Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOrder Theory in the Context of Machine Learning
The paper ``Tropical Geometry of Deep Neural Networks'' by L. Zhang et al. introduces an equivalence between integer-valued neural networks (IVNN) with ReLU_{t} and tropical rational functions, which come with a map to polytopes. Here, IVNN refers to a network with integer weights but real biases, and ReLU_{t} is defined as ReLU_{t}(x)=max(x,t) for tinRcup{-infty}. For every poset with n points, there exists a corresponding order polytope, i.e., a convex polytope in the unit cube [0,1]^n whose coordinates obey the inequalities of the poset. We study neural networks whose associated polytope is an order polytope. We then explain how posets with four points induce neural networks that can be interpreted as 2times 2 convolutional filters. These poset filters can be added to any neural network, not only IVNN. Similarly to maxout, poset pooling filters update the weights of the neural network during backpropagation with more precision than average pooling, max pooling, or mixed pooling, without the need to train extra parameters. We report experiments that support our statements. We also define the structure of algebra over the operad of posets on poset neural networks and tropical polynomials. This formalism allows us to study the composition of poset neural network arquitectures and the effect on their corresponding Newton polytopes, via the introduction of the generalization of two operations on polytopes: the Minkowski sum and the convex envelope.
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89.0\% and 82.1\% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at https://github.com/tensorflow/models/tree/master/research/deeplab.
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify good video architectures, as most methods obtain similar performance on existing small-scale benchmarks. This paper re-evaluates state-of-the-art architectures in light of the new Kinetics Human Action Video dataset. Kinetics has two orders of magnitude more data, with 400 human action classes and over 400 clips per class, and is collected from realistic, challenging YouTube videos. We provide an analysis on how current architectures fare on the task of action classification on this dataset and how much performance improves on the smaller benchmark datasets after pre-training on Kinetics. We also introduce a new Two-Stream Inflated 3D ConvNet (I3D) that is based on 2D ConvNet inflation: filters and pooling kernels of very deep image classification ConvNets are expanded into 3D, making it possible to learn seamless spatio-temporal feature extractors from video while leveraging successful ImageNet architecture designs and even their parameters. We show that, after pre-training on Kinetics, I3D models considerably improve upon the state-of-the-art in action classification, reaching 80.9% on HMDB-51 and 98.0% on UCF-101.
SPANet: Frequency-balancing Token Mixer using Spectral Pooling Aggregation Modulation
Recent studies show that self-attentions behave like low-pass filters (as opposed to convolutions) and enhancing their high-pass filtering capability improves model performance. Contrary to this idea, we investigate existing convolution-based models with spectral analysis and observe that improving the low-pass filtering in convolution operations also leads to performance improvement. To account for this observation, we hypothesize that utilizing optimal token mixers that capture balanced representations of both high- and low-frequency components can enhance the performance of models. We verify this by decomposing visual features into the frequency domain and combining them in a balanced manner. To handle this, we replace the balancing problem with a mask filtering problem in the frequency domain. Then, we introduce a novel token-mixer named SPAM and leverage it to derive a MetaFormer model termed as SPANet. Experimental results show that the proposed method provides a way to achieve this balance, and the balanced representations of both high- and low-frequency components can improve the performance of models on multiple computer vision tasks. Our code is available at https://doranlyong.github.io/projects/spanet/{https://doranlyong.github.io/projects/spanet/}.
AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling
Pooling layers are essential building blocks of convolutional neural networks (CNNs), to reduce computational overhead and increase the receptive fields of proceeding convolutional operations. Their goal is to produce downsampled volumes that closely resemble the input volume while, ideally, also being computationally and memory efficient. Meeting both these requirements remains a challenge. To this end, we propose an adaptive and exponentially weighted pooling method: adaPool. Our method learns a regional-specific fusion of two sets of pooling kernels that are based on the exponent of the Dice-Sorensen coefficient and the exponential maximum, respectively. AdaPool improves the preservation of detail on a range of tasks including image and video classification and object detection. A key property of adaPool is its bidirectional nature. In contrast to common pooling methods, the learned weights can also be used to upsample activation maps. We term this method adaUnPool. We evaluate adaUnPool on image and video super-resolution and frame interpolation. For benchmarking, we introduce Inter4K, a novel high-quality, high frame-rate video dataset. Our experiments demonstrate that adaPool systematically achieves better results across tasks and backbones, while introducing a minor additional computational and memory overhead.
L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems. While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), recurrent neural networks, and graph-based neural networks, have limitations. These approaches often focus singularly on the temporal dimension or require complex architectures to exploit spatial interrelationships within multivariate time series data. To address these limitations, we introduce L-SFAN, a lightweight CNN architecture incorporating 2D filters designed to meticulously capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors. Our proposed model, enhanced with an oriented global pooling layer and multi-head self-attention mechanism, prioritizes critical features to better understand CLBP and achieves competitive classification accuracy. Experimental results on the EmoPain database demonstrate that our approach not only enhances performance metrics with significantly fewer parameters but also promotes model interpretability, offering valuable insights for clinicians in managing CLBP. This advancement underscores the potential of AI in transforming healthcare practices for chronic conditions like CLBP, providing a sophisticated framework for the nuanced analysis of complex biomedical data.
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.
On filter design in deep convolutional neural network
The deep convolutional neural network (DCNN) in computer vision has given promising results. It is widely applied in many areas, from medicine, agriculture, self-driving car, biometric system, and almost all computer vision-based applications. Filters or weights are the critical elements responsible for learning in DCNN. Backpropagation has been the primary learning algorithm for DCNN and provides promising results, but the size and numbers of the filters remain hyper-parameters. Various studies have been done in the last decade on semi-supervised, self-supervised, and unsupervised methods and their properties. The effects of filter initialization, size-shape selection, and the number of filters on learning and optimization have not been investigated in a separate publication to collate all the options. Such attributes are often treated as hyper-parameters and lack mathematical understanding. Computer vision algorithms have many limitations in real-life applications, and understanding the learning process is essential to have some significant improvement. To the best of our knowledge, no separate investigation has been published discussing the filters; this is our primary motivation. This study focuses on arguments for choosing specific physical parameters of filters, initialization, and learning technic over scattered methods. The promising unsupervised approaches have been evaluated. Additionally, the limitations, current challenges, and future scope have been discussed in this paper.
Refining activation downsampling with SoftPool
Convolutional Neural Networks (CNNs) use pooling to decrease the size of activation maps. This process is crucial to increase the receptive fields and to reduce computational requirements of subsequent convolutions. An important feature of the pooling operation is the minimization of information loss, with respect to the initial activation maps, without a significant impact on the computation and memory overhead. To meet these requirements, we propose SoftPool: a fast and efficient method for exponentially weighted activation downsampling. Through experiments across a range of architectures and pooling methods, we demonstrate that SoftPool can retain more information in the reduced activation maps. This refined downsampling leads to improvements in a CNN's classification accuracy. Experiments with pooling layer substitutions on ImageNet1K show an increase in accuracy over both original architectures and other pooling methods. We also test SoftPool on video datasets for action recognition. Again, through the direct replacement of pooling layers, we observe consistent performance improvements while computational loads and memory requirements remain limited.
Adversarial Robustness through the Lens of Convolutional Filters
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high confidence. An common defense mechanism is regularization through adversarial training which injects worst-case perturbations back into training to strengthen the decision boundaries, and to reduce overfitting. In this context, we perform an investigation of 3x3 convolution filters that form in adversarially-trained models. Filters are extracted from 71 public models of the linf-RobustBench CIFAR-10/100 and ImageNet1k leaderboard and compared to filters extracted from models built on the same architectures but trained without robust regularization. We observe that adversarially-robust models appear to form more diverse, less sparse, and more orthogonal convolution filters than their normal counterparts. The largest differences between robust and normal models are found in the deepest layers, and the very first convolution layer, which consistently and predominantly forms filters that can partially eliminate perturbations, irrespective of the architecture. Data & Project website: https://github.com/paulgavrikov/cvpr22w_RobustnessThroughTheLens
Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs
We investigate the design of pooling methods used to summarize the outputs of transformer embedding models, primarily motivated by reinforcement learning and vision applications. This work considers problems where a subset of the input vectors contains requisite information for a downstream task (signal) while the rest are distractors (noise). By framing pooling as vector quantization with the goal of minimizing signal loss, we demonstrate that the standard methods used to aggregate transformer outputs, AvgPool, MaxPool, and ClsToken, are vulnerable to performance collapse as the signal-to-noise ratio (SNR) of inputs fluctuates. We then show that an attention-based adaptive pooling method can approximate the signal-optimal vector quantizer within derived error bounds for any SNR. Our theoretical results are first validated by supervised experiments on a synthetic dataset designed to isolate the SNR problem, then generalized to standard relational reasoning, multi-agent reinforcement learning, and vision benchmarks with noisy observations, where transformers with adaptive pooling display superior robustness across tasks.
Beta-Rank: A Robust Convolutional Filter Pruning Method For Imbalanced Medical Image Analysis
As deep neural networks include a high number of parameters and operations, it can be a challenge to implement these models on devices with limited computational resources. Despite the development of novel pruning methods toward resource-efficient models, it has become evident that these models are not capable of handling "imbalanced" and "limited number of data points". We proposed a novel filter pruning method by considering the input and output of filters along with the values of the filters that deal with imbalanced datasets better than others. Our pruning method considers the fact that all information about the importance of a filter may not be reflected in the value of the filter. Instead, it is reflected in the changes made to the data after the filter is applied to it. In this work, three methods are compared with the same training conditions except for the ranking values of each method, and 14 methods are compared from other papers. We demonstrated that our model performed significantly better than other methods for imbalanced medical datasets. For example, when we removed up to 58% of FLOPs for the IDRID dataset and up to 45% for the ISIC dataset, our model was able to yield an equivalent (or even superior) result to the baseline model. To evaluate FLOP and parameter reduction using our model in real-world settings, we built a smartphone app, where we demonstrated a reduction of up to 79% in memory usage and 72% in prediction time. All codes and parameters for training different models are available at https://github.com/mohofar/Beta-Rank
Neural Networks as Explicit Word-Based Rules
Filters of convolutional networks used in computer vision are often visualized as image patches that maximize the response of the filter. We use the same approach to interpret weight matrices in simple architectures for natural language processing tasks. We interpret a convolutional network for sentiment classification as word-based rules. Using the rule, we recover the performance of the original model.
Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?
Convolutional networks and vision transformers have different forms of pairwise interactions, pooling across layers and pooling at the end of the network. Does the latter really need to be different? As a by-product of pooling, vision transformers provide spatial attention for free, but this is most often of low quality unless self-supervised, which is not well studied. Is supervision really the problem? In this work, we develop a generic pooling framework and then we formulate a number of existing methods as instantiations. By discussing the properties of each group of methods, we derive SimPool, a simple attention-based pooling mechanism as a replacement of the default one for both convolutional and transformer encoders. We find that, whether supervised or self-supervised, this improves performance on pre-training and downstream tasks and provides attention maps delineating object boundaries in all cases. One could thus call SimPool universal. To our knowledge, we are the first to obtain attention maps in supervised transformers of at least as good quality as self-supervised, without explicit losses or modifying the architecture. Code at: https://github.com/billpsomas/simpool.
RSFNet: A White-Box Image Retouching Approach using Region-Specific Color Filters
Retouching images is an essential aspect of enhancing the visual appeal of photos. Although users often share common aesthetic preferences, their retouching methods may vary based on their individual preferences. Therefore, there is a need for white-box approaches that produce satisfying results and enable users to conveniently edit their images simultaneously. Recent white-box retouching methods rely on cascaded global filters that provide image-level filter arguments but cannot perform fine-grained retouching. In contrast, colorists typically employ a divide-and-conquer approach, performing a series of region-specific fine-grained enhancements when using traditional tools like Davinci Resolve. We draw on this insight to develop a white-box framework for photo retouching using parallel region-specific filters, called RSFNet. Our model generates filter arguments (e.g., saturation, contrast, hue) and attention maps of regions for each filter simultaneously. Instead of cascading filters, RSFNet employs linear summations of filters, allowing for a more diverse range of filter classes that can be trained more easily. Our experiments demonstrate that RSFNet achieves state-of-the-art results, offering satisfying aesthetic appeal and increased user convenience for editable white-box retouching.
Token Pooling in Vision Transformers
Despite the recent success in many applications, the high computational requirements of vision transformers limit their use in resource-constrained settings. While many existing methods improve the quadratic complexity of attention, in most vision transformers, self-attention is not the major computation bottleneck, e.g., more than 80% of the computation is spent on fully-connected layers. To improve the computational complexity of all layers, we propose a novel token downsampling method, called Token Pooling, efficiently exploiting redundancies in the images and intermediate token representations. We show that, under mild assumptions, softmax-attention acts as a high-dimensional low-pass (smoothing) filter. Thus, its output contains redundancy that can be pruned to achieve a better trade-off between the computational cost and accuracy. Our new technique accurately approximates a set of tokens by minimizing the reconstruction error caused by downsampling. We solve this optimization problem via cost-efficient clustering. We rigorously analyze and compare to prior downsampling methods. Our experiments show that Token Pooling significantly improves the cost-accuracy trade-off over the state-of-the-art downsampling. Token Pooling is a simple and effective operator that can benefit many architectures. Applied to DeiT, it achieves the same ImageNet top-1 accuracy using 42% fewer computations.
Robust Attentional Aggregation of Deep Feature Sets for Multi-view 3D Reconstruction
We study the problem of recovering an underlying 3D shape from a set of images. Existing learning based approaches usually resort to recurrent neural nets, e.g., GRU, or intuitive pooling operations, e.g., max/mean poolings, to fuse multiple deep features encoded from input images. However, GRU based approaches are unable to consistently estimate 3D shapes given different permutations of the same set of input images as the recurrent unit is permutation variant. It is also unlikely to refine the 3D shape given more images due to the long-term memory loss of GRU. Commonly used pooling approaches are limited to capturing partial information, e.g., max/mean values, ignoring other valuable features. In this paper, we present a new feed-forward neural module, named AttSets, together with a dedicated training algorithm, named FASet, to attentively aggregate an arbitrarily sized deep feature set for multi-view 3D reconstruction. The AttSets module is permutation invariant, computationally efficient and flexible to implement, while the FASet algorithm enables the AttSets based network to be remarkably robust and generalize to an arbitrary number of input images. We thoroughly evaluate FASet and the properties of AttSets on multiple large public datasets. Extensive experiments show that AttSets together with FASet algorithm significantly outperforms existing aggregation approaches.
On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning
Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem.
Data Filtering Networks
Large training sets have become a cornerstone of machine learning and are the foundation for recent advances in language modeling and multimodal learning. While data curation for pre-training is often still ad-hoc, one common paradigm is to first collect a massive pool of data from the Web and then filter this candidate pool down to an actual training set via various heuristics. In this work, we study the problem of learning a data filtering network (DFN) for this second step of filtering a large uncurated dataset. Our key finding is that the quality of a network for filtering is distinct from its performance on downstream tasks: for instance, a model that performs well on ImageNet can yield worse training sets than a model with low ImageNet accuracy that is trained on a small amount of high-quality data. Based on our insights, we construct new data filtering networks that induce state-of-the-art image-text datasets. Specifically, our best performing dataset DFN-5B enables us to train state-of-the-art models for their compute budgets: among other improvements on a variety of tasks, a ViT-H trained on our dataset achieves 83.0% zero-shot transfer accuracy on ImageNet, out-performing models trained on other datasets such as LAION-2B, DataComp-1B, or OpenAI's WIT. In order to facilitate further research in dataset design, we also release a new 2 billion example dataset DFN-2B and show that high performance data filtering networks can be trained from scratch using only publicly available data.
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
In an effort to understand the meaning of the intermediate representations captured by deep networks, recent papers have tried to associate specific semantic concepts to individual neural network filter responses, where interesting correlations are often found, largely by focusing on extremal filter responses. In this paper, we show that this approach can favor easy-to-interpret cases that are not necessarily representative of the average behavior of a representation. A more realistic but harder-to-study hypothesis is that semantic representations are distributed, and thus filters must be studied in conjunction. In order to investigate this idea while enabling systematic visualization and quantification of multiple filter responses, we introduce the Net2Vec framework, in which semantic concepts are mapped to vectorial embeddings based on corresponding filter responses. By studying such embeddings, we are able to show that 1., in most cases, multiple filters are required to code for a concept, that 2., often filters are not concept specific and help encode multiple concepts, and that 3., compared to single filter activations, filter embeddings are able to better characterize the meaning of a representation and its relationship to other concepts.
Group Generalized Mean Pooling for Vision Transformer
Vision Transformer (ViT) extracts the final representation from either class token or an average of all patch tokens, following the architecture of Transformer in Natural Language Processing (NLP) or Convolutional Neural Networks (CNNs) in computer vision. However, studies for the best way of aggregating the patch tokens are still limited to average pooling, while widely-used pooling strategies, such as max and GeM pooling, can be considered. Despite their effectiveness, the existing pooling strategies do not consider the architecture of ViT and the channel-wise difference in the activation maps, aggregating the crucial and trivial channels with the same importance. In this paper, we present Group Generalized Mean (GGeM) pooling as a simple yet powerful pooling strategy for ViT. GGeM divides the channels into groups and computes GeM pooling with a shared pooling parameter per group. As ViT groups the channels via a multi-head attention mechanism, grouping the channels by GGeM leads to lower head-wise dependence while amplifying important channels on the activation maps. Exploiting GGeM shows 0.1%p to 0.7%p performance boosts compared to the baselines and achieves state-of-the-art performance for ViT-Base and ViT-Large models in ImageNet-1K classification task. Moreover, GGeM outperforms the existing pooling strategies on image retrieval and multi-modal representation learning tasks, demonstrating the superiority of GGeM for a variety of tasks. GGeM is a simple algorithm in that only a few lines of code are necessary for implementation.
Striving for Simplicity: The All Convolutional Net
Most modern convolutional neural networks (CNNs) used for object recognition are built using the same principles: Alternating convolution and max-pooling layers followed by a small number of fully connected layers. We re-evaluate the state of the art for object recognition from small images with convolutional networks, questioning the necessity of different components in the pipeline. We find that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks. Following this finding -- and building on other recent work for finding simple network structures -- we propose a new architecture that consists solely of convolutional layers and yields competitive or state of the art performance on several object recognition datasets (CIFAR-10, CIFAR-100, ImageNet). To analyze the network we introduce a new variant of the "deconvolution approach" for visualizing features learned by CNNs, which can be applied to a broader range of network structures than existing approaches.
The Power of Linear Combinations: Learning with Random Convolutions
Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of learned convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1times 1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3times 3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (i.i.d.) nature of default initialization techniques.
Improving Model Evaluation using SMART Filtering of Benchmark Datasets
One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings.
CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters
Image dehazing aims to restore image clarity and visual quality by reducing atmospheric scattering and absorption effects. While deep learning has made significant strides in this area, more and more methods are constrained by network depth. Consequently, lots of approaches have adopted parallel branching strategies. however, they often prioritize aspects such as resolution, receptive field, or frequency domain segmentation without dynamically partitioning branches based on the distribution of input features. Inspired by dynamic filtering, we propose using cascaded dynamic filters to create a multi-branch network by dynamically generating filter kernels based on feature map distribution. To better handle branch features, we propose a residual multiscale block (RMB), combining different receptive fields. Furthermore, we also introduce a dynamic convolution-based local fusion method to merge features from adjacent branches. Experiments on RESIDE, Haze4K, and O-Haze datasets validate our method's effectiveness, with our model achieving a PSNR of 43.21dB on the RESIDE-Indoor dataset. The code is available at https://github.com/dauing/CasDyF-Net.
DRASP: A Dual-Resolution Attentive Statistics Pooling Framework for Automatic MOS Prediction
A pooling mechanism is essential for mean opinion score (MOS) prediction, facilitating the transformation of variable-length audio features into a concise fixed-size representation that effectively encodes speech quality. Existing pooling methods typically operate at a singular granularity, concentrating either on a comprehensive global perspective or a detailed frame-level analysis, which may overlook complementary perceptual insights. To address this limitation, we introduce the Dual-Resolution Attentive Statistics Pooling (DRASP) framework. DRASP integrates both coarse-grained, global statistical summaries and fine-grained, attentive analyses of perceptually significant segments. This dual-view architecture empowers our model to formulate a more thorough and robust representation, capturing both the overarching structural context and salient local details concurrently. Extensive experiments validate the effectiveness and strong generalization ability of the proposed framework. It consistently outperforms various baseline methods across diverse datasets (MusicEval and AES-Natural), MOS prediction backbones (including a CLAP-based model and AudioBox-Aesthetics), and different audio generation systems, achieving a relative improvement of 10.39% in system-level Spearman's rank correlation coefficient (SRCC) over the widely-used average pooling approach.
AnchorAL: Computationally Efficient Active Learning for Large and Imbalanced Datasets
Active learning for imbalanced classification tasks is challenging as the minority classes naturally occur rarely. Gathering a large pool of unlabelled data is thus essential to capture minority instances. Standard pool-based active learning is computationally expensive on large pools and often reaches low accuracy by overfitting the initial decision boundary, thus failing to explore the input space and find minority instances. To address these issues we propose AnchorAL. At each iteration, AnchorAL chooses class-specific instances from the labelled set, or anchors, and retrieves the most similar unlabelled instances from the pool. This resulting subpool is then used for active learning. Using a small, fixed-sized subpool AnchorAL allows scaling any active learning strategy to large pools. By dynamically selecting different anchors at each iteration it promotes class balance and prevents overfitting the initial decision boundary, thus promoting the discovery of new clusters of minority instances. Experiments across different classification tasks, active learning strategies, and model architectures AnchorAL is (i) faster, often reducing runtime from hours to minutes, (ii) trains more performant models, (iii) and returns more balanced datasets than competing methods.
Network Pruning Spaces
Network pruning techniques, including weight pruning and filter pruning, reveal that most state-of-the-art neural networks can be accelerated without a significant performance drop. This work focuses on filter pruning which enables accelerated inference with any off-the-shelf deep learning library and hardware. We propose the concept of network pruning spaces that parametrize populations of subnetwork architectures. Based on this concept, we explore the structure aspect of subnetworks that result in minimal loss of accuracy in different pruning regimes and arrive at a series of observations by comparing subnetwork distributions. We conjecture through empirical studies that there exists an optimal FLOPs-to-parameter-bucket ratio related to the design of original network in a pruning regime. Statistically, the structure of a winning subnetwork guarantees an approximately optimal ratio in this regime. Upon our conjectures, we further refine the initial pruning space to reduce the cost of searching a good subnetwork architecture. Our experimental results on ImageNet show that the subnetwork we found is superior to those from the state-of-the-art pruning methods under comparable FLOPs.
The Data-Quality Illusion: Rethinking Classifier-Based Quality Filtering for LLM Pretraining
Large-scale models are pretrained on massive web-crawled datasets containing documents of mixed quality, making data filtering essential. A popular method is Classifier-based Quality Filtering (CQF), which trains a binary classifier to distinguish between pretraining data and a small, high-quality set. It assigns each pretraining document a quality score defined as the classifier's score and retains only the top-scoring ones. We provide an in-depth analysis of CQF. We show that while CQF improves downstream task performance, it does not necessarily enhance language modeling on the high-quality dataset. We explain this paradox by the fact that CQF implicitly filters the high-quality dataset as well. We further compare the behavior of models trained with CQF to those trained on synthetic data of increasing quality, obtained via random token permutations, and find starkly different trends. Our results challenge the view that CQF captures a meaningful notion of data quality.
DsDm: Model-Aware Dataset Selection with Datamodels
When selecting data for training large-scale models, standard practice is to filter for examples that match human notions of data quality. Such filtering yields qualitatively clean datapoints that intuitively should improve model behavior. However, in practice the opposite can often happen: we find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data. To develop better methods for selecting data, we start by framing dataset selection as an optimization problem that we can directly solve for: given target tasks, a learning algorithm, and candidate data, select the subset that maximizes model performance. This framework thus avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks. Our resulting method greatly improves language model (LM) performance on both pre-specified tasks and previously unseen tasks. Specifically, choosing target tasks representative of standard LM problems and evaluating on diverse held-out benchmarks, our selected datasets provide a 2x compute multiplier over baseline methods.
Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters
We introduce a novel approach for keypoint detection task that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches benchmark. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance and complexity.
Balanced Mixture of SuperNets for Learning the CNN Pooling Architecture
Downsampling layers, including pooling and strided convolutions, are crucial components of the convolutional neural network architecture that determine both the granularity/scale of image feature analysis as well as the receptive field size of a given layer. To fully understand this problem, we analyse the performance of models independently trained with each pooling configurations on CIFAR10, using a ResNet20 network, and show that the position of the downsampling layers can highly influence the performance of a network and predefined downsampling configurations are not optimal. Network Architecture Search (NAS) might be used to optimize downsampling configurations as an hyperparameter. However, we find that common one-shot NAS based on a single SuperNet does not work for this problem. We argue that this is because a SuperNet trained for finding the optimal pooling configuration fully shares its parameters among all pooling configurations. This makes its training hard, because learning some configurations can harm the performance of others. Therefore, we propose a balanced mixture of SuperNets that automatically associates pooling configurations to different weight models and helps to reduce the weight-sharing and inter-influence of pooling configurations on the SuperNet parameters. We evaluate our proposed approach on CIFAR10, CIFAR100, as well as Food101 and show that in all cases, our model outperforms other approaches and improves over the default pooling configurations.
Gaussian Mixture Convolution Networks
This paper proposes a novel method for deep learning based on the analytical convolution of multidimensional Gaussian mixtures. In contrast to tensors, these do not suffer from the curse of dimensionality and allow for a compact representation, as data is only stored where details exist. Convolution kernels and data are Gaussian mixtures with unconstrained weights, positions, and covariance matrices. Similar to discrete convolutional networks, each convolution step produces several feature channels, represented by independent Gaussian mixtures. Since traditional transfer functions like ReLUs do not produce Gaussian mixtures, we propose using a fitting of these functions instead. This fitting step also acts as a pooling layer if the number of Gaussian components is reduced appropriately. We demonstrate that networks based on this architecture reach competitive accuracy on Gaussian mixtures fitted to the MNIST and ModelNet data sets.
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Currently, many theoretical as well as practically relevant questions towards the transferability and robustness of Convolutional Neural Networks (CNNs) remain unsolved. While ongoing research efforts are engaging these problems from various angles, in most computer vision related cases these approaches can be generalized to investigations of the effects of distribution shifts in image data. In this context, we propose to study the shifts in the learned weights of trained CNN models. Here we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a dataset with over 1.4 billion filters from hundreds of trained CNNs, using a wide range of datasets, architectures, and vision tasks. In a first use case of the proposed dataset, we can show highly relevant properties of many publicly available pre-trained models for practical applications: I) We analyze distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like visual category of the dataset, task, architecture, or layer depth. Based on these results, we conclude that model pre-training can succeed on arbitrary datasets if they meet size and variance conditions. II) We show that many pre-trained models contain degenerated filters which make them less robust and less suitable for fine-tuning on target applications. Data & Project website: https://github.com/paulgavrikov/cnn-filter-db
Pooling And Attention: What Are Effective Designs For LLm-Based Embedding Models?
The significant advancements of Large Language Models (LLMs) in generative tasks have led to a growing body of work exploring LLM-based embedding models. While these models, employing different pooling and attention strategies, have achieved state-of-the-art performance on public embedding benchmarks, questions still arise about what constitutes an effective design for LLM-based embedding models. However, these models are often trained on different datasets, using different LLM base models or training settings. Moreover, evaluations on public embedding benchmarks often fail to report statistical significance, making it difficult to determine which designs truly contribute to final performance. This complicates the process for practitioners seeking optimal training recipes for LLM-based embedding models. In this study, we conduct a large-scale experiment by training a series of LLM-based embedding models using the same training data and base model but differing in their pooling and attention strategies. The results show that there is no one-size-fits-all solution: while bidirectional attention and an additional trainable pooling layer outperform in text similarity and information retrieval tasks, they do not significantly surpass simpler designs like EOS-last token pooling and default causal attention in clustering and classification tasks. Furthermore, we propose a new pooling strategy, Multi-Layers Trainable Pooling, which transforms the outputs of all hidden layers, rather than just the last layer, using a cross-attention network. This method proves to be statistically superior in text similarity and retrieval tasks compared to existing pooling methods. Overall, this paper sheds light on effective training strategies for LLM-based embedding models.
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224x224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102x faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.
Adaptive Frequency Filters As Efficient Global Token Mixers
Recent vision transformers, large-kernel CNNs and MLPs have attained remarkable successes in broad vision tasks thanks to their effective information fusion in the global scope. However, their efficient deployments, especially on mobile devices, still suffer from noteworthy challenges due to the heavy computational costs of self-attention mechanisms, large kernels, or fully connected layers. In this work, we apply conventional convolution theorem to deep learning for addressing this and reveal that adaptive frequency filters can serve as efficient global token mixers. With this insight, we propose Adaptive Frequency Filtering (AFF) token mixer. This neural operator transfers a latent representation to the frequency domain via a Fourier transform and performs semantic-adaptive frequency filtering via an elementwise multiplication, which mathematically equals to a token mixing operation in the original latent space with a dynamic convolution kernel as large as the spatial resolution of this latent representation. We take AFF token mixers as primary neural operators to build a lightweight neural network, dubbed AFFNet. Extensive experiments demonstrate the effectiveness of our proposed AFF token mixer and show that AFFNet achieve superior accuracy and efficiency trade-offs compared to other lightweight network designs on broad visual tasks, including visual recognition and dense prediction tasks.
Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets. In recent times, data curation has gained prominence with several works developing strategies to retain 'high-quality' subsets of 'raw' scraped data. For instance, the LAION public dataset retained only 10% of the total crawled data. However, these strategies are typically developed agnostic of the available compute for training. In this paper, we first demonstrate that making filtering decisions independent of training compute is often suboptimal: the limited high-quality data rapidly loses its utility when repeated, eventually requiring the inclusion of 'unseen' but 'lower-quality' data. To address this quality-quantity tradeoff (QQT), we introduce neural scaling laws that account for the non-homogeneous nature of web data, an angle ignored in existing literature. Our scaling laws (i) characterize the differing 'utility' of various quality subsets of web data; (ii) account for how utility diminishes for a data point at its 'nth' repetition; and (iii) formulate the mutual interaction of various data pools when combined, enabling the estimation of model performance on a combination of multiple data pools without ever jointly training on them. Our key message is that data curation cannot be agnostic of the total compute that a model will be trained for. Our scaling laws allow us to curate the best possible pool for achieving top performance on Datacomp at various compute budgets, carving out a pareto-frontier for data curation. Code is available at https://github.com/locuslab/scaling_laws_data_filtering.
Learning to Parallel: Accelerating Diffusion Large Language Models via Adaptive Parallel Decoding
Autoregressive decoding in large language models (LLMs) requires O(n) sequential steps for n tokens, fundamentally limiting inference throughput. Recent diffusion-based LLMs (dLLMs) enable parallel token generation through iterative denoising. However, current parallel decoding strategies rely on fixed, input-agnostic heuristics (e.g., confidence thresholds), which fail to adapt to input-specific characteristics, resulting in suboptimal speed-quality trade-offs across diverse NLP tasks. In this work, we explore a more flexible and dynamic approach to parallel decoding. We propose Learning to Parallel Decode (Learn2PD), a framework that trains a lightweight and adaptive filter model to predict, for each token position, whether the current prediction matches the final output. This learned filter approximates an oracle parallel decoding strategy that unmasks tokens only when correctly predicted. Importantly, the filter model is learned in a post-training manner, requiring only a small amount of computation to optimize it (minute-level GPU time). Additionally, we introduce End-of-Text Prediction (EoTP) to detect decoding completion at the end of sequence, avoiding redundant decoding of padding tokens. Experiments on the LLaDA benchmark demonstrate that our method achieves up to 22.58times speedup without any performance drop, and up to 57.51times when combined with KV-Cache.
Filter Like You Test: Data-Driven Data Filtering for CLIP Pretraining
We introduce Filter Like You Test (FLYT), a method for curating large-scale vision-language datasets that learns the usefulness of each data point as a pretraining example. FLYT trains a scoring model that learns to weigh each example using gradient signals from downstream tasks training sets. Using the same training methodology, we develop Mixing-FLYT (M-FLYT), which takes the per-example scores generated by different scoring methods and learns to unify them into a single score. Our training methodology naturally produces a distribution over the training examples, which we leverage through Soft Cap Sampling (SCS), a strategy for obtaining a filtered pretraining dataset from per-example probabilities that samples examples while preventing over-representation through a repetition penalty. Using all three methods, we achieve 40.1% ImageNet zero-shot accuracy on the DataComp medium scale filtering benchmark, a 1.9% absolute accuracy increase over all previous results and a 5.5% increase over results that -- like us -- use only public resources.
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus
Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.
Billion-scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering
This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.
Concept-Aware Batch Sampling Improves Language-Image Pretraining
What data should a vision-language model be trained on? To answer this question, many data curation efforts center on the quality of a dataset. However, most of these existing methods are (i) offline, i.e. they produce a static dataset from a set of predetermined filtering criteria, and (ii) concept-agnostic, i.e. they use model-based filters which induce additional data biases. In this work, we go beyond such offline, concept-agnostic methods and advocate for more flexible, task-adaptive online concept-based curation. Our first contribution is DataConcept, a collection of 128M web-crawled image-text pairs annotated with fine-grained details about their concept composition. Building on DataConcept, we introduce Concept-Aware Batch Sampling (CABS), a simple yet effective batch sampling framework that flexibly constructs batches on-the-fly based on specific target distributions. We propose two variants: (i) Diversity Maximization (CABS-DM) to curate batches with a broad coverage of available concepts, and (ii) Frequency Maximization (CABS-FM) to curate batches with high object multiplicity. Through extensive evaluations across 28 benchmarks, we demonstrate that our CABS method significantly benefits CLIP/SigLIP model classes and yields highly performant models. Overall, CABS represents a strong open-source alternative to proprietary online data curation algorithms, enabling practitioners to define custom concept distributions that optimize for specific downstream tasks.
Does Medical Imaging learn different Convolution Filters?
Recent work has investigated the distributions of learned convolution filters through a large-scale study containing hundreds of heterogeneous image models. Surprisingly, on average, the distributions only show minor drifts in comparisons of various studied dimensions including the learned task, image domain, or dataset. However, among the studied image domains, medical imaging models appeared to show significant outliers through "spikey" distributions, and, therefore, learn clusters of highly specific filters different from other domains. Following this observation, we study the collected medical imaging models in more detail. We show that instead of fundamental differences, the outliers are due to specific processing in some architectures. Quite the contrary, for standardized architectures, we find that models trained on medical data do not significantly differ in their filter distributions from similar architectures trained on data from other domains. Our conclusions reinforce previous hypotheses stating that pre-training of imaging models can be done with any kind of diverse image data.
Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors
Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.
LMK > CLS: Landmark Pooling for Dense Embeddings
Representation learning is central to many downstream tasks such as search, clustering, classification, and reranking. State-of-the-art sequence encoders typically collapse a variable-length token sequence to a single vector using a pooling operator, most commonly a special [CLS] token or mean pooling over token embeddings. In this paper, we identify systematic weaknesses of these pooling strategies: [CLS] tends to concentrate information toward the initial positions of the sequence and can under-represent distributed evidence, while mean pooling can dilute salient local signals, sometimes leading to worse short-context performance. To address these issues, we introduce Landmark (LMK) pooling, which partitions a sequence into chunks, inserts landmark tokens between chunks, and forms the final representation by mean-pooling the landmark token embeddings. This simple mechanism improves long-context extrapolation without sacrificing local salient features, at the cost of introducing a small number of special tokens. We empirically demonstrate that LMK pooling matches existing methods on short-context retrieval tasks and yields substantial improvements on long-context tasks, making it a practical and scalable alternative to existing pooling methods.
Trying Bilinear Pooling in Video-QA
Bilinear pooling (BLP) refers to a family of operations recently developed for fusing features from different modalities predominantly developed for VQA models. A bilinear (outer-product) expansion is thought to encourage models to learn interactions between two feature spaces and has experimentally outperformed `simpler' vector operations (concatenation and element-wise-addition/multiplication) on VQA benchmarks. Successive BLP techniques have yielded higher performance with lower computational expense and are often implemented alongside attention mechanisms. However, despite significant progress in VQA, BLP methods have not been widely applied to more recently explored video question answering (video-QA) tasks. In this paper, we begin to bridge this research gap by applying BLP techniques to various video-QA benchmarks, namely: TVQA, TGIF-QA, Ego-VQA and MSVD-QA. We share our results on the TVQA baseline model, and the recently proposed heterogeneous-memory-enchanced multimodal attention (HME) model. Our experiments include both simply replacing feature concatenation in the existing models with BLP, and a modified version of the TVQA baseline to accommodate BLP we name the `dual-stream' model. We find that our relatively simple integration of BLP does not increase, and mostly harms, performance on these video-QA benchmarks. Using recently proposed theoretical multimodal fusion taxonomies, we offer insight into why BLP-driven performance gain for video-QA benchmarks may be more difficult to achieve than in earlier VQA models. We suggest a few additional `best-practices' to consider when applying BLP to video-QA. We stress that video-QA models should carefully consider where the complex representational potential from BLP is actually needed to avoid computational expense on `redundant' fusion.
Speed-up of Vision Transformer Models by Attention-aware Token Filtering
Vision Transformer (ViT) models have made breakthroughs in image embedding extraction, which provide state-of-the-art performance in tasks such as zero-shot image classification. However, the models suffer from a high computational burden. In this paper, we propose a novel speed-up method for ViT models called Attention-aware Token Filtering (ATF). ATF consists of two main ideas: a novel token filtering module and a filtering strategy. The token filtering module is introduced between a tokenizer and a transformer encoder of the ViT model, without modifying or fine-tuning of the transformer encoder. The module filters out tokens inputted to the encoder so that it keeps tokens in regions of specific object types dynamically and keeps tokens in regions that statically receive high attention in the transformer encoder. This filtering strategy maintains task accuracy while filtering out tokens inputted to the transformer encoder. Evaluation results on retrieval tasks show that ATF provides 2.8times speed-up to a ViT model, SigLIP, while maintaining the retrieval recall rate.
Shaping capabilities with token-level data filtering
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
MetaFormer Is Actually What You Need for Vision
Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token mixer module contributes most to their competence. However, recent works show the attention-based module in Transformers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation, we hypothesize that the general architecture of the Transformers, instead of the specific token mixer module, is more essential to the model's performance. To verify this, we deliberately replace the attention module in Transformers with an embarrassingly simple spatial pooling operator to conduct only basic token mixing. Surprisingly, we observe that the derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For example, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned Vision Transformer/MLP-like baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 50%/62% fewer MACs. The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of "MetaFormer", a general architecture abstracted from Transformers without specifying the token mixer. Based on the extensive experiments, we argue that MetaFormer is the key player in achieving superior results for recent Transformer and MLP-like models on vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer architecture design. Code is available at https://github.com/sail-sg/poolformer.
Hard Negatives or False Negatives: Correcting Pooling Bias in Training Neural Ranking Models
Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to positives) could lead to better performance. Surprisingly, we find opposite results from our empirical studies in IR. When sampling top-ranked results (excluding the labeled positives) as negatives from a stronger retriever, the performance of the learned NRM becomes even worse. Based on our investigation, the superficial reason is that there are more false negatives (i.e., unlabeled positives) in the top-ranked results with a stronger retriever, which may hurt the training process; The root is the existence of pooling bias in the dataset constructing process, where annotators only judge and label very few samples selected by some basic retrievers. Therefore, in principle, we can formulate the false negative issue in training NRMs as learning from labeled datasets with pooling bias. To solve this problem, we propose a novel Coupled Estimation Technique (CET) that learns both a relevance model and a selection model simultaneously to correct the pooling bias for training NRMs. Empirical results on three retrieval benchmarks show that NRMs trained with our technique can achieve significant gains on ranking effectiveness against other baseline strategies.
Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset
One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a 256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.
Wide-AdGraph: Detecting Ad Trackers with a Wide Dependency Chain Graph
Websites use third-party ads and tracking services to deliver targeted ads and collect information about users that visit them. These services put users' privacy at risk, and that is why users' demand for blocking these services is growing. Most of the blocking solutions rely on crowd-sourced filter lists manually maintained by a large community of users. In this work, we seek to simplify the update of these filter lists by combining different websites through a large-scale graph connecting all resource requests made over a large set of sites. The features of this graph are extracted and used to train a machine learning algorithm with the aim of detecting ads and tracking resources. As our approach combines different information sources, it is more robust toward evasion techniques that use obfuscation or changing the usage patterns. We evaluate our work over the Alexa top-10K websites and find its accuracy to be 96.1% biased and 90.9% unbiased with high precision and recall. It can also block new ads and tracking services, which would necessitate being blocked by further crowd-sourced existing filter lists. Moreover, the approach followed in this paper sheds light on the ecosystem of third-party tracking and advertising.
Visualizing Deep Similarity Networks
For convolutional neural network models that optimize an image embedding, we propose a method to highlight the regions of images that contribute most to pairwise similarity. This work is a corollary to the visualization tools developed for classification networks, but applicable to the problem domains better suited to similarity learning. The visualization shows how similarity networks that are fine-tuned learn to focus on different features. We also generalize our approach to embedding networks that use different pooling strategies and provide a simple mechanism to support image similarity searches on objects or sub-regions in the query image.
Structurally Prune Anything: Any Architecture, Any Framework, Any Time
Neural network pruning serves as a critical technique for enhancing the efficiency of deep learning models. Unlike unstructured pruning, which only sets specific parameters to zero, structured pruning eliminates entire channels, thus yielding direct computational and storage benefits. However, the diverse patterns for coupling parameters, such as residual connections and group convolutions, the diverse deep learning frameworks, and the various time stages at which pruning can be performed make existing pruning methods less adaptable to different architectures, frameworks, and pruning criteria. To address this, we introduce Structurally Prune Anything (SPA), a versatile structured pruning framework that can prune neural networks with any architecture, from any framework, and at any stage of training. SPA leverages a standardized computational graph and ONNX representation to prune diverse neural network architectures without the need for manual intervention. SPA employs a group-level importance estimation method, which groups dependent computational operators, estimates their importance, and prunes unimportant coupled channels. This enables the transfer of various existing pruning criteria into a structured group style. As a result, SPA supports pruning at any time, either before training, after training with fine-tuning, or after training without fine-tuning. In the context of the latter, we introduce Optimal Brain SPA (OBSPA), an algorithm that achieves state-of-the-art pruning results needing neither fine-tuning nor calibration data. In extensive experiments, SPA shows competitive to state-of-the-art pruning performance across various architectures, from popular frameworks, at different pruning times.
NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training
We introduce NitroFusion, a fundamentally different approach to single-step diffusion that achieves high-quality generation through a dynamic adversarial framework. While one-step methods offer dramatic speed advantages, they typically suffer from quality degradation compared to their multi-step counterparts. Just as a panel of art critics provides comprehensive feedback by specializing in different aspects like composition, color, and technique, our approach maintains a large pool of specialized discriminator heads that collectively guide the generation process. Each discriminator group develops expertise in specific quality aspects at different noise levels, providing diverse feedback that enables high-fidelity one-step generation. Our framework combines: (i) a dynamic discriminator pool with specialized discriminator groups to improve generation quality, (ii) strategic refresh mechanisms to prevent discriminator overfitting, and (iii) global-local discriminator heads for multi-scale quality assessment, and unconditional/conditional training for balanced generation. Additionally, our framework uniquely supports flexible deployment through bottom-up refinement, allowing users to dynamically choose between 1-4 denoising steps with the same model for direct quality-speed trade-offs. Through comprehensive experiments, we demonstrate that NitroFusion significantly outperforms existing single-step methods across multiple evaluation metrics, particularly excelling in preserving fine details and global consistency.
Infinite Feature Selection: A Graph-based Feature Filtering Approach
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
A survey on online active learning
Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in real time. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research.
Enhancing Multilingual LLM Pretraining with Model-Based Data Selection
Dataset curation has become a basis for strong large language model (LLM) performance. While various rule-based filtering heuristics exist for English and multilingual datasets, model-based filtering techniques have primarily focused on English. To address the disparity stemming from limited research on non-English languages, we propose a model-based filtering framework for multilingual datasets that aims to identify a diverse set of structured and knowledge-rich samples. Our approach emphasizes transparency, simplicity, and efficiency, leveraging Transformer- and FastText-based classifiers to ensure the broad accessibility of our technique and data. We conduct comprehensive ablation studies on the FineWeb-2 web crawl dataset across diverse language families, scripts, and resource availability to demonstrate the effectiveness of our method. Training a 1B-parameter Llama model for 70B and 119B tokens, our approach can match the baseline MMLU score with as little as 15% of the training tokens, while also improving across other benchmarks. These findings provide strong evidence for the generalizability of our approach to other languages. As a result, we extend our framework to 20 languages for which we release the refined pretraining datasets.
Group Orthogonalization Regularization For Vision Models Adaptation and Robustness
As neural networks become deeper, the redundancy within their parameters increases. This phenomenon has led to several methods that attempt to reduce the correlation between convolutional filters. We propose a computationally efficient regularization technique that encourages orthonormality between groups of filters within the same layer. Our experiments show that when incorporated into recent adaptation methods for diffusion models and vision transformers (ViTs), this regularization improves performance on downstream tasks. We further show improved robustness when group orthogonality is enforced during adversarial training. Our code is available at https://github.com/YoavKurtz/GOR.
Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html
CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training
Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4
Fighting Bias with Bias: Promoting Model Robustness by Amplifying Dataset Biases
NLP models often rely on superficial cues known as dataset biases to achieve impressive performance, and can fail on examples where these biases do not hold. Recent work sought to develop robust, unbiased models by filtering biased examples from training sets. In this work, we argue that such filtering can obscure the true capabilities of models to overcome biases, which might never be removed in full from the dataset. We suggest that in order to drive the development of models robust to subtle biases, dataset biases should be amplified in the training set. We introduce an evaluation framework defined by a bias-amplified training set and an anti-biased test set, both automatically extracted from existing datasets. Experiments across three notions of bias, four datasets and two models show that our framework is substantially more challenging for models than the original data splits, and even more challenging than hand-crafted challenge sets. Our evaluation framework can use any existing dataset, even those considered obsolete, to test model robustness. We hope our work will guide the development of robust models that do not rely on superficial biases and correlations. To this end, we publicly release our code and data.
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
Vision-language pre-training has significantly elevated performance across a wide range of image-language applications. Yet, the pre-training process for video-related tasks demands exceptionally large computational and data resources, which hinders the progress of video-language models. This paper investigates a straightforward, highly efficient, and resource-light approach to adapting an existing image-language pre-trained model for dense video understanding. Our preliminary experiments reveal that directly fine-tuning pre-trained image-language models with multiple frames as inputs on video datasets leads to performance saturation or even a drop. Our further investigation reveals that it is largely attributed to the bias of learned high-norm visual features. Motivated by this finding, we propose a simple but effective pooling strategy to smooth the feature distribution along the temporal dimension and thus reduce the dominant impacts from the extreme features. The new model is termed Pooling LLaVA, or in short. achieves new state-of-the-art performance on modern benchmark datasets for both video question-answer and captioning tasks. Notably, on the recent popular Video ChatGPT benchmark, PLLaVA achieves a score of 3.48 out of 5 on average of five evaluated dimensions, exceeding the previous SOTA results from GPT4V (IG-VLM) by 9\%. On the latest multi-choice benchmark MVBench, PLLaVA achieves 58.1\% accuracy on average across 20 sub-tasks, 14.5\% higher than GPT4V (IG-VLM). Code is available at https://github.com/magic-research/PLLaVA.
Multimodal Data Curation via Object Detection and Filter Ensembles
We propose an approach for curating multimodal data that we used for our entry in the 2023 DataComp competition filtering track. Our technique combines object detection and weak supervision-based ensembling. In the first of two steps in our approach, we employ an out-of-the-box zero-shot object detection model to extract granular information and produce a variety of filter designs. In the second step, we employ weak supervision to ensemble filtering rules. This approach results in a 4% performance improvement when compared to the best-performing baseline, producing the top-ranking position in the small scale track at the time of writing. Furthermore, in the medium scale track, we achieve a noteworthy 4.2% improvement over the baseline by simply ensembling existing baselines with weak supervision.
SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval
In neural Information Retrieval (IR), ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. Introduced recently, the SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches. In this paper, we build on SPLADE and propose several significant improvements in terms of effectiveness and/or efficiency. More specifically, we modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation. We also report results on the BEIR benchmark. Overall, SPLADE is considerably improved with more than 9\% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
Less is More: Task-aware Layer-wise Distillation for Language Model Compression
Layer-wise distillation is a powerful tool to compress large models (i.e. teacher models) into small ones (i.e., student models). The student distills knowledge from the teacher by mimicking the hidden representations of the teacher at every intermediate layer. However, layer-wise distillation is difficult. Since the student has a smaller model capacity than the teacher, it is often under-fitted. Furthermore, the hidden representations of the teacher contain redundant information that the student does not necessarily need for the target task's learning. To address these challenges, we propose a novel Task-aware layEr-wise Distillation (TED). TED designs task-aware filters to align the hidden representations of the student and the teacher at each layer. The filters select the knowledge that is useful for the target task from the hidden representations. As such, TED reduces the knowledge gap between the two models and helps the student to fit better on the target task. We evaluate TED in two scenarios: continual pre-training and fine-tuning. TED demonstrates significant and consistent improvements over existing distillation methods in both scenarios. Code is available at https://github.com/cliang1453/task-aware-distillation.
Performance-aware Approximation of Global Channel Pruning for Multitask CNNs
Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.
Global Features are All You Need for Image Retrieval and Reranking
Image retrieval systems conventionally use a two-stage paradigm, leveraging global features for initial retrieval and local features for reranking. However, the scalability of this method is often limited due to the significant storage and computation cost incurred by local feature matching in the reranking stage. In this paper, we present SuperGlobal, a novel approach that exclusively employs global features for both stages, improving efficiency without sacrificing accuracy. SuperGlobal introduces key enhancements to the retrieval system, specifically focusing on the global feature extraction and reranking processes. For extraction, we identify sub-optimal performance when the widely-used ArcFace loss and Generalized Mean (GeM) pooling methods are combined and propose several new modules to improve GeM pooling. In the reranking stage, we introduce a novel method to update the global features of the query and top-ranked images by only considering feature refinement with a small set of images, thus being very compute and memory efficient. Our experiments demonstrate substantial improvements compared to the state of the art in standard benchmarks. Notably, on the Revisited Oxford+1M Hard dataset, our single-stage results improve by 7.1%, while our two-stage gain reaches 3.7% with a strong 64,865x speedup. Our two-stage system surpasses the current single-stage state-of-the-art by 16.3%, offering a scalable, accurate alternative for high-performing image retrieval systems with minimal time overhead. Code: https://github.com/ShihaoShao-GH/SuperGlobal.
Graph Parsing Networks
Graph pooling compresses graph information into a compact representation. State-of-the-art graph pooling methods follow a hierarchical approach, which reduces the graph size step-by-step. These methods must balance memory efficiency with preserving node information, depending on whether they use node dropping or node clustering. Additionally, fixed pooling ratios or numbers of pooling layers are predefined for all graphs, which prevents personalized pooling structures from being captured for each individual graph. In this work, inspired by bottom-up grammar induction, we propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling. The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph. GPN benefits from the discrete assignments generated by the graph parsing algorithm, allowing good memory efficiency while preserving node information intact. Experimental results on standard benchmarks demonstrate that GPN outperforms state-of-the-art graph pooling methods in graph classification tasks while being able to achieve competitive performance in node classification tasks. We also conduct a graph reconstruction task to show GPN's ability to preserve node information and measure both memory and time efficiency through relevant tests.
Implicit Maximum a Posteriori Filtering via Adaptive Optimization
Bayesian filtering approximates the true underlying behavior of a time-varying system by inverting an explicit generative model to convert noisy measurements into state estimates. This process typically requires either storage, inversion, and multiplication of large matrices or Monte Carlo estimation, neither of which are practical in high-dimensional state spaces such as the weight spaces of artificial neural networks. Here, we frame the standard Bayesian filtering problem as optimization over a time-varying objective. Instead of maintaining matrices for the filtering equations or simulating particles, we specify an optimizer that defines the Bayesian filter implicitly. In the linear-Gaussian setting, we show that every Kalman filter has an equivalent formulation using K steps of gradient descent. In the nonlinear setting, our experiments demonstrate that our framework results in filters that are effective, robust, and scalable to high-dimensional systems, comparing well against the standard toolbox of Bayesian filtering solutions. We suggest that it is easier to fine-tune an optimizer than it is to specify the correct filtering equations, making our framework an attractive option for high-dimensional filtering problems.
DeepFilterNet: Perceptually Motivated Real-Time Speech Enhancement
Multi-frame algorithms for single-channel speech enhancement are able to take advantage from short-time correlations within the speech signal. Deep Filtering (DF) was proposed to directly estimate a complex filter in frequency domain to take advantage of these correlations. In this work, we present a real-time speech enhancement demo using DeepFilterNet. DeepFilterNet's efficiency is enabled by exploiting domain knowledge of speech production and psychoacoustic perception. Our model is able to match state-of-the-art speech enhancement benchmarks while achieving a real-time-factor of 0.19 on a single threaded notebook CPU. The framework as well as pretrained weights have been published under an open source license.
Reducing the Footprint of Multi-Vector Retrieval with Minimal Performance Impact via Token Pooling
Over the last few years, multi-vector retrieval methods, spearheaded by ColBERT, have become an increasingly popular approach to Neural IR. By storing representations at the token level rather than at the document level, these methods have demonstrated very strong retrieval performance, especially in out-of-domain settings. However, the storage and memory requirements necessary to store the large number of associated vectors remain an important drawback, hindering practical adoption. In this paper, we introduce a simple clustering-based token pooling approach to aggressively reduce the number of vectors that need to be stored. This method can reduce the space & memory footprint of ColBERT indexes by 50% with virtually no retrieval performance degradation. This method also allows for further reductions, reducing the vector count by 66%-to-75% , with degradation remaining below 5% on a vast majority of datasets. Importantly, this approach requires no architectural change nor query-time processing, and can be used as a simple drop-in during indexation with any ColBERT-like model.
A Large-scale Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform
Short-video platforms show an increasing impact on people's daily lives nowadays, with billions of active users spending plenty of time each day. The interactions between users and online platforms give rise to many scientific problems across computational social science and artificial intelligence. However, despite the rapid development of short-video platforms, currently there are serious shortcomings in existing relevant datasets on three aspects: inadequate user-video feedback, limited user attributes and lack of video content. To address these problems, we provide a large-scale dataset with rich user behavior, attributes and video content from a real mobile short-video platform. This dataset covers 10,000 voluntary users and 153,561 videos, and we conduct four-fold technical validations of the dataset. First, we verify the richness of the behavior and attribute data. Second, we confirm the representing ability of the content features. Third, we provide benchmarking results on recommendation algorithms with our dataset. Finally, we explore the filter bubble phenomenon on the platform using the dataset. We believe the dataset could support the broad research community, including but not limited to user modeling, social science, human behavior understanding, etc. The dataset and code is available at https://github.com/tsinghua-fib-lab/ShortVideo_dataset.
PoNet: Pooling Network for Efficient Token Mixing in Long Sequences
Transformer-based models have achieved great success in various NLP, vision, and speech tasks. However, the core of Transformer, the self-attention mechanism, has a quadratic time and memory complexity with respect to the sequence length, which hinders applications of Transformer-based models to long sequences. Many approaches have been proposed to mitigate this problem, such as sparse attention mechanisms, low-rank matrix approximations and scalable kernels, and token mixing alternatives to self-attention. We propose a novel Pooling Network (PoNet) for token mixing in long sequences with linear complexity. We design multi-granularity pooling and pooling fusion to capture different levels of contextual information and combine their interactions with tokens. On the Long Range Arena benchmark, PoNet significantly outperforms Transformer and achieves competitive accuracy, while being only slightly slower than the fastest model, FNet, across all sequence lengths measured on GPUs. We also conduct systematic studies on the transfer learning capability of PoNet and observe that PoNet achieves 95.7% of the accuracy of BERT on the GLUE benchmark, outperforming FNet by 4.5% relative. Comprehensive ablation analysis demonstrates effectiveness of the designed multi-granularity pooling and pooling fusion for token mixing in long sequences and efficacy of the designed pre-training tasks for PoNet to learn transferable contextualized language representations.
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition
We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime.
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
Automatic Neural Network Pruning that Efficiently Preserves the Model Accuracy
Neural networks performance has been significantly improved in the last few years, at the cost of an increasing number of floating point operations per second (FLOPs). However, more FLOPs can be an issue when computational resources are limited. As an attempt to solve this problem, pruning filters is a common solution, but most existing pruning methods do not preserve the model accuracy efficiently and therefore require a large number of finetuning epochs. In this paper, we propose an automatic pruning method that learns which neurons to preserve in order to maintain the model accuracy while reducing the FLOPs to a predefined target. To accomplish this task, we introduce a trainable bottleneck that only requires one single epoch with 25.6% (CIFAR-10) or 7.49% (ILSVRC2012) of the dataset to learn which filters to prune. Experiments on various architectures and datasets show that the proposed method can not only preserve the accuracy after pruning but also outperform existing methods after finetuning. We achieve a 52.00% FLOPs reduction on ResNet-50, with a Top-1 accuracy of 47.51% after pruning and a state-of-the-art (SOTA) accuracy of 76.63% after finetuning on ILSVRC2012. Code available at https://github.com/nota-github/autobot_AAAI23.
Local Self-Attention over Long Text for Efficient Document Retrieval
Neural networks, particularly Transformer-based architectures, have achieved significant performance improvements on several retrieval benchmarks. When the items being retrieved are documents, the time and memory cost of employing Transformers over a full sequence of document terms can be prohibitive. A popular strategy involves considering only the first n terms of the document. This can, however, result in a biased system that under retrieves longer documents. In this work, we propose a local self-attention which considers a moving window over the document terms and for each term attends only to other terms in the same window. This local attention incurs a fraction of the compute and memory cost of attention over the whole document. The windowed approach also leads to more compact packing of padded documents in minibatches resulting in additional savings. We also employ a learned saturation function and a two-staged pooling strategy to identify relevant regions of the document. The Transformer-Kernel pooling model with these changes can efficiently elicit relevance information from documents with thousands of tokens. We benchmark our proposed modifications on the document ranking task from the TREC 2019 Deep Learning track and observe significant improvements in retrieval quality as well as increased retrieval of longer documents at moderate increase in compute and memory costs.
Feature Flow Regularization: Improving Structured Sparsity in Deep Neural Networks
Pruning is a model compression method that removes redundant parameters in deep neural networks (DNNs) while maintaining accuracy. Most available filter pruning methods require complex treatments such as iterative pruning, features statistics/ranking, or additional optimization designs in the training process. In this paper, we propose a simple and effective regularization strategy from a new perspective of evolution of features, which we call feature flow regularization (FFR), for improving structured sparsity and filter pruning in DNNs. Specifically, FFR imposes controls on the gradient and curvature of feature flow along the neural network, which implicitly increases the sparsity of the parameters. The principle behind FFR is that coherent and smooth evolution of features will lead to an efficient network that avoids redundant parameters. The high structured sparsity obtained from FFR enables us to prune filters effectively. Experiments with VGGNets, ResNets on CIFAR-10/100, and Tiny ImageNet datasets demonstrate that FFR can significantly improve both unstructured and structured sparsity. Our pruning results in terms of reduction of parameters and FLOPs are comparable to or even better than those of state-of-the-art pruning methods.
Generalized Sum Pooling for Metric Learning
A common architectural choice for deep metric learning is a convolutional neural network followed by global average pooling (GAP). Albeit simple, GAP is a highly effective way to aggregate information. One possible explanation for the effectiveness of GAP is considering each feature vector as representing a different semantic entity and GAP as a convex combination of them. Following this perspective, we generalize GAP and propose a learnable generalized sum pooling method (GSP). GSP improves GAP with two distinct abilities: i) the ability to choose a subset of semantic entities, effectively learning to ignore nuisance information, and ii) learning the weights corresponding to the importance of each entity. Formally, we propose an entropy-smoothed optimal transport problem and show that it is a strict generalization of GAP, i.e., a specific realization of the problem gives back GAP. We show that this optimization problem enjoys analytical gradients enabling us to use it as a direct learnable replacement for GAP. We further propose a zero-shot loss to ease the learning of GSP. We show the effectiveness of our method with extensive evaluations on 4 popular metric learning benchmarks. Code is available at: GSP-DML Framework
DiffusionInst: Diffusion Model for Instance Segmentation
Diffusion frameworks have achieved comparable performance with previous state-of-the-art image generation models. Researchers are curious about its variants in discriminative tasks because of its powerful noise-to-image denoising pipeline. This paper proposes DiffusionInst, a novel framework that represents instances as instance-aware filters and formulates instance segmentation as a noise-to-filter denoising process. The model is trained to reverse the noisy groundtruth without any inductive bias from RPN. During inference, it takes a randomly generated filter as input and outputs mask in one-step or multi-step denoising. Extensive experimental results on COCO and LVIS show that DiffusionInst achieves competitive performance compared to existing instance segmentation models with various backbones, such as ResNet and Swin Transformers. We hope our work could serve as a strong baseline, which could inspire designing more efficient diffusion frameworks for challenging discriminative tasks. Our code is available in https://github.com/chenhaoxing/DiffusionInst.
Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation
Recent open-vocabulary segmentation methods adopt mask generators to predict segmentation masks and leverage pre-trained vision-language models, e.g., CLIP, to classify these masks via mask pooling. Although these approaches show promising results, it is counterintuitive that accurate masks often fail to yield accurate classification results through pooling CLIP image embeddings within the mask regions. In this paper, we reveal the performance limitations of mask pooling and introduce Mask-Adapter, a simple yet effective method to address these challenges in open-vocabulary segmentation. Compared to directly using proposal masks, our proposed Mask-Adapter extracts semantic activation maps from proposal masks, providing richer contextual information and ensuring alignment between masks and CLIP. Additionally, we propose a mask consistency loss that encourages proposal masks with similar IoUs to obtain similar CLIP embeddings to enhance models' robustness to varying predicted masks. Mask-Adapter integrates seamlessly into open-vocabulary segmentation methods based on mask pooling in a plug-and-play manner, delivering more accurate classification results. Extensive experiments across several zero-shot benchmarks demonstrate significant performance gains for the proposed Mask-Adapter on several well-established methods. Notably, Mask-Adapter also extends effectively to SAM and achieves impressive results on several open-vocabulary segmentation datasets. Code and models are available at https://github.com/hustvl/MaskAdapter.
Unveiling the Unseen: Identifiable Clusters in Trained Depthwise Convolutional Kernels
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures, that surpass the performance of classical CNNs, by a considerable scalability and accuracy margin. This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers. Through an extensive analysis of millions of trained filters, with different sizes and from various models, we employed unsupervised clustering with autoencoders, to categorize these filters. Astonishingly, the patterns converged into a few main clusters, each resembling the difference of Gaussian (DoG) functions, and their first and second-order derivatives. Notably, we were able to classify over 95\% and 90\% of the filters from state-of-the-art ConvNextV2 and ConvNeXt models, respectively. This finding is not merely a technological curiosity; it echoes the foundational models neuroscientists have long proposed for the vision systems of mammals. Our results thus deepen our understanding of the emergent properties of trained DS-CNNs and provide a bridge between artificial and biological visual processing systems. More broadly, they pave the way for more interpretable and biologically-inspired neural network designs in the future.
Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification
In this work, we first tackle the problem of simultaneous pixel-level localization and image-level classification with only image-level labels for fully convolutional network training. We investigate the global pooling method which plays a vital role in this task. Classical global max pooling and average pooling methods are hard to indicate the precise regions of objects. Therefore, we revisit the global weighted average pooling (GWAP) method for this task and propose the class-agnostic GWAP module and the class-specific GWAP module in this paper. We evaluate the classification and pixel-level localization ability on the ILSVRC benchmark dataset. Experimental results show that the proposed GWAP module can better capture the regions of the foreground objects. We further explore the knowledge transfer between the image classification task and the region-based object detection task. We propose a multi-task framework that combines our class-specific GWAP module with R-FCN. The framework is trained with few ground truth bounding boxes and large-scale image-level labels. We evaluate this framework on PASCAL VOC dataset. Experimental results show that this framework can use the data with only image-level labels to improve the generalization of the object detection model.
Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
Dr.LLM: Dynamic Layer Routing in LLMs
Large Language Models (LLMs) process every token through all layers of a transformer stack, causing wasted computation on simple queries and insufficient flexibility for harder ones that need deeper reasoning. Adaptive-depth methods can improve efficiency, but prior approaches rely on costly inference-time search, architectural changes, or large-scale retraining, and in practice often degrade accuracy despite efficiency gains. We introduce Dr.LLM, Dynamic routing of Layers for LLMs, a retrofittable framework that equips pretrained models with lightweight per-layer routers deciding to skip, execute, or repeat a block. Routers are trained with explicit supervision: using Monte Carlo Tree Search (MCTS), we derive high-quality layer configurations that preserve or improve accuracy under a compute budget. Our design, windowed pooling for stable routing, focal loss with class balancing, and bottleneck MLP routers, ensures robustness under class imbalance and long sequences. On ARC (logic) and DART (math), Dr.LLM improves accuracy by up to +3.4%p while saving 5 layers per example on average. Routers generalize to out-of-domain tasks (MMLU, GSM8k, AIME, TruthfulQA, SQuADv2, GPQA, PIQA, AGIEval) with only 0.85% accuracy drop while retaining efficiency, and outperform prior routing methods by up to +7.7%p. Overall, Dr.LLM shows that explicitly supervised routers retrofit frozen LLMs for budget-aware, accuracy-driven inference without altering base weights.
Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources
The reproduction of state-of-the-art multimodal LLM pre-training faces barriers at every stage of the pipeline, including high-quality data filtering, multimodal data mixture strategies, sequence packing techniques, and training frameworks. We introduce Open-Qwen2VL, a fully open-source 2B-parameter Multimodal Large Language Model pre-trained efficiently on 29M image-text pairs using only 442 A100-40G GPU hours. Our approach employs low-to-high dynamic image resolution and multimodal sequence packing to significantly enhance pre-training efficiency. The training dataset was carefully curated using both MLLM-based filtering techniques (e.g., MLM-Filter) and conventional CLIP-based filtering methods, substantially improving data quality and training efficiency. The Open-Qwen2VL pre-training is conducted on academic level 8xA100-40G GPUs at UCSB on 5B packed multimodal tokens, which is 0.36\% of 1.4T multimodal pre-training tokens of Qwen2-VL. The final instruction-tuned Open-Qwen2VL outperforms partially-open state-of-the-art MLLM Qwen2-VL-2B on various multimodal benchmarks of MMBench, SEEDBench, MMstar, and MathVista, indicating the remarkable training efficiency of Open-Qwen2VL. We open-source all aspects of our work, including compute-efficient and data-efficient training details, data filtering methods, sequence packing scripts, pre-training data in WebDataset format, FSDP-based training codebase, and both base and instruction-tuned model checkpoints. We redefine "fully open" for multimodal LLMs as the complete release of: 1) the training codebase, 2) detailed data filtering techniques, and 3) all pre-training and supervised fine-tuning data used to develop the model.
Pyramid Stereo Matching Network
Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in illposed regions. To tackle this problem, we propose PSMNet, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The 3D CNN learns to regularize cost volume using stacked multiple hourglass networks in conjunction with intermediate supervision. The proposed approach was evaluated on several benchmark datasets. Our method ranked first in the KITTI 2012 and 2015 leaderboards before March 18, 2018. The codes of PSMNet are available at: https://github.com/JiaRenChang/PSMNet.
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
Feature Selection Library (MATLAB Toolbox)
The Feature Selection Library (FSLib) introduces a comprehensive suite of feature selection (FS) algorithms for MATLAB, aimed at improving machine learning and data mining tasks. FSLib encompasses filter, embedded, and wrapper methods to cater to diverse FS requirements. Filter methods focus on the inherent characteristics of features, embedded methods incorporate FS within model training, and wrapper methods assess features through model performance metrics. By enabling effective feature selection, FSLib addresses the curse of dimensionality, reduces computational load, and enhances model generalizability. The elimination of redundant features through FSLib streamlines the training process, improving efficiency and scalability. This facilitates faster model development and boosts key performance indicators such as accuracy, precision, and recall by focusing on vital features. Moreover, FSLib contributes to data interpretability by revealing important features, aiding in pattern recognition and understanding. Overall, FSLib provides a versatile framework that not only simplifies feature selection but also significantly benefits the machine learning and data mining ecosystem by offering a wide range of algorithms, reducing dimensionality, accelerating model training, improving model outcomes, and enhancing data insights.
CCI3.0-HQ: a large-scale Chinese dataset of high quality designed for pre-training large language models
We present CCI3.0-HQ (https://huggingface.co/datasets/BAAI/CCI3-HQ), a high-quality 500GB subset of the Chinese Corpora Internet 3.0 (CCI3.0)(https://huggingface.co/datasets/BAAI/CCI3-Data), developed using a novel two-stage hybrid filtering pipeline that significantly enhances data quality. To evaluate its effectiveness, we trained a 0.5B parameter model from scratch on 100B tokens across various datasets, achieving superior performance on 10 benchmarks in a zero-shot setting compared to CCI3.0, SkyPile, and WanjuanV1. The high-quality filtering process effectively distills the capabilities of the Qwen2-72B-instruct model into a compact 0.5B model, attaining optimal F1 scores for Chinese web data classification. We believe this open-access dataset will facilitate broader access to high-quality language models.
Devil in the Number: Towards Robust Multi-modality Data Filter
In order to appropriately filter multi-modality data sets on a web-scale, it becomes crucial to employ suitable filtering methods to boost performance and reduce training costs. For instance, LAION papers employs the CLIP score filter to select data with CLIP scores surpassing a certain threshold. On the other hand, T-MARS achieves high-quality data filtering by detecting and masking text within images and then filtering by CLIP score. Through analyzing the dataset, we observe a significant proportion of redundant information, such as numbers, present in the textual content. Our experiments on a subset of the data unveil the profound impact of these redundant elements on the CLIP scores. A logical approach would involve reevaluating the CLIP scores after eliminating these influences. Experimentally, our text-based CLIP filter outperforms the top-ranked method on the ``small scale" of DataComp (a data filtering benchmark) on ImageNet distribution shifts, achieving a 3.6% performance improvement. The results also demonstrate that our proposed text-masked filter outperforms the original CLIP score filter when selecting the top 40% of the data. The impact of numbers on CLIP and their handling provide valuable insights for improving the effectiveness of CLIP training, including language rewrite techniques.
Gaperon: A Peppered English-French Generative Language Model Suite
We release Gaperon, a fully open suite of French-English-coding language models designed to advance transparency and reproducibility in large-scale model training. The Gaperon family includes 1.5B, 8B, and 24B parameter models trained on 2-4 trillion tokens, released with all elements of the training pipeline: French and English datasets filtered with a neural quality classifier, an efficient data curation and training framework, and hundreds of intermediate checkpoints. Through this work, we study how data filtering and contamination interact to shape both benchmark and generative performance. We find that filtering for linguistic quality enhances text fluency and coherence but yields subpar benchmark results, and that late deliberate contamination -- continuing training on data mixes that include test sets -- recovers competitive scores while only reasonably harming generation quality. We discuss how usual neural filtering can unintentionally amplify benchmark leakage. To support further research, we also introduce harmless data poisoning during pretraining, providing a realistic testbed for safety studies. By openly releasing all models, datasets, code, and checkpoints, Gaperon establishes a reproducible foundation for exploring the trade-offs between data curation, evaluation, safety, and openness in multilingual language model development.
MaxPoolBERT: Enhancing BERT Classification via Layer- and Token-Wise Aggregation
The [CLS] token in BERT is commonly used as a fixed-length representation for classification tasks, yet prior work has shown that both other tokens and intermediate layers encode valuable contextual information. In this work, we propose MaxPoolBERT, a lightweight extension to BERT that refines the [CLS] representation by aggregating information across layers and tokens. Specifically, we explore three modifications: (i) max-pooling the [CLS] token across multiple layers, (ii) enabling the [CLS] token to attend over the entire final layer using an additional multi-head attention (MHA) layer, and (iii) combining max-pooling across the full sequence with MHA. Our approach enhances BERT's classification accuracy (especially on low-resource tasks) without requiring pre-training or significantly increasing model size. Experiments on the GLUE benchmark show that MaxPoolBERT consistently achieves a better performance on the standard BERT-base model.
Next Generation Multitarget Trackers: Random Finite Set Methods vs Transformer-based Deep Learning
Multitarget Tracking (MTT) is the problem of tracking the states of an unknown number of objects using noisy measurements, with important applications to autonomous driving, surveillance, robotics, and others. In the model-based Bayesian setting, there are conjugate priors that enable us to express the multi-object posterior in closed form, which could theoretically provide Bayes-optimal estimates. However, the posterior involves a super-exponential growth of the number of hypotheses over time, forcing state-of-the-art methods to resort to approximations for remaining tractable, which can impact their performance in complex scenarios. Model-free methods based on deep-learning provide an attractive alternative, as they can, in principle, learn the optimal filter from data, but to the best of our knowledge were never compared to current state-of-the-art Bayesian filters, specially not in contexts where accurate models are available. In this paper, we propose a high-performing deep-learning method for MTT based on the Transformer architecture and compare it to two state-of-the-art Bayesian filters, in a setting where we assume the correct model is provided. Although this gives an edge to the model-based filters, it also allows us to generate unlimited training data. We show that the proposed model outperforms state-of-the-art Bayesian filters in complex scenarios, while matching their performance in simpler cases, which validates the applicability of deep-learning also in the model-based regime. The code for all our implementations is made available at https://github.com/JulianoLagana/MT3 .
Finetuned Multimodal Language Models Are High-Quality Image-Text Data Filters
We propose a novel framework for filtering image-text data by leveraging fine-tuned Multimodal Language Models (MLMs). Our approach outperforms predominant filtering methods (e.g., CLIPScore) via integrating the recent advances in MLMs. We design four distinct yet complementary metrics to holistically measure the quality of image-text data. A new pipeline is established to construct high-quality instruction data for fine-tuning MLMs as data filters. Comparing with CLIPScore, our MLM filters produce more precise and comprehensive scores that directly improve the quality of filtered data and boost the performance of pre-trained models. We achieve significant improvements over CLIPScore on popular foundation models (i.e., CLIP and BLIP2) and various downstream tasks. Our MLM filter can generalize to different models and tasks, and be used as a drop-in replacement for CLIPScore. An additional ablation study is provided to verify our design choices for the MLM filter.
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Relational pooling is a framework for building more expressive and permutation-invariant graph neural networks. However, there is limited understanding of the exact enhancement in the expressivity of RP and its connection with the Weisfeiler Lehman hierarchy. Starting from RP, we propose to explicitly assign labels to nodes as additional features to improve expressive power of message passing neural networks. The method is then extended to higher dimensional WL, leading to a novel k,l-WL algorithm, a more general framework than k-WL. Theoretically, we analyze the expressivity of k,l-WL with respect to k and l and unifies it with a great number of subgraph GNNs. Complexity reduction methods are also systematically discussed to build powerful and practical k,l-GNN instances. We theoretically and experimentally prove that our method is universally compatible and capable of improving the expressivity of any base GNN model. Our k,l-GNNs achieve superior performance on many synthetic and real-world datasets, which verifies the effectiveness of our framework.
Accelerating Automatic Differentiation of Direct Form Digital Filters
We introduce a general formulation for automatic differentiation through direct form filters, yielding a closed-form backpropagation that includes initial condition gradients. The result is a single expression that can represent both the filter and its gradients computation while supporting parallelism. C++/CUDA implementations in PyTorch achieve at least 1000x speedup over naive Python implementations and consistently run fastest on the GPU. For the low-order filters commonly used in practice, exact time-domain filtering with analytical gradients outperforms the frequency-domain method in terms of speed. The source code is available at https://github.com/yoyolicoris/philtorch.
Attentive Statistics Pooling for Deep Speaker Embedding
This paper proposes attentive statistics pooling for deep speaker embedding in text-independent speaker verification. In conventional speaker embedding, frame-level features are averaged over all the frames of a single utterance to form an utterance-level feature. Our method utilizes an attention mechanism to give different weights to different frames and generates not only weighted means but also weighted standard deviations. In this way, it can capture long-term variations in speaker characteristics more effectively. An evaluation on the NIST SRE 2012 and the VoxCeleb data sets shows that it reduces equal error rates (EERs) from the conventional method by 7.5% and 8.1%, respectively.
WISE: Whitebox Image Stylization by Example-based Learning
Image-based artistic rendering can synthesize a variety of expressive styles using algorithmic image filtering. In contrast to deep learning-based methods, these heuristics-based filtering techniques can operate on high-resolution images, are interpretable, and can be parameterized according to various design aspects. However, adapting or extending these techniques to produce new styles is often a tedious and error-prone task that requires expert knowledge. We propose a new paradigm to alleviate this problem: implementing algorithmic image filtering techniques as differentiable operations that can learn parametrizations aligned to certain reference styles. To this end, we present WISE, an example-based image-processing system that can handle a multitude of stylization techniques, such as watercolor, oil or cartoon stylization, within a common framework. By training parameter prediction networks for global and local filter parameterizations, we can simultaneously adapt effects to reference styles and image content, e.g., to enhance facial features. Our method can be optimized in a style-transfer framework or learned in a generative-adversarial setting for image-to-image translation. We demonstrate that jointly training an XDoG filter and a CNN for postprocessing can achieve comparable results to a state-of-the-art GAN-based method.
SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
Beyond Gradient Averaging in Parallel Optimization: Improved Robustness through Gradient Agreement Filtering
We introduce Gradient Agreement Filtering (GAF) to improve on gradient averaging in distributed deep learning optimization. Traditional distributed data-parallel stochastic gradient descent involves averaging gradients of microbatches to calculate a macrobatch gradient that is then used to update model parameters. We find that gradients across microbatches are often orthogonal or negatively correlated, especially in late stages of training, which leads to memorization of the training set, reducing generalization. In this paper, we introduce a simple, computationally effective way to reduce gradient variance by computing the cosine distance between micro-gradients during training and filtering out conflicting updates prior to averaging. We improve validation accuracy with significantly smaller microbatch sizes. We also show this reduces memorizing noisy labels. We demonstrate the effectiveness of this technique on standard image classification benchmarks including CIFAR-100 and CIFAR-100N-Fine. We show this technique consistently outperforms validation accuracy, in some cases by up to 18.2\% compared to traditional training approaches while reducing the computation required nearly an order of magnitude because we can now rely on smaller microbatch sizes without destabilizing training.
Rethinking Leveraging Pre-Trained Multi-Layer Representations for Speaker Verification
Recent speaker verification studies have achieved notable success by leveraging layer-wise output from pre-trained Transformer models. However, few have explored the advancements in aggregating these multi-level features beyond the static weighted average. We present Layer Attentive Pooling (LAP), a novel strategy for aggregating inter-layer representations from pre-trained speech models for speaker verification. LAP assesses the significance of each layer from multiple perspectives time-dynamically, and employs max pooling instead of averaging. Additionally, we propose a lightweight backend speaker model comprising LAP and Attentive Statistical Temporal Pooling (ASTP) to extract speaker embeddings from pre-trained model output. Experiments on the VoxCeleb benchmark reveal that our compact architecture achieves state-of-the-art performance while greatly reducing the training time. We further analyzed LAP design and its dynamic weighting mechanism for capturing speaker characteristics.
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling
This paper considers a novel application of deep AUC maximization (DAM) for multi-instance learning (MIL), in which a single class label is assigned to a bag of instances (e.g., multiple 2D slices of a CT scan for a patient). We address a neglected yet non-negligible computational challenge of MIL in the context of DAM, i.e., bag size is too large to be loaded into {GPU} memory for backpropagation, which is required by the standard pooling methods of MIL. To tackle this challenge, we propose variance-reduced stochastic pooling methods in the spirit of stochastic optimization by formulating the loss function over the pooled prediction as a multi-level compositional function. By synthesizing techniques from stochastic compositional optimization and non-convex min-max optimization, we propose a unified and provable muli-instance DAM (MIDAM) algorithm with stochastic smoothed-max pooling or stochastic attention-based pooling, which only samples a few instances for each bag to compute a stochastic gradient estimator and to update the model parameter. We establish a similar convergence rate of the proposed MIDAM algorithm as the state-of-the-art DAM algorithms. Our extensive experiments on conventional MIL datasets and medical datasets demonstrate the superiority of our MIDAM algorithm.
Beyond Length: Quantifying Long-Range Information for Long-Context LLM Pretraining Data
Long-context language models unlock advanced capabilities in reasoning, code generation, and document summarization by leveraging dependencies across extended spans of text. However, a significant portion of readily available long-text data lacks meaningful long-distance dependencies; most spans can be predicted using only local context. Training on such data is inefficient, making careful data selection crucial. Therefore, we introduce LongFilter, a framework for curating training data tailored to long-context pretraining. LongFilter measures the information gain provided by extended context by contrasting model predictions under long-context versus short-context settings, thereby identifying samples where long-range dependencies are essential. Experiments with LLaMA-3-8B, extending its context length from 8K to 64K, show that LongFilter efficiently selects high-quality data and yields substantial improvements on benchmarks such as HELMET, LongBench, and RULER.
LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset
As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2.
DiffGuard: Text-Based Safety Checker for Diffusion Models
Recent advances in Diffusion Models have enabled the generation of images from text, with powerful closed-source models like DALL-E and Midjourney leading the way. However, open-source alternatives, such as StabilityAI's Stable Diffusion, offer comparable capabilities. These open-source models, hosted on Hugging Face, come equipped with ethical filter protections designed to prevent the generation of explicit images. This paper reveals first their limitations and then presents a novel text-based safety filter that outperforms existing solutions. Our research is driven by the critical need to address the misuse of AI-generated content, especially in the context of information warfare. DiffGuard enhances filtering efficacy, achieving a performance that surpasses the best existing filters by over 14%.
Don't Think It Twice: Exploit Shift Invariance for Efficient Online Streaming Inference of CNNs
Deep learning time-series processing often relies on convolutional neural networks with overlapping windows. This overlap allows the network to produce an output faster than the window length. However, it introduces additional computations. This work explores the potential to optimize computational efficiency during inference by exploiting convolution's shift-invariance properties to skip the calculation of layer activations between successive overlapping windows. Although convolutions are shift-invariant, zero-padding and pooling operations, widely used in such networks, are not efficient and complicate efficient streaming inference. We introduce StreamiNNC, a strategy to deploy Convolutional Neural Networks for online streaming inference. We explore the adverse effects of zero padding and pooling on the accuracy of streaming inference, deriving theoretical error upper bounds for pooling during streaming. We address these limitations by proposing signal padding and pooling alignment and provide guidelines for designing and deploying models for StreamiNNC. We validate our method in simulated data and on three real-world biomedical signal processing applications. StreamiNNC achieves a low deviation between streaming output and normal inference for all three networks (2.03 - 3.55% NRMSE). This work demonstrates that it is possible to linearly speed up the inference of streaming CNNs processing overlapping windows, negating the additional computation typically incurred by overlapping windows.
The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only
Large language models are commonly trained on a mixture of filtered web data and curated high-quality corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models from the state-of-the-art trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 600 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.
CAT Pruning: Cluster-Aware Token Pruning For Text-to-Image Diffusion Models
Diffusion models have revolutionized generative tasks, especially in the domain of text-to-image synthesis; however, their iterative denoising process demands substantial computational resources. In this paper, we present a novel acceleration strategy that integrates token-level pruning with caching techniques to tackle this computational challenge. By employing noise relative magnitude, we identify significant token changes across denoising iterations. Additionally, we enhance token selection by incorporating spatial clustering and ensuring distributional balance. Our experiments demonstrate reveal a 50%-60% reduction in computational costs while preserving the performance of the model, thereby markedly increasing the efficiency of diffusion models. The code is available at https://github.com/ada-cheng/CAT-Pruning
Rethinking Data Selection at Scale: Random Selection is Almost All You Need
Supervised fine-tuning (SFT) is crucial for aligning Large Language Models (LLMs) with human instructions. The primary goal during SFT is to select a small yet representative subset of training data from the larger pool, such that fine-tuning with this subset achieves results comparable to or even exceeding those obtained using the entire dataset. However, most existing data selection techniques are designed for small-scale data pools, which fail to meet the demands of real-world SFT scenarios. In this paper, we replicated several self-scoring methods those that do not rely on external model assistance on two million scale datasets, and found that nearly all methods struggled to significantly outperform random selection when dealing with such large-scale data pools. Moreover, our comparisons suggest that, during SFT, diversity in data selection is more critical than simply focusing on high quality data. We also analyzed the limitations of several current approaches, explaining why they perform poorly on large-scale datasets and why they are unsuitable for such contexts. Finally, we found that filtering data by token length offers a stable and efficient method for improving results. This approach, particularly when training on long text data, proves highly beneficial for relatively weaker base models, such as Llama3.
Pruning-aware Sparse Regularization for Network Pruning
Structural neural network pruning aims to remove the redundant channels in the deep convolutional neural networks (CNNs) by pruning the filters of less importance to the final output accuracy. To reduce the degradation of performance after pruning, many methods utilize the loss with sparse regularization to produce structured sparsity. In this paper, we analyze these sparsity-training-based methods and find that the regularization of unpruned channels is unnecessary. Moreover, it restricts the network's capacity, which leads to under-fitting. To solve this problem, we propose a novel pruning method, named MaskSparsity, with pruning-aware sparse regularization. MaskSparsity imposes the fine-grained sparse regularization on the specific filters selected by a pruning mask, rather than all the filters of the model. Before the fine-grained sparse regularization of MaskSparity, we can use many methods to get the pruning mask, such as running the global sparse regularization. MaskSparsity achieves 63.03%-FLOPs reduction on ResNet-110 by removing 60.34% of the parameters, with no top-1 accuracy loss on CIFAR-10. On ILSVRC-2012, MaskSparsity reduces more than 51.07% FLOPs on ResNet-50, with only a loss of 0.76% in the top-1 accuracy. The code is released at https://github.com/CASIA-IVA-Lab/MaskSparsity. Moreover, we have integrated the code of MaskSparity into a PyTorch pruning toolkit, EasyPruner, at https://gitee.com/casia_iva_engineer/easypruner.
Investigating Multi-layer Representations for Dense Passage Retrieval
Dense retrieval models usually adopt vectors from the last hidden layer of the document encoder to represent a document, which is in contrast to the fact that representations in different layers of a pre-trained language model usually contain different kinds of linguistic knowledge, and behave differently during fine-tuning. Therefore, we propose to investigate utilizing representations from multiple encoder layers to make up the representation of a document, which we denote Multi-layer Representations (MLR). We first investigate how representations in different layers affect MLR's performance under the multi-vector retrieval setting, and then propose to leverage pooling strategies to reduce multi-vector models to single-vector ones to improve retrieval efficiency. Experiments demonstrate the effectiveness of MLR over dual encoder, ME-BERT and ColBERT in the single-vector retrieval setting, as well as demonstrate that it works well with other advanced training techniques such as retrieval-oriented pre-training and hard negative mining.
Semantic Network Interpretation
Network interpretation as an effort to reveal the features learned by a network remains largely visualization-based. In this paper, our goal is to tackle semantic network interpretation at both filter and decision level. For filter-level interpretation, we represent the concepts a filter encodes with a probability distribution of visual attributes. The decision-level interpretation is achieved by textual summarization that generates an explanatory sentence containing clues behind a network's decision. A Bayesian inference algorithm is proposed to automatically associate filters and network decisions with visual attributes. Human study confirms that the semantic interpretation is a beneficial alternative or complement to visualization methods. We demonstrate the crucial role that semantic network interpretation can play in understanding a network's failure patterns. More importantly, semantic network interpretation enables a better understanding of the correlation between a model's performance and its distribution metrics like filter selectivity and concept sparseness.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
Are We Using the Right Benchmark: An Evaluation Framework for Visual Token Compression Methods
Recent endeavors to accelerate inference in Multimodal Large Language Models (MLLMs) have primarily focused on visual token compression. The effectiveness of these methods is typically assessed by measuring the accuracy drop on established benchmarks, comparing model performance before and after compression. However, these benchmarks are originally designed to assess the perception and reasoning capabilities of MLLMs, rather than to evaluate compression techniques. As a result, directly applying them to visual token compression introduces a task mismatch. Strikingly, our investigation reveals that simple image downsampling consistently outperforms many advanced compression methods across multiple widely used benchmarks. Through extensive experiments, we make the following observations: (i) Current benchmarks are noisy for the visual token compression task. (ii) Down-sampling is able to serve as a data filter to evaluate the difficulty of samples in the visual token compression task. Motivated by these findings, we introduce VTC-Bench, an evaluation framework that incorporates a data filtering mechanism to denoise existing benchmarks, thereby enabling fairer and more accurate assessment of visual token compression methods. All data and code are available at https://github.com/Chenfei-Liao/VTC-Bench.
How Do Vision Transformers Work?
The success of multi-head self-attentions (MSAs) for computer vision is now indisputable. However, little is known about how MSAs work. We present fundamental explanations to help better understand the nature of MSAs. In particular, we demonstrate the following properties of MSAs and Vision Transformers (ViTs): (1) MSAs improve not only accuracy but also generalization by flattening the loss landscapes. Such improvement is primarily attributable to their data specificity, not long-range dependency. On the other hand, ViTs suffer from non-convex losses. Large datasets and loss landscape smoothing methods alleviate this problem; (2) MSAs and Convs exhibit opposite behaviors. For example, MSAs are low-pass filters, but Convs are high-pass filters. Therefore, MSAs and Convs are complementary; (3) Multi-stage neural networks behave like a series connection of small individual models. In addition, MSAs at the end of a stage play a key role in prediction. Based on these insights, we propose AlterNet, a model in which Conv blocks at the end of a stage are replaced with MSA blocks. AlterNet outperforms CNNs not only in large data regimes but also in small data regimes. The code is available at https://github.com/xxxnell/how-do-vits-work.
