus between different paths, the graph reaches consistency and robustness over multiple interpretations and generations, in the face of unknown labels. We give theoretical justifications of the proposed idea and validate it on a large dataset. We show how prediction of different representations such as depth, semantic segmentation, surface normals and pose from RGB input could be effectively learned through self-supervised consensus in our graph. We also compare to state-of-the-art methods for multi-task and semi-supervised learning and show superior performance.

  • 6 authors
·
Oct 2, 2020 1

Benchmarking LLMs' Swarm intelligence

Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) when operating under strict constraints-such as limited local perception and communication, characteristic of natural swarms-remains largely unexplored, particularly concerning the nuances of swarm intelligence. Existing benchmarks often do not fully capture the unique challenges of decentralized coordination that arise when agents operate with incomplete spatio-temporal information. To bridge this gap, we introduce SwarmBench, a novel benchmark designed to systematically evaluate the swarm intelligence capabilities of LLMs acting as decentralized agents. SwarmBench features five foundational MAS coordination tasks within a configurable 2D grid environment, forcing agents to rely primarily on local sensory input (k x k view) and local communication. We propose metrics for coordination effectiveness and analyze emergent group dynamics. Evaluating several leading LLMs in a zero-shot setting, we find significant performance variations across tasks, highlighting the difficulties posed by local information constraints. While some coordination emerges, results indicate limitations in robust planning and strategy formation under uncertainty in these decentralized scenarios. Assessing LLMs under swarm-like conditions is crucial for realizing their potential in future decentralized systems. We release SwarmBench as an open, extensible toolkit-built upon a customizable and scalable physical system with defined mechanical properties. It provides environments, prompts, evaluation scripts, and the comprehensive experimental datasets generated, aiming to foster reproducible research into LLM-based MAS coordination and the theoretical underpinnings of Embodied MAS. Our code repository is available at https://github.com/x66ccff/swarmbench.

  • 4 authors
·
May 7, 2025

Noise-aware Learning from Web-crawled Image-Text Data for Image Captioning

Image captioning is one of the straightforward tasks that can take advantage of large-scale web-crawled data which provides rich knowledge about the visual world for a captioning model. However, since web-crawled data contains image-text pairs that are aligned at different levels, the inherent noises (e.g., misaligned pairs) make it difficult to learn a precise captioning model. While the filtering strategy can effectively remove noisy data, however, it leads to a decrease in learnable knowledge and sometimes brings about a new problem of data deficiency. To take the best of both worlds, we propose a noise-aware learning framework, which learns rich knowledge from the whole web-crawled data while being less affected by the noises. This is achieved by the proposed quality controllable model, which is learned using alignment levels of the image-text pairs as an additional control signal during training. The alignment-conditioned training allows the model to generate high-quality captions of well-aligned by simply setting the control signal to desired alignment level at inference time. Through in-depth analysis, we show that our controllable captioning model is effective in handling noise. In addition, with two tasks of zero-shot captioning and text-to-image retrieval using generated captions (i.e., self-retrieval), we also demonstrate our model can produce high-quality captions in terms of descriptiveness and distinctiveness. Code is available at https://github.com/kakaobrain/noc.

  • 4 authors
·
Dec 27, 2022

Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?

This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, base LLM drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods. The source code is publicly available at: https://github.com/tmlr-group/NoisyRationales.

  • 6 authors
·
Oct 31, 2024

MoDeST: Bridging the Gap between Federated and Decentralized Learning with Decentralized Sampling

Federated and decentralized machine learning leverage end-user devices for privacy-preserving training of models at lower operating costs than within a data center. In a round of Federated Learning (FL), a random sample of participants trains locally, then a central server aggregates the local models to produce a single model for the next round. In a round of Decentralized Learning (DL), all participants train locally and then aggregate with their immediate neighbors, resulting in many local models with residual variance between them. On the one hand, FL's sampling and lower model variance provides lower communication costs and faster convergence. On the other hand, DL removes the need for a central server and distributes the communication costs more evenly amongst nodes, albeit at a larger total communication cost and slower convergence. In this paper, we present MoDeST: Mostly-Consistent Decentralized Sampling Training. MoDeST implements decentralized sampling in which a random subset of nodes is responsible for training and aggregation every round: this provides the benefits of both FL and DL without their traditional drawbacks. Our evaluation of MoDeST on four common learning tasks: (i) confirms convergence as fast as FL, (ii) shows a 3x-14x reduction in communication costs compared to DL, and (iii) demonstrates that MoDeST quickly adapts to nodes joining, leaving, or failing, even when 80% of all nodes become unresponsive.

  • 5 authors
·
Feb 27, 2023

NoisyGRPO: Incentivizing Multimodal CoT Reasoning via Noise Injection and Bayesian Estimation

Reinforcement learning (RL) has shown promise in enhancing the general Chain-of-Thought (CoT) reasoning capabilities of multimodal large language models (MLLMs). However, when applied to improve general CoT reasoning, existing RL frameworks often struggle to generalize beyond the training distribution. To address this, we propose NoisyGRPO, a systematic multimodal RL framework that introduces controllable noise into visual inputs for enhanced exploration and explicitly models the advantage estimation process via a Bayesian framework. Specifically, NoisyGRPO improves RL training by: (1) Noise-Injected Exploration Policy: Perturbing visual inputs with Gaussian noise to encourage exploration across a wider range of visual scenarios; and (2) Bayesian Advantage Estimation: Formulating advantage estimation as a principled Bayesian inference problem, where the injected noise level serves as a prior and the observed trajectory reward as the likelihood. This Bayesian modeling fuses both sources of information to compute a robust posterior estimate of trajectory advantage, effectively guiding MLLMs to prefer visually grounded trajectories over noisy ones. Experiments on standard CoT quality, general capability, and hallucination benchmarks demonstrate that NoisyGRPO substantially improves generalization and robustness, especially in RL settings with small-scale MLLMs such as Qwen2.5-VL 3B. The project page is available at https://artanic30.github.io/project_pages/NoisyGRPO/.

  • 4 authors
·
Oct 23, 2025

Flip-Flop Consistency: Unsupervised Training for Robustness to Prompt Perturbations in LLMs

Large Language Models (LLMs) often produce inconsistent answers when faced with different phrasings of the same prompt. In this paper, we propose Flip-Flop Consistency (F^2C), an unsupervised training method that improves robustness to such perturbations. F^2C is composed of two key components. The first, Consensus Cross-Entropy (CCE), uses a majority vote across prompt variations to create a hard pseudo-label. The second is a representation alignment loss that pulls lower-confidence and non-majority predictors toward the consensus established by high-confidence, majority-voting variations. We evaluate our method on 11 datasets spanning four NLP tasks, with 4-15 prompt variations per dataset. On average, F^2C raises observed agreement by 11.62%, improves mean F_1 by 8.94%, and reduces performance variance across formats by 3.29%. In out-of-domain evaluations, F^2C generalizes effectively, increasing F_1 and agreement while decreasing variance across most source-target pairs. Finally, when trained on only a subset of prompt perturbations and evaluated on held-out formats, F^2C consistently improves both performance and agreement while reducing variance. These findings highlight F^2C as an effective unsupervised method for enhancing LLM consistency, performance, and generalization under prompt perturbations. Code is available at https://github.com/ParsaHejabi/Flip-Flop-Consistency-Unsupervised-Training-for-Robustness-to-Prompt-Perturbations-in-LLMs.

  • 4 authors
·
Oct 15, 2025

Stochastic CHAOS: Why Deterministic Inference Kills, and Distributional Variability Is the Heartbeat of Artifical Cognition

Deterministic inference is a comforting ideal in classical software: the same program on the same input should always produce the same output. As large language models move into real-world deployment, this ideal has been imported wholesale into inference stacks. Recent work from the Thinking Machines Lab has presented a detailed analysis of nondeterminism in LLM inference, showing how batch-invariant kernels and deterministic attention can enforce bitwise-identical outputs, positioning deterministic inference as a prerequisite for reproducibility and enterprise reliability. In this paper, we take the opposite stance. We argue that, for LLMs, deterministic inference kills. It kills the ability to model uncertainty, suppresses emergent abilities, collapses reasoning into a single brittle path, and weakens safety alignment by hiding tail risks. LLMs implement conditional distributions over outputs, not fixed functions. Collapsing these distributions to a single canonical completion may appear reassuring, but it systematically conceals properties central to artificial cognition. We instead advocate Stochastic CHAOS, treating distributional variability as a signal to be measured and controlled. Empirically, we show that deterministic inference is systematically misleading. Single-sample deterministic evaluation underestimates both capability and fragility, masking failure probability under paraphrases and noise. Phase-like transitions associated with emergent abilities disappear under greedy decoding. Multi-path reasoning degrades when forced onto deterministic backbones, reducing accuracy and diagnostic insight. Finally, deterministic evaluation underestimates safety risk by hiding rare but dangerous behaviors that appear only under multi-sample evaluation.

  • 10 authors
·
Jan 12 2

Anarchic Federated Learning

Present-day federated learning (FL) systems deployed over edge networks consists of a large number of workers with high degrees of heterogeneity in data and/or computing capabilities, which call for flexible worker participation in terms of timing, effort, data heterogeneity, etc. To satisfy the need for flexible worker participation, we consider a new FL paradigm called "Anarchic Federated Learning" (AFL) in this paper. In stark contrast to conventional FL models, each worker in AFL has the freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, such chaotic worker behaviors in AFL impose many new open questions in algorithm design. In particular, it remains unclear whether one could develop convergent AFL training algorithms, and if yes, under what conditions and how fast the achievable convergence speed is. Toward this end, we propose two Anarchic Federated Averaging (AFA) algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFA-CD and AFA-CS, respectively. Somewhat surprisingly, we show that, under mild anarchic assumptions, both AFL algorithms achieve the best known convergence rate as the state-of-the-art algorithms for conventional FL. Moreover, they retain the highly desirable {\em linear speedup effect} with respect of both the number of workers and local steps in the new AFL paradigm. We validate the proposed algorithms with extensive experiments on real-world datasets.

  • 4 authors
·
Aug 22, 2021

CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection

Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff

  • 4 authors
·
Feb 16, 2025

Formal Model-Driven Analysis of Resilience of GossipSub to Attacks from Misbehaving Peers

GossipSub is a new peer-to-peer communication protocol designed to counter attacks from misbehaving peers by controlling what information is sent and to whom, via a score function computed by each peer that captures positive and negative behaviors of its neighbors. The score function depends on several parameters (weights, caps, thresholds) that can be configured by applications using GossipSub. The specification for GossipSub is written in English and its resilience to attacks from misbehaving peers is supported empirically by emulation testing using an implementation in Golang. In this work we take a foundational approach to understanding the resilience of GossipSub to attacks from misbehaving peers. We build the first formal model of GossipSub, using the ACL2s theorem prover. Our model is officially endorsed by the GossipSub developers. It can simulate GossipSub networks of arbitrary size and topology, with arbitrarily configured peers, and can be used to prove and disprove theorems about the protocol. We formalize fundamental security properties stating that the score function is fair, penalizes bad behavior, and rewards good behavior. We prove that the score function is always fair, but can be configured in ways that either penalize good behavior or ignore bad behavior. Using our model, we run GossipSub with the specific configurations for two popular real-world applications: the FileCoin and Eth2.0 blockchains. We show that all properties hold for FileCoin. However, given any Eth2.0 network (of any topology and size) with any number of potentially misbehaving peers, we can synthesize attacks where these peers are able to continuously misbehave by never forwarding topic messages, while maintaining positive scores so that they are never pruned from the network by GossipSub.

  • 4 authors
·
Dec 9, 2022

A Single Merging Suffices: Recovering Server-based Learning Performance in Decentralized Learning

Decentralized learning provides a scalable alternative to traditional parameter-server-based training, yet its performance is often hindered by limited peer-to-peer communication. In this paper, we study how communication should be scheduled over time, including determining when and how frequently devices synchronize. Our empirical results show that concentrating communication budgets in the later stages of decentralized training markedly improves global generalization. Surprisingly, we uncover that fully connected communication at the final step, implemented by a single global merging, is sufficient to match the performance of server-based training. We further show that low communication in decentralized learning preserves the mergeability of local models throughout training. Our theoretical contributions, which explains these phenomena, are first to establish that the globally merged model of decentralized SGD can converge faster than centralized mini-batch SGD. Technically, we novelly reinterpret part of the discrepancy among local models, which were previously considered as detrimental noise, as constructive components that accelerate convergence. This work challenges the common belief that decentralized learning generalizes poorly under data heterogeneity and limited communication, while offering new insights into model merging and neural network loss landscapes.

  • 5 authors
·
Jul 9, 2025

Robust Collaborative Learning with Linear Gradient Overhead

Collaborative learning algorithms, such as distributed SGD (or D-SGD), are prone to faulty machines that may deviate from their prescribed algorithm because of software or hardware bugs, poisoned data or malicious behaviors. While many solutions have been proposed to enhance the robustness of D-SGD to such machines, previous works either resort to strong assumptions (trusted server, homogeneous data, specific noise model) or impose a gradient computational cost that is several orders of magnitude higher than that of D-SGD. We present MoNNA, a new algorithm that (a) is provably robust under standard assumptions and (b) has a gradient computation overhead that is linear in the fraction of faulty machines, which is conjectured to be tight. Essentially, MoNNA uses Polyak's momentum of local gradients for local updates and nearest-neighbor averaging (NNA) for global mixing, respectively. While MoNNA is rather simple to implement, its analysis has been more challenging and relies on two key elements that may be of independent interest. Specifically, we introduce the mixing criterion of (alpha, lambda)-reduction to analyze the non-linear mixing of non-faulty machines, and present a way to control the tension between the momentum and the model drifts. We validate our theory by experiments on image classification and make our code available at https://github.com/LPD-EPFL/robust-collaborative-learning.

  • 6 authors
·
Sep 22, 2022

Understanding the Effect of Noise in LLM Training Data with Algorithmic Chains of Thought

During both pretraining and fine-tuning, Large Language Models (LLMs) are trained on trillions of tokens of text of widely varying quality. Both phases of training typically involve heuristically filtering out ``low-quality'' or noisy training samples, yet little is known quantitatively about how the type or intensity of noise affects downstream performance. In this work, we study how noise in chain of thought (CoT) impacts task performance in the highly-controlled setting of algorithmically solvable tasks. First, we develop the Traced Integer (TInt) framework to generate highly customizable noised execution traces for any arithmetic function on lists of integers. We then define two types of noise: static noise, a local form of noise which is applied after the CoT trace is computed, and dynamic noise, a global form of noise which propagates errors in the trace as it is computed. We then evaluate the test performance of pretrained models both prompted and fine-tuned on noised datasets with varying levels of dataset contamination and intensity. We find fine-tuned models are extremely robust to high levels of static noise but struggle significantly more with lower levels of dynamic noise. In contrast, few-shot prompted models appear more sensitive to even static noise. We conclude with a discussion of how our findings impact noise filtering best-practices, in particular emphasizing the importance of removing samples containing destructive dynamic noise with global errors.

  • 2 authors
·
Feb 6, 2024

Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling

While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.

  • 5 authors
·
Mar 11, 2025 2

Two Minds Better Than One: Collaborative Reward Modeling for LLM Alignment

Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human values. However, noisy preferences in human feedback can lead to reward misgeneralization - a phenomenon where reward models learn spurious correlations or overfit to noisy preferences, which poses important challenges to the generalization of RMs. This paper systematically analyzes the characteristics of preference pairs and aims to identify how noisy preferences differ from human-aligned preferences in reward modeling. Our analysis reveals that noisy preferences are difficult for RMs to fit, as they cause sharp training fluctuations and irregular gradient updates. These distinctive dynamics suggest the feasibility of identifying and excluding such noisy preferences. Empirical studies demonstrate that policy LLM optimized with a reward model trained on the full preference dataset, which includes substantial noise, performs worse than the one trained on a subset of exclusively high quality preferences. To address this challenge, we propose an online Collaborative Reward Modeling (CRM) framework to achieve robust preference learning through peer review and curriculum learning. In particular, CRM maintains two RMs that collaboratively filter potential noisy preferences by peer-reviewing each other's data selections. Curriculum learning synchronizes the capabilities of two models, mitigating excessive disparities to promote the utility of peer review. Extensive experiments demonstrate that CRM significantly enhances RM generalization, with up to 9.94 points improvement on RewardBench under an extreme 40\% noise. Moreover, CRM can seamlessly extend to implicit-reward alignment methods, offering a robust and versatile alignment strategy.

  • 12 authors
·
May 15, 2025

A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates

We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.

  • 4 authors
·
Jun 21, 2022